INSERT

Special Features I 8'1

Chapter Eight

Special Features

OVERVIEW

BASIC-80 provides the programmer with several special features. One of these
features, Error Trapping, is useful for detecting errors during program execution.
Another feature is the PRINT USING statement. This statement allows the
programmer to specify the format of both numeric and string output.

Another important feature is the Trace flag, which allows the programmer to
follow, line-by-line, the execution of a program.

BASIC-80 also provides the facilities for overlay management. The CHAIN and
COMMON statement are used for this function.

8"2 I CHAPTER EIGHT

ERROR TRAPPING

BASIC-80 allows the programmer to write error detection and error handling
routines which can attempt to recover from errors, or provide more complete
explanations of the causes of errors. This facility has been added through the use
of the ON ERROR GOTO, RESUME, and ERROR statements, and with the ERR
and ERL variables.

ON ERROR GOTO (enable error trapping)
Form: ON ERROR GOTO <line number>

The ON ERROR GOTO statement is used to enable error trapping and specify the
first line of the error handling subroutine.

Once error trapping has been enabled, all errors detected, including Command
Mode errors (e.g., Syntax errors), will cause a jump to the specified error hand-
ling subroutine. If <line number> does not exist, an ‘“Undefined line number”’
error results.

To disable error trapping, execute an ON ERROR GOTO 0. Subsequent errors
will print an error message and halt execution. An ON ERROR GOTO 0 statement
that appears in an error trapping subroutine causes BASIC-80 to stop and print
the error message for the error that caused the trap. We recommend that all error
trapping subroutines execute an ON ERROR GOTO 0 if an error is encountered
for which there is no recovery action.

If an error occurs during execution of an error handling subroutine, the BASIC
error message is printed and execution terminates. Error trapping does not trap
errors within the error handling subroutine.

Example:

10 ON ERROR GOTO 1000

Special-Features

RESUME (continue execution)

Forms: RESUME
RESUME 0
RESUME NEXT
RESUME <line number>

The RESUME statement is used to continue program execution after an error
recovery procedure has been performed:

Any one of the four formats shown above may be used, depending upon where
execution is to resume:

RESUME Execution resumes at the statement
or which caused the error.

RESUME O

RESUME NEXT Execution resumes at the statement

immediately following the one which
caused the error.

RESUME<line number> Execution resumes at <line number>.

A RESUME statement that is not in an error trap routine causes a “‘RESUME
without error’’ message to be printed.

Error Trap Example:

100 ON ERROR GOTO 500

200 INPUT"WHAT ARE THE NUMBERS TO DIVIDE";X,Y
210 Z=X/Y

220 PRINT "QUOTIENT IS";Z

230 GOTO 200

500 IF ERR=11 AND ERL=210 THEN 520

510 STOP

520 PRINT"YOU CAN'T HAVE A DIVISOR OF ZERO!"
530 RESUME 200

8-3

8-

CHAPTER EIGHT

ERROR (generate error)
Form: ERROR <integer expression>

The ERROR statement can be used either to simulate the occurrence of a BASIC-
80 error, or to allow error codes to be defined by the user.

The value of <integer expression> must be greater than 0 and less than 255. If
the value of <integer expression> equals an error code already in use by
BASIC-80, the ERROR statement will simulate the occurrence of that error, and
the corresponding error message will be printed.

To define your own error code, use a value that is greater than any used by
BASIC-80’s error codes. (It is preferable to use the highest available values, so
compatibility may be maintained when more error codes are added to BASIC-
80.) This user-defined error code may then be conveniently handled in an error
trap routine. *

If an ERROR statement specifies a code for which no error message has been
defined, BASIC-80 responds with the message ‘“‘Unprintable error”’. Execution of
an ERROR statement for which there is no error trap routine causes an error
message to be printed and execution to halt.

Example:

LIST

10 S = 10

20T = 5

30 ERROR S + T

40 END

Ok

RUN

String too long in line 30

Or, in Command Mode:

Ok

ERROR 15 (you type this line)
String too long (BASIC-80 types this line)
Ok

Special Features I 8"5

ERR and ERL Variables

When an error handling subroutine is entered, the variable ERR contains the
error code for the error, and the variable ERL contains the line number of the line
in which the error was detected. The ERR and ERL variables are usually used in
IF/THEN statements to direct program flow in the error trap routine.

If the statement that caused the error was a Command Mode statement, ERL will
contain 65535. To test if an error occurred in a Command Mode statement, use IF
65535 = ERL THEN ... Otherwise, use

IF ERR = error code THEN ...
IF ERL = line number THEN ...

If the line number is not on the right side of the relational operator, it cannot be
renumbered by RENUM. Because ERL and ERR are reserved variables, neither
may appear to the left of the equal sign in a LET (assignment) statement.

When the error handling subroutine is entered, the variable ERR contains the
error code for the error. The error codes and their meanings are listed on the next
page. See Appendix A, “Error Messages,” for a more detailed discussion of the
eITor messages.

8'6 | CHAPTER EIGHT

ERROR CODES

General Errors

CODE

ERROR

© 0O NO U W

NEXT WITHOUT FOR
SYNTAX ERROR

RETURN WITHOUT GOSUB
OUT OF DATA

ILLEGAL FUNCTION CALL
OVERFLOW

OUT OF MEMORY
UNDEFINED LINE
SUBSCRIPT OUT OF RANGE
DUPLICATE DEFINITION
DIVISION BY ZERO
ILLEGAL DIRECT

TYPE MISMATCH

OUT OF STRING SPACE
STRING TOO LONG

STRING FORMULA TOO COMPLEX
CAN'T CONTINUE
UNDEFINED USER FUNCTION
NO RESUME

RESUME WITHOUT ERROR
UNPRINTABLE ERROR
MISSING OPERAND

LINE BUFFER OVERFLOW
FOR WITHOUT NEXT
WHILE WITHOUT WEND
WEND WITHOUT WHILE

Table 8-1

Error Codes.

Special Features | 8"7

Disk Errors

CODE

ERROR

50
51
52
53
54
55
57
58
61
62
63
64
66
67

FIELD OVERFLOW
INTERNAL ERROR
BAD FILE NUMBER
FILE NOT FOUND

BAD FILE MODE

FILE ALREADY OPEN
DISK I/O ERROR

FILE ALREADY EXISTS
DISK FULL

INPUT PAST END

BAD RECORD NUMBER
BAD FILE NAME
DIRECT STATEMENT IN FILE
TOO MANY FILES

Table 8-1 (Cont'd.)

Error Codes.

8'8 | CHAPTER EIGHT

FORMATTED OUTPUT

The PRINT USING statement can be used to output information in a specific
format. This feature is useful in such applications as printing payroll checks or
accounting reports.

PRINT USING (format output)
Form: PRINT USING<string exp>;<list of expressions>

The PRINT USING statement is used to print strings or numbers using a specified
format.

<list of expressions> is comprised of the string expressions or numeric expres-
sions that are to be printed, separated by semicolons. <string exp> is a string
literal (or variable) that is comprised of special formatting characters. These
formatting characters (see below) determine the field, and the format, of the
printed strings or numbers.

String Fields

When PRINT USING is used to print strings, one of three formatting characters
may be used to format the string field:

"!ll

This specifies that only the first character in the given string is to be printed.

Special Features

"\n spaces\"

This specifies that 2+n characters from the string are to be printed. If the
backslashes are typed with no spaces, two characters will be printed; with one
space, three characters will be printed, and so on. If the string is longer than the
field, the extra characters are ignored. If the field is longer than the string, the
string will be left-justified in the field and padded with spaces on the right.

Example:

10 A$="LOOK":B$="0UT"

20 PRINT USING "!";A$;B$%

30 PRINT USING "\ \";A$;B$

40 PRINT USING "\ \;A$;B§;" ! 1"
RUN

LO

LOOKOUT

LOOK OUT !!

H&H

The ampersand specifies a variable length string field. When the field is
specified with "&", the string is output exactly as input.

Example:

10 A$="LOOK" :B$="0UT"

20 PRINT USING "!";A$
30 PRINT USING "&";B$
RUN

L

ouT

Numeric Fields

When PRINT USING is used to print numbers, the following special characters
may be used to format the numeric field:

"#”
A number sign is used torepresent each digit position. Digit positions are always

filled. If the number to be printed has fewer digits than positions specified, the
number will be right-justified (preceded by spaces) in the field.

8'10 | CHAPTER EIGHT

A decimal point may be inserted at any position in the field. If the format string
specifies that a digit is to precede the decimal point, the digit will always be
printed (as 0 if necessary). Numbers are rounded as necessary.

Examples:

PRINT USING "##.##";.78
0.78

PRINT USING "###.##";987.654
987 .65

PRINT USING "##.## ";10.2,5.3,66.789, .234
10.20 5.30 66.79 0.23

In the last example, three spaces were inserted at the end of the format string to
separate the printed values on the line.

"+"

A plus sign at the beginning or end of the format string will cause the sign of the
number (plus or minus) to be printed before or after the number.

A minus sign at the end of the format field will cause negative numbers to be
printed with a trailing minus sign. If the number is positive, a space will be

printed.
PRINT USING "+##.## ",-68.95,2.4,55.6,—.9
—68.95 +2.40 +55.60 -0.90
PRINT USING "##.##- ";-68.95,22.449,-7.01

68.95—- 22.45 7.01-

Special Features | 8'11

A double asterisk at the beginning of the format string causes leading spaces in
the numeric field to be filled with asterisks. The ** also specifies positions for
two more digits.

Example:
PRINT USING "**#.# ";12.39,-0.9,765.1

*12 .4 *-0.9 765.1

u$$n

A double dollar sign causes a dollar sign to be printed to the immediate left of the
formatted number. The $$ specifies two more digit positions, one of which is the
dollar sign. The exponential format cannot be used with $$. Negative numbers
cannot be used unless the minus sign trails to the right.

Example:
PRINT USING "$$### .##",456.78
$456 .78

u**$u

The **$ at the beginning of a format string combines the effects of the above two
symbols. Leading spaces will be asterisk-filled and a dollar sign will be printed
before the number. **$ specifies three more digit positions, one of which is the
dollar sign.

Example:

PRINT USING "**$## . ##";2.34
*xx$2 .34

8'12 | CHAPTER EIGHT

A comma that is to the left of the decimal point in a formatting string causes a
comma to be printed to the left of every third digit on the left side of the decimal
point. A comma that is at the end of the format string is printed as part of the
string. A comma specifies another digit position. The comma has no effect if
used with the exponential (~~~+) format.

Example:

PRINT USING "####, . ##":1234.5
1,234.50

PRINT USING "#### . #4,";1234.5
1234.50,

Four carats (or up-arrows) may be placed after the digit position characters to
specify exponential format. The four carats allow space for E+xx to be printed.
Any decimal point position may be specified. The significant digits are left-
justified, and the exponent is adjusted. Unless a leading + or trailing + or - is
specified, one digit position will be used to the left of the decimal point to print a
space or a minus sign.

Example:

PRINT USING "##.##A~~A";234 .56
2.35E+02

PRINT USING " .####~~~~—" ;888888
.8889E+06

PRINT USING "”+.##AAAAH;123
+.12E+03

Special Features

An underscore in the format string causes the next character to be output as a
literal character.

Example:

PRINT USING "_I##.##_1";12.34
112 .34

The literal character itself may be an underscore by placing ““__"" in the format
string.

Errors

If the number to be printed is larger than the specified numeric field, a percent

sign (%) is printed in front of the number. If rounding causes the number to

exceed the field, a percent sign will be printed in front of the rounded number.

Example:

PRINT USING "##.##";111.22
7111.22

PRINT USING ".##";.999
%1.00

If the number of digits specified exceeds 24, an “Illegal function call” error will
result.

8-13

8'14 I CHAPTER EIGHT

TRACE FLAG

As a debugging aid, two statements are provided to trace the execution of
program instructions.

TRON/TROFF (enable/disable trace flag)

Forms: TRON TROFF

The TRON/TROFF statements are used to trace the execution of program state-
ments.

Asanaid in debugging, the TRON statement (executed in either the Command or
Indirect Mode) enables a trace flag that prints each line number of the program as
it is executed. The numbers appear enclosed in square brackets. The trace flag is
disabled with the TROFF statement (or when a NEW command is executed).

Example:

TRON
0k

LIST

10 K=10

20 FOR J=1 TO 2

30 L=K + 10

40 PRINTJ;K;L

50 K=K+10

60 NEXT

70 END

0k

RUN

[10] [20] [30] [40] 1 10 20
[50] [60] [30] [40] 2 20 30
[50] [60] [70]

0k

TROFF

0k

Special Features

OVERLAY MANAGEMENT

BASIC-80 provides two statements, CHAIN and COMMON, which are useful for
manipulating overlays. With these two statements, it is possible to merge several
programs during the execution of a program, as well as pass several or all the
variables to another program.
CHAIN (call overlay)
Form: CHAIN [MERGE] <filename>[,[<line number exp>]
[,LALL][,DELETE<range>]]

The CHAIN statement is used to call a program and pass variables to it from the
current program.
<filename> is the name of the program that is called.
Example:

CHAIN"PROG1"
<line number exp> is a line number or an expression that evaluates to a line
number in the called program. It is the starting point for execution of the called
program. If it is omitted, execution begins at the first line.
Example:

CHAIN"PROG1", 1000
<line number exp> is not affected by a RENUM command.
With the ALL option, every variable in the current program is passed to the
called program. If the ALL option is omitted, the current program must contain a
COMMON statement to specify the variables that are passed.
Example:

CHAIN"PROG1", 1000, ALL
If the MERGE option is included, it allows a subroutine to be brought into the
BASIC program as an overlay. That is, a MERGE operation is performed with the

current program and the called program. The called program must be an ASCII
file if it is to be MERGEd.

8-15

8'16 I CHAPTER EIGHT

Example:
CHAIN MERGE"OVRLAY", 1000

After an overlay is brought in, it is usually desirable to delete it so that a new
overlay may be brought in. To do this, use the DELETE option. The line numbers
in the <range> of the delete are affected by the RENUM command.

Example:

CHAIN MERGE"OVRLAY@", 1000, DELETE 1000-5000

If the MERGE option is omitted, CHAIN does not preserve variable types or
user-defined functions for use by the chained program. That is, any DEFINT,
DEFSNG, DEFDBL, DEFSTR, or DEFFN statement containing shared variables
must be restated in the chained program.

COMMON (pass variables)
Form: COMMONCKlist of variables>
The COMMON statement is used to pass variables to a chained program.

The COMMON statement is used in conjunction with the CHAIN statement.
COMMON statements may appear anywhere in a program, though we recom-
mend that they appear at the beginning. The same variable cannot appear in
more than one COMMON statement. Array variables are specified by appending
“()” to the variable name. If all variables are to be passed, use CHAIN with the
ALL option and omit the COMMON statement.

Example:

100 COMMON A,B,C,D(),G$
110 CHAIN "PROG3'", 10

INSERT

Editing | 9'1

Chapter Nine

Editing

OVERVIEW

In Edit Mode, it is possible to edit portions of a line without retyping the entire
line. Upon entering Edit Mode, BASIC-80 types the line number of the line to be
edited. Then it types a space and waits for the Edit Mode subcommand.

Edit Mode subcommands are used to insert, delete, replace, or search for text
within a line. The subcommands are not echoed to the terminal. Some of the Edit
Mode subcommands may be preceded by an integer which causes the command
to be executed that number of times. When an integer is not specified, it is
assumed to be one.

9'2 I CHAPTER NINE

Edit Mode subcommands may be categorized according to the following func-
tions:

1. Moving the cursor.

2. Inserting text.

3. Deleting text.

4. Finding text.

5. Replacing text.

6. Ending and restarting Edit Mode.
If BASIC-80 receives an unrecognizable command or illegal character while in
EditMode, it sounds the bell (CTRL-G) and the command or characteris ignored.
You can invoke the Edit Mode by typing:

EDIT <line number>

Where <line number> is the number of the line to be edited. If no <line
number> exists, an ‘“Undefined line number” error will result.

The requested line number will be printed, followed by a space. The cursor will
now be positioned to the left of the first character in the line.

Type in the following line:
100 FOR J = 1 TO 10:PRINT J:NEXT

This program line will be used to demonstrate the various Edit Mode commands.

caiing | 9-3

MOVING THE CURSOR

n Space Bar
In Edit Mode, the Space Bar is used to move the cursor to the right. For example,
using line 100 entered above, invoke the Edit Mode. The line number 100 should
be displayed on your screen as such:

100 _
Now press the Space Bar. The cursor will move over one space. The first
character of the program line will now be displayed. If this character was a blank,
then a blank will be displayed on your screen. Keep pressing the Space Bar until
the first non-blank character is displayed. At this point, the screen should look
like this:

100 F_
It is also possible to move over more than one space at a time. Just type the
number of spaces first, and then the Space Bar. For example, to move over five
spaces, type 5 and then press the Space Bar once. The characters will be printed
as you move over them.

100 FOR J=_

(Your display may not look exactly like this, as it depends on how may blanks
you inserted in the program line.)

BACK SPACE

In Edit Mode, the BACK SPACE key moves the cursor one space to the left. The
characters are not deleted as you move over them. To return to our example,

100 FOR J=_

if the cursor were positioned after the = sign, pressing BACKSPACE once should
move the cursor under the = sign. Thus: “

100 FOR J=

0-4

CHAPTER NINE

INSERTING TEXT

I (Insert)
The I command will insert text beginning at the current cursor position. The
inserted characters are printed on the terminal. To terminate insertion, press the
ESC key. If you press the RETURN during the insert command, the effect is the
same as typing ESC and then RETURN.
Use the Space Bar to move over to the 0 in the 10.

100 FOR J=1 TO 10_
Now, suppose you want to change the 10 to 100. Press the I key (you don’t have to
terminate the entry with a RETURN). You are now in Insert Mode. To make the
neccessary change, type a 0. The display should now look like this:

100 FOR J=1 TO 100_

Now that you have made the change, press the ESC key and you will exit Insert
Mode. Now press the RETURN to save all your changes and return to BASIC-80

" Command Mode. If you list line 100, it should look similiar to this:

100 FOR J=1 TO 100:PRINT J:NEXT

During an insert command, you can use the BACK SPACE key on the terminal to
delete characters on the left of the cursor.

If you try to insert a character that will make the line longer than 255 characters, a
bell (CTRL-G) will be typed and the character will not be printed.

Editing | 9'5

X (Extend Line)

The X command is used to extend the line. X moves the cursor to the end of a line.
BASIC-80 then goes into the Insert Mode and allows text to be inserted as if an
insert command had been given. When you are finished extending the line, type
ESC or press RETURN and you will be returned to BASIC-80 Command Mode.

For example, to extend line number 100 you previously typed in, invoke Edit
Mode with line number 100. The screen will show:

100 _

Now press the X key. The entire line will be displayed and the cursor will be at
the end of the line:

100 FOR J=1 TO 100:PRINT J:NEXT_
Now you have been put into Insert Mode. You can now add another program
statement to the end of this line. For example, type :PRINT“ALL DONE” and a
RETURN. The line has now been extended to include this statement. If you were

to LIST 100, it should look like this:

100 FOR J=1 TO 100:PRINT J:NEXT:PRINT"ALL DONE"

9'6 l CHAPTER NINE

DELETING TEXT

nD (Delete)

nD deletes n characters to the right of the cursor. The deleted characters are
echoed between backslashes, and the cursor is positioned to the right of the last
character deleted. If there are fewer than n characters to the right of the cursor,
the remainder of the line will be deleted.

For example, enter Edit Mode with line number 100 you previously typed in.
Now, using the Space Bar, move the cursor over to the end of the FOR statement.
The screen should look something like this:

100 FOR J=1 TO 100:_

Now type 8D. This will delete eight characters to the right of the cursor. The
screen should look something like this:

100 FOR J=1 TO 100:\PRINT J:\
(Note that the characters deleted are enclosed in backslashes.)
Now press RETURN and you will be back to the BASIC-80 Command Mode. If

you LIST 100, you should notice that the PRINT] statement has been deleted
from the program line.

H (Hack and Insert)

H deletes all characters to the right of the cursor and then automatically enters
Insert Mode. H is useful forreplacing statements at the end of a line. For example,
assume you wish to change the last statement of program line 100. First, you
must enter Edit Mode with line number 100. Now move over to the NEXT
statement with the Space Bar. The screen should look similiar to this:

100 FOR J=1 TO 100:NEXT:_

Press the H key and then type STOP. Type a RETURN to save this change and exit
to BASIC-80 Command Mode.

Now list line number 100. If you’ve been following the editing changes in this
Chapter, the line should look like this:

100 FOR J=1 TO 100:NEXT:STOP

Editing I 9'7

FINDING TEXT

nS<ch>(Search)

The search subcommand searches for the nth occurence of <ch> and positions
the cursor before it. The character at the current cursor positionis not included in
the search. If <ch> is not found, the cursor will stop at the end of the line. All
characters passed over during the search are printed. NOTE: only characters to
the right of the cursor are included in this search.

For example, using the current form of the sample line 100, enter Edit Mode with
line 100. Next, type 2S: . This command will be used to search for the second
occurrence of the colon character in program line 100. The display should look
something like this:

100 FOR J=1 TO 100 :NEXT_

At this point you can execute any command you wish. You could enter a counter

variable after the NEXT statement by first entering Insert Mode and then typinga

space and the variable J. Now hit ESC to exit Insert Mode. Finally, press RETURN
in order to exit back to the BASIC-80 Command Mode. Now, if you were to list
line number 100, it would look similar to this (assuming you followed the
editing changes in this chapter):

100 FOR J=1 TO 100:NEXT J: STOP

nK<ch>(Search and “Kill”)
The search and kill subcommand is similiar to the search subcommand except
that all the characters passed over in the search are deleted. The cursor is

positioned before <ch> and all the deleted characters are enclosed in
backslashes.

For example, invoke the Edit Mode with the current version of line 100. Now
type 2K:. This command will delete all of the characters in the line up to the
second occurance of the colon. The screen should look similiar to this:

100 \FOR J=1 TO 100:NEXT J_

The second colon still needs tobe deleted, sotype D. The screen should then look
similiar to this:

100 \FOR J=1 TO 100:NEXT J\:\
Now press RETURN and LIST line 100. It should look like this:

100 STOP

9'8 I CHAPTER NINE

REPLACING TEXT

nC(Change)

The change subcommand changes the specified number of characters beginning
at the current cursor position. If you type only a C without a preceding number,
the computer assumes that you wish to change only one character. If you enter a
number n before you type C, then it assumes that you wish to change the next n
characters.

After you have entered n characters, the Change Mode will be exited. If you
attempt to enter any more characters, the bell is sounded (CTRL-G) and the extra
characters are ignored.

For example, first retype the original line 100 as:

100 FOR J=1 TO 100:PRINT J:NEXT

Next, enter Edit Mode with line 100. Your screen should look something like
this:

100 _
Now let’s assume that you want to change the terminal value in the FOR/NEXT
loop from 100 to 150. You would have to move the cursor over to the first zero in
100. Use the Space Bar to move the cursor over. If you go too far, simply press the
BACKSPACE key to move the cursor back.

100 FOR J=1 TO 1_
Now type C. BASIC-80 will assume that you wish to change only one character.
Type 5 and then press RETURN. If you LIST 100, the new line should look like
this:

100 FOR J=1 TO 150:PRINT J:NEXT

Editing |!ng

ENDING AND RESTARTING EDIT MODE

RETURN(Save changes and Exit)

If you press a RETURN, remainder of the line is printed, the changes you made
are saved, and the computer returns to the BASIC-80 Command Mode.

E(Save Changes and Exit)

The E subcommand has the same effect as RETURN, except the remainder of the
line is not printed.

Q(Cancel and Exit)

The Q subcommand returns to the BASIC-80 Command Mode without saving
any of the changes that were made to the line during Edit Mode.

L(List Line)

The L subcommand lists the remainder of the line (saving any changes made so
far) and repositions the cursor at the beginning of the line, still in the Edit Mode.
L is usually used to list the line when you first enter Edit Mode. For example:

EDIT 100

100 _

<you type L>

<BASIC-80 responds:>

100 FOR J=1 TO 100:NEXT:STOP
100 _

9‘10 | CHAPTER NINE

A(Cancel and Restart)

The A subcommand lets you begin editing a line over again. It discards any
changes made so far and restores the original line, repositioning the cursor at the
beginning. In order to use the A subcommand,you must not be currently execut-
ing any other subcommand. If you are executing another command (such as
Insert), press the ESC, and then press the A. In the following example, the
operator first lists the original line, then makes changes in Insert Mode, then
decides to start over, using the A subcommand to restore the original line:

EDIT 100

100 _

<operator types L>

100 FOR J=1 TO 100:NEXT:STOP

100 _

100 for J=1 TO 10_ <operator types I and adds a zero>
<operator types ESC>

<operator types L>

100 FOR J=1 TO 1000:NEXT:STOP

100 _

<operator types A>

100 _

<operator types L; note how original line has been restored>
100 FOR J=1 TO 100:NEXT:STOP

100 _

caiing | 9-11

OTHER EDIT MODE FEATURES

SYNTAX ERRORS

When it finds a syntax error during the execution of a program, BASIC-80 will
automatically enter Edit Mode at the line that caused the error. For example:

10 K = 2(4)

RUN

Syntax Error in 10
Ok

10 _

When you finish editing the line and press RETURN (or the E subcommand),
BASIC-80reinserts the line. This causes all variable values to be lost and all open
files to be closed. To preserve the variable values for examination, first exit Edit
Mode with the Q subcommand. BASIC-80 will return to the Command Mode and
all variable values will be preserved.

CTRL-A

To enter the Edit Mode on the line you are currently typing, type CTRL-A.
BASIC-80 will respond with a carriage return, an exclamation point, (!) and a
space. The cursor will then be positioned at the first character in the line. At this
point you may proceed by typing any Edit Mode subcommand.

CURRENT LINE EDITING

You may use the period (.) to denote the current line when you invoke the Edit
Mode. So, the command:

EDIT .

will invoke the Edit Mode at the current line. The line number symbol (.) always
refers to the current line.

9'12 I CHAPTER NINE

INSERT

BASIC-80 Disk File Operations l 10'1

Chapter Ten

BASIC-80 Disk File Operations

OVERVIEW

BASIC-80 provides several sets of statements for creating and manipulating
program and data files.

The file manipulation commands are very useful for manipulating program files.
Some of these commands can also be used with data files.

The file management statements are used to open and close data files, check for
end-of-file, and to obtain information about the size of a file.

The sequential access statements are used to access sequential files. The sequen-
tial access file is easy to use, but the data must be accessed sequentially.

The random access statements are used to access and manipulate random access
files. The random access file requires more program steps than the sequential
access, but the records in the file can be read in any order.

10'2 I CHAPTER TEN

FILE MANIPULATION COMMANDS

Thisisareview of the commands and statements that are useful for manipulating
program and data files. These statements and commands are also discussed in
Chapter Three, “Command Mode Statements*‘.

FILES [“<filename>"’]

The FILES command lists the names of the files that are residing on the current
disk. If the optional <filename> string is included, the names of the files on any
specified disk can be listed.

KILL ““filename”

The KILL command deletes the file from the disk. ““filename’” may be a program
file, or a sequential or random access data file. If ““filename’’ is a data file, it must
be closed before it is killed.

LOAD “filename”[,R]

The LOAD command loads the program from disk into memory. The option R
runs the program immediately. LOAD always deletes the current contents of
memory and closes all files before LOADing. If Risincluded, however, open data
files are kept open. Thus programs can be chained or loaded in sections and can
access the same data files.

MERGE ‘‘filename”’

The MERGE command loads the program from disk into memory but does not
delete the current contents of memory. The program line numbers on disk are -
merged with the line numbers in memory. If two lines have the same number,
only the line from the disk program is saved. After a MERGE command, the
“merged’’ program resides in memory and BASIC-80 returns to Command Mode.

NAME “oldfile” AS “newfile”

To change the name of a disk file, execute the NAME statement, NAME ““oldfile”
AS “newfile”. NAME may be used with program files, random files, or sequen-
tial files.

BASIC-80 Disk File Operations | 10'3

RESET

RESET reads the directory information off of a newly inserted disk which you
have exchanged for the disk in the current default drive. RESET does not close
files that were opened on the former default disk. Therefore, use RESET only
after you have closed any open files and replaced the current default disk.

RUN *“filename”’[,R]

RUN “Ailename” loads the program from disk into memory and runs it. RUN
deletes the current contents of memory and closes all files before loading the
program. If the R option is included, however, all open data files are kept open.
SAVE “filename”[,A]

The SAVE command writes to disk the program that is currently residing in

memory. Thoption writes the program in ASCII format. (Otherwise, BASIC uses
a compressed binary format.)

Protected Files

If you wish to save a program in an encoded binary format, use the “Protect”
option with the SAVE command. For example:

SAVE "MYPROG", P

A program saved this way cannot be listed or edited.

10-4

CHAPTER TEN

FILE MANAGEMENT STATEMENTS

BASIC-80 provides a full set of I/O statements to be used for disk file manage-
ment. These statements are listed below:

Statement Function

OPEN Opens a disk file and assigns a file number to the disk
file.

CLOSE Closes a disk file and de-assigns the file number from

the disk file.

EOF Returns —1 (true) if the end of a file has been reached.

LOF Returns the number of records present in the last extent
accessed.

LoC Returns the next record to be accessed for a random file
and the total number of sectors accessed for a sequential
file.

Table 10-1

File Management Statements.

The OPEN statement is used to assign a file number to a disk file name. Also, the
OPEN statement is used to define the mode in which the file is to be used
(sequential or random access).

The CLOSE statement performs the opposite function of the OPEN statement. It
will de-assign the file number from a disk file name.

The EOF function will return —1 (true) if the end of a sequential file has been
reached. The EOF function can also be used with random files to determine the
last record number.

The LOF function will return the number of records present in the last extent
accessed.

The LOC function, when used with a random file, will return the next record to
be accessed. When used with a sequential file,it returns the number of records
accessed since the file was opened.

These statements are discussed on the following pages. For a detailed program-
ming example that utilizes these statements, see “Appendix F.”

10-5

BASIC-80 Disk File Operations

OPEN (open disk data file)

Form: OPEN ‘““mode” [#]<filenumber>,“<filename>",[,<,reclen>]

where:

“mode” is a string expression whose first character is one of the following mode
specification strings:

O Specifies sequential output mode.
I Specifies sequential input mode.
R Specifies random input/output mode.

This string expression will be referred to as the “mode string”.

<filenumber> is an integer expression which represents the file number as-
sociated with the file. This number will be used in subsequent I/O operations.

<filenumber> must not exceed the number of files that were sat during the
BASIC-80 initialization process. If no files were set during the initilization
process, BASIC-80 will assume a maximum of 3. (See Chapter One, ‘“System
Introduction & General Information”, for more information about this initializa-
tion process.)

“<filename>" is the fully qualified CP/M file name. No extensions are assumed,
so the file name must include this information. If no drive is specified, the
current default drive is assumed.

<reclen> is an integer expression which, if included, sets the record length for
random files. The maximum record length is 256 bytes. The default record
length is 128 bytes. If arecord length greater than 128 bytes is desired, this length
must also be specified when BASIC-80 is initialized. This record length option
can only be used with random files. Any attempt to declare the size of a sequen-
tial record will result in a “Syntax error”.

The OPEN statement is used to associate a file number with a file name. The
OPEN statement also defines the mode in which the file will be used (sequential
or random access). Subsequent I/O operations will reference the file number
assigned to a file name. For example, assume that a file was opened using the
following statement:

OPEN "I",2,"SAMPLE.DAT"

10'6 l CHAPTER TEN

This statement will assign file number 2 to the file SAMPLE.DAT. Because no
drive name was specified, BASIC-80 will assume that SAMPLE.DAT resides on
the current default drive. The mode string for this file specifies ‘1" -- sequential
input.

If SAMPLE.DAT does not exist on the current default disk, an error will be
generated, since input can not be performed on a non-existant file. Now, to input
data from this file, the following statement would be used:

INPUT#2,<variable list>

Note that this INPUT # statement references file number 2, and file number 2 was
the number assigned to the file SAMPLE.DAT. (This is only a general form of the
INPUT# statement. A detailed discussion of the INPUT# statement appears later
in this Chapter.)

Now assume that the following OPEN statement is used:
OPEN "0",3,"B:OUTPUT .DAT"

This will assign file number 3 to the file OUTPUT.DAT. Since the file name does
contain the drive specification B:, BASIC-80 will create this output file on drive
B:. If this file already exists on drive B:, it will be destroyed, and all previous
contents of the file will be lost. Now, to output data to this file, the following
statement would be used: ‘

WRITE#3,<variable list>

The WRITE# statement references file number 3, and file number 3 had been
previously assigned to the file B:OUTPUT.DAT. So, the data specified in the
<variable list> would be written to the file B:OUTPUT.DAT. (The WRITE#
statement is discussed in more detail later in this Chapter.) A file can also be
opened for random I/O. One OPEN statement can be used to open the file for both
random input and random output. For example, the following statement will
open a file for random I/O.

OPEN "R", 1, "RANDOM.DAT"

The file, RANDOM.DAT, is opened for random I/O. If RANDOM.DAT does not
exist, it will be created on the current default disk. Now, either random input or
random output can be performed with this file. Note that no record size was
specified with this OPEN statement. Therefore, BASIC-80 will assume the de-
fault record size of 128 bytes. A different record size can be specified with the
OPEN statement. (But only for a random access file.)

BASIC-80 Disk File Operations I 10‘7

For example, to open the file RANDOM.DAT for random access, and declare a
record size of 32 bytes, the following statement would be used:

OPEN "R",1,"RANDOM.DAT", 32

Now the record size would be 32 bytes. The CP/M sector size is 128 bytes.
Therefore, four records would be stored in each CP/M sector. The record size can
also be set during the initialization procedure with the /S switch. (See Chapter 1,
“System Introduction & General Information,” for the initialization procedure.)

It is important to note that the mode a file was opened under must be with the
mode in which the file is accessed. For example, consider the following state-
ment:

OPEN "I",1,"TEST.DAT"

The file TEST.DAT has been opened for sequential input and assigned to file
number 1. Now an attempt to perform ouput on this file would be invalid and
would generate an error message. For example:

WRITE#1, "HELLO THERE"

This WRITE# statement references file number 1. The previously executed
OPEN statement has set the mode for file number 1 as sequential input. So this
WRITE# would be invalid and would generate an error message.

However, there is an exception to this rule. Under certain circumstances several
sequential I/O statements may be used with a random file. The conditions for
using these sequential I/O statements with random files are explained in the last
part of this chapter.

10'8 I CHAPTER TEN

CLOSE (close disk data file)
Form: CLOSE [#] [<filenumber>]
The CLOSE statement is used to conclude I/O activity to a disk data file.

<filenumber> is the number under which the file was opened. A CLOSE with no
arguments will close all open files.

Assume the following OPEN statement appears in a program:
OPEN "0",1,"ARTIST.DAT"

Now a sequential output statement may reference this file. When output to this
file has concluded, it should be closed with the CLOSE statement.

CLOSE #1
This statement will disassociate file number 1 from the file ARTIST.DAT. Any
reference to file number 1 would now be invalid. The file may then be reopened
using the same or a different file number. For example:

OPEN "I",3,"ARTIST.DAT"
The file ARTIST.DAT is now associated with file number 3, and is opened for
sequential input. Now, a sequential input operation with this file would be valid.

When the input operation has concluded, this file should be closed with the
CLOSE statement.

CLOSE #3
The file could again be reopened:
OPEN "R",3,"ARTIST.DAT"

The file number 3 has again been associated with the file ARTIST.DAT, but, this
time the file has been opened for random I/0O.

A CLOSE for a sequential output file writes the final buffer of output to the disk
file. (This subject is covered in more detail later in this chapter.)

The END statement and the NEW command will close all disk files automati-
cally. Any attempt to edit or modify a program will also automatically close all
open disk files. (The STOP statement does not close disk files.)

BASIC-80 Disk File Operations

EOF (check for end-of-file)
Form: EOF(<filenumber>)

<filenumber> is the file number assigned to a disk data file in a previously
executed OPEN statement.

The EOF function will return -1 (true) if the end of a sequential file has been
reached.

The EOF is useful for detecting when the end of a sequential file has been
reached. The EOF function should be used in conjunction with the INPUT#
statement and the LINE INPUT# statement to avoid ‘“Input past end” errors.

The EOF function may also be used with random files. If a GET is done past the
end of the random file, the EOF function will return —1 (true). This may be used
to find the size of a random file.

Example:

10 OPEN "I",1,"DATA"
20 IF EOF(1) THEN 100
30 INPUT#1,A$

40 GOTO 20

100 PRINT "END-OF-FILE REACHED"
LOF (return number of records)
Form: LOF(<filenumber>)

<filenumber> is the file number assigned to a disk data file in a previously
executed OPEN statement.

The LOF function returns the number of records present in the last extent that
was accessed. If the file does not exceed one extent, then LOF returns the true
length of the file. (Refer to the ““CP/M Application Programmer’s Manual” for
more information on extents.)

Example:

110 IF NUM% > LOF (1) THEN PRINT "INVALID ENTRY"

10-9

10‘10 I CHAPTER TEN

LOC (return record number)
Form: LOC(<filenumber>)

<filenumber> is the file number assigned to a disk data file in a previously
executed OPEN statement.

When used with a random file, the LOC function returns the current record
number. The current record is the record number one greater than that of the last
record accessed. The first time a particular file is accessed, the current record is
1. The largest possible record number is 32767.

When used with a sequential file, the LOC function returns the number of sectors
(128 byte blocks) accessed since the file was opened.

Examples:

10 OPEN "I",1,"TEST.DAT"
20 OPEN "R",2,"RANDOM.DAT"

200 PRINT"SECTORS READ—";LOC(1)
210 PRINT"NEXT REC#--";LOC(2)

BASIC-80 Disk File Operations

BASIC-80 SEQUENTIAL I/0O

Sequential files are easier to create than random files but are limited in flexibility
and speed when it comes to accessing the data. The data that is written to a
sequential file is stored, one item after another (sequentially), in the order it is
sent and it must be read back in the same order. The data is stored as a stream of
ASCII characters.

Sequential Access Statements

INPUT# Input data from sequential file.
LINE INPUT# Input entire line from sequential file.
PRINT# Write data to sequential file.

PRINT# USING

WRITE# Write data to sequential file (with delimiters automati-
cally inserted).

Table 10-2

Sequential Access Statement.

INPUT# (input data from sequential file)
Form: INPUT#<filenumber>,<variable list>

The INPUT# statement is used to read data items from a sequential disk file and
assign them to program variables. The data will be read sequentially. When the
file is opened, a pointer will be set to the beginning of the file. Each time data is
read from the file, the pointer will advance. To start reading over from the
beginning of a file, the sequential file must be closed and re-opened.

<filenumber> is the number used when the file was opened for input. <variable
list> contains the variable names that the input data will be assigned to. (The
variable data type must match the type specified by the variable name. It is
invalid to read a string data value into a numeric variable.)

10-11

10'12 | CHAPTER TEN

Numeric Input
The data items in the file should appear just as they would if data were being
typed in response to an INPUT statement. With numeric values, leading spaces
are ignored.
The first character encountered that is not a space, carriage return, or line feed is
assumed to be the start of a number. The number terminates on a space, carriage
return, line feed or comma.
For example, assume the following data image exists on a disk file:
(note: the b represents a blank or space - ASCII 32)
bb2.1234b-123.234bb456<carriage return>
Then the INPUT statement:
INPUT#1,X,Y,2Z
or the sequence of INPUT statements:
INPUT#1,X: INPUT#1,Y: INPUT#1,2

will assign the data values as follows:

X=2.1234
Y=-123.234
7=456

10-13

BASIC-80 Disk File Operations

The following discussion assumes the image on the disk is (note: the brepresents
a blank or space - ASCII 32):

bb2.1234b—123.234bb,456<carriage return>
And the INPUT statement used to access the data is:
INPUT#1,X,Y,Z

The two blanks before the value 2.1234 are leading spaces; therefore, they are
ignored. The next character encountered is a 2, and this is considered the start of
the first numeric field.

The BASIC-80 I/O processor now scans for the terminator of the first numeric
field. The blank between 2.1234 and —123.234 is this terminator. So when
BASIC-80 encounters this blank, it assumes that the first numeric field has
ended. This first numeric field is assigned to the first item in the variable list, the
variable X.

The BASIC-80 I/O processor now scans for the beginning of the second numeric
field. The minus sign (—) is considered the start of the second numericfield. The
BASIC-801/O processor will scan for the terminator of the second numeric field.
The comma between —123.234 and 456 is this terminator. So, when BASIC-80
encounters this comma, it assumes that the second numeric field has ended. This
second numeric field is assigned to the second item in the variable list, the
variable Y.

The BASIC-80 1/O processor now scans for the beginning of the third numeric
field. The number 4 is considered the start of the third numeric field. The
BASIC-80 I/O processor will then scan for the terminator of the third numeric
field. The carriage return after 456 is this terminator. So when BASIC-80 encoun-
ters this carriage return, it assumes that the third numeric field has ended. This
third numericfield is assigned to the third item in the variable list, the variable Z.

At this point, all three variables in the variable list have values assigned to them,
so execution of the INPUT statement has been completed. Execution continues
with the next statement.

10'14 I CHAPTER TEN

String Input

When BASIC-80 scans the sequential data file for a string item, leading spaces,
carriage returns, and line feeds are ignored. The first character encountered that
is not a space, carriage return, or line feed is assumed to be the start of a string
item.

This string is considered an unquoted string, and will terminate on a comma,
carriage return or line feed (or after 255 characters have been read).

If this first character is a quotation mark, the string is considered a quoted string.
The string item will consist of all characters read between the first quotation
mark and the next quotation mark. Commas, blanks, and carriage return charac-
ters can be included in this string. A quoted string may not contain a quotation
mark within the quoted string.
For example, assume the following data image exists on a disk file:
(b represents a blank or space -- ASCII 32)
BENTON,HARBOR,MI"49022"<carriage return>
Then the statement:
INPUT#1,A%$,B$.CH
would assign the data values as follows:
A$=BENTON
B$=HARBOR

C$=MI"49022"

Note that the comma is used as the terminator in the above example. All three
strings are considered to be unquoted strings.

In the last string field, the quotation mark is considered as part of the string. This
is because the string starts with the letter M and is terminated by a carriage
return. ’

BASIC-80 Disk File Operations | 1"1 5

Assume a comma is inserted between MI and “49022”. The disk image would
then look like this:

BENTON, HARBOR, MI, ""49022"

Now there are a total of four string fields. The first three are unquoted strings
fields, and the last is a quoted string field. These four fields could be input with
the following statement: ‘

INPUT #1,A$,B$, C$,D$

the variable values would be assigned as follows:

A$=BENTON
B$=HARBOR
C$=MI
D$=49022

The variable D$ would not contain the quotation marks because the quotation
marks were used to terminate the field, and as such they do not represent data
values.

10"16 | CHAPTER TEN

LINE INPUT# (input entire line from sequential file)
Form: LINE INPUT#<filenumber>,<string variable>

The LINE INPUT# statement is used to read an entire line (up to 255 characters),
without delimiters, from a sequential disk data file to a string variable.

<filenumber> is the file number assigned to the file with the OPEN statement.
The file must be opened for sequential input (I mode). <variable> is the variable
name to which the input will be assigned.

LINE INPUT# reads all characters in the sequential file up to a carriage return. It
then skips over the carriage return/line feed sequence, and the next LINE IN-
PUT# reads all characters up to the next carriage return. (If a line feed/carriage
return sequence is encountered, it is preserved.)

If no carriage return is found, LINE INPUT# will read until 255 characters have
been read. These 255 characters will then be assigned to the string variable.

LINE INPUT# is especially useful if each field of a data file has been terminated
with a carriage return, or if a BASIC-80 program saved in ASCII mode is being
read as data by another program.

For example, assume the following program exists in a disk file:

10 OPEN "O",1,"LIST" <carriage return>
20 INPUT C$ <carriage return>

30 PRINT #1, C$ <carriage return>

40 CLOSE #1 <carriage return>

then the statement:
LINE INPUT#1,Z$

could be repetitively used to read each program line, one line at a time.

10-17

BASIC-80 Disk File Operations

PRINT# AND PRINT# USING (write to sequential disk file)

Forms:

PRINT#<filenumber>,<list of expressions>
PRINT#<filenumber>,USING<string exp>;<list of expressions>

The PRINT# statement is used to write data to a sequential disk file.
<filenumber> is the number used when the file was opened for output. The
expressions in <list of expression> are the numeric and/or string expressions
that will be written to the file.

PRINT# does not compress data on the disk. An image of the data is written to
the disk, just as it would be displayed on the terminal with a PRINT statement.
(The PRINT statement is discussed in Chapter Four, ‘“Program Statements.”’) For
this reason, take care to delimit the data on the disk so it will be input correctly

from the disk.

In the list of expressions, numeric expressions should be delimited by semi-
colons.

For example:
PRINT#1,A;B;C;X;Y;Z

(If commas are used as delimiters, the extra blanks that are inserted between
print fields will also be written to disk.)

String expressions must be separated by semicolons in the list. To format the
string expressions correctly on the disk, use explicit delimiters in the list of
expressions.
For example, let A$="CAMERA" and B$="93604-1".
The statement:

PRINT#1, A$; B$
would write cAMERA93604-1 to the disk. Because there are no delimiters, this
could not be input as two separate strings. To correct the problem, insert explicit

delimiters into the PRINT# statement as follows:

PRINT#1,A$;",";B$

10'18 l CHAPTER TEN

The image written to disk is:
CAMERA, 936041
which can be read back into two string variables.
If the strings themselves contain commas, semicolons, significant leading
blanks, carriage returns, or line feeds, write them to disk surrounded by explicit
quotation marks, CHR$(34).
For example, let A$="CAMERA, AUTOMATIC" and B$=" 93604-1". The statement:
PRINT#1, A$;B$
would write the following image to disk:
CAMERA, AUTOMATIC 93604-1
and the statement:
INPUT#1,A$,B$
would input "CAMERA" to A$ and "AUTOMATIC 93604-1" to B$. To separate these

strings properly on the disk, write double quotes to the disk image using
CHR$ (34) .

The statement:
PRINT#1, CHR$ (34) ; A$; CHR$ (34) ; CHR$ (34) ; B$; CHR$ (34)
writes the following image to disk:
"CAMERA, AUTOMATIC" " 93604-1"
and the statement:
INPUT#1, A$, B$
would input "CAMERA, AUTOMATIC" to A$ and " 93604-1" to B$.

The PRINT# statement may also be used with the USING option to control the
format of the disk file. For example:

PRINT#1,USING"$S### . ##.":J;K;L

BASIC-80 Disk File Operations | 10'19

The comma at the end of the format string serves to separate the items in the disk
file. (For a complete discussion of the PRINT USING statement, refer to Chapter
Eight, ““‘Special Features.”)

NOTE: The WRITE# statement will automatically insert the proper delimiters
between data items in a sequential file.

WRITE#(write to sequential disk file)
Form: WRITE#<filenumber>,<list of expressions>
The WRITE# statement is used to write data to a sequential file.
<filenumber> is the number which was assigned to the file with an OPEN
statement. The file must be open for sequential output (O mode). The expres-
sions in the list are string or numeric expressions, and they must be separated by
commas.
The difference between WRITE# and PRINT# is that WRITE# inserts commas
between the items as they are written to disk and delimits strings with quotation
marks. Therefore, it is not necessary for the user to put explicit delimiters in the
list. A carriage return/line feed sequence is inserted after the last item in the
variable list is written to the disk file.
Example: Let A$="CcAMERA" and B$="93604-1". The statement:
WRITE#1,A$,B$
writes the following image to disk:
"CAMERA", "93604-1"
A subsequent INPUT# statement, such as:

INPUT#1,A$,B$

would input "CAMERA" to A$ and "93604-1" to B$.

10'20 | CHAPTER TEN

Note: The WRITE# statement is recommended for most applications using
sequential output. Most problems arising from using sequential files are a result
of not inserting the proper delimiters between data items. The WRITE# state-
ment eliminates the need to be concerned with delimiting data items, thus
eliminating most problems associated with sequential I/O.

In those cases where the WRITE# statement will not provide the flexibility
needed for some unique sequential output application, use of the PRINT# or
PRINT# USING statement should be considered. Care should be taken to insure
that all the data items are separated by the proper delimiters.

BASIC-80 Disk File Operations | 10'21

Sequential Access Techniques

CREATING AND ACCESSING A SEQUENTIAL FILE

The following program steps are required to create a sequential file and access
the data in the file:

Open the file for sequential output.
OPEN "O",#1,"DATA.DAT"

This step will associate the file number 1 with the file DATA.DAT. Because the O
mode string was specified, the file will be opened for sequential output. Since no
drive specification was included with the file name, the current default drive
will be assumed.

If a file DATA.DAT already exists on the current default drive, contents of this
file will be lost. This is due to the fact that, when a file is opened for sequential
output, the BASIC-80 I/O processor will move the EOF marker to the beginning
of the file. Thus, the previous contents of the file can no longer be accessed.

Write data to the file
WRITE#1,A$,B$,C$

This step assumes that some string value has been assigned to the string vari-
ables A$,B$ and C$. The WRITE# statement will write data to the file with
delimiters, so it is not neccessary to insert any delimiters.

The PRINT# statement could have been used to write the data to this sequential
file, but then it would have been necessary to insert delimiters between the data
items. So for most applications using sequential output, it is more efficient to use
the WRITE# statement.

10'22 | CHAPTER TEN

Close the file
CLOSE#1

This statement will write any remaining data from the buffer to the disk file.
Output to this file will then be terminated. The file must be closed before it can be
reopened for sequential input.

Reopen the file for input
OPEN "I",#1,"DATA.DAT"

The file number 1 is again associated with the file DATA.DAT. This time, the file
is opened for sequential input.

Read the data
INPUT#1,X$,Y$,Z$

The data will be read from the file DATA.DAT and assigned to the string
variables X$,Y$ and Z$

NOTE: The above example ignores the role of the I/O buffer in the sequential I/O
process. Actually, BASIC-80 reads and writes in 128-byte blocks. So each IN-
PUT# or WRITE# statement may not necessarily require a disk access.

With sequential output, each WRITE# or PRINT# will place the data in the
buffer area. When the buffer is filled with data, the data will actually be written to
the disk file.

With sequential input, 128 bytes will be read and placed in the buffer area. Then
the BASIC-80 I/O processor will sort through the data in the buffer to satisfy the
INPUT# statement variable list.

BASIC-80 Disk File Operations | 10‘23

ADDING DATA TO A SEQUENTIAL FILE

As soon as an existing sequential file is opened for output (“O” mode) ,the
current contents of the file are destroyed. Thus, several program steps are
required to add data to an exisiting sequential file. The following procedure can
be used to add data to an existing file called “DATA.DAT”

Open “DATA.DAT” for sequential input
OPEN "I",1,"DATA.DAT"

This step associates file number 1 with the data file DATA.DAT. This file will be
opened for sequential input. Since no drive specification was included with the
file name, BASIC-80 will assume the current drive. If the file DATA.DAT can not
be found on the current default drive, a “File not found” error will be generated.

Open a second file called “TEMP.TMP” for sequential output
OPEN "0",2,"TEMP. TMP"
The file, TEMP.TMP will be used as a temporary work file. After this process is

completed, this file will be renamed and it will contain the original data as well
as the newly created data.

Read in the data in “DATA.DAT” and write it to “TEMP.TMP”

INPUT#1,A$,B$,.C$
WRITE#2,A%,B%,C$

This step must be repeatedly executed until all the data in file #1 is read.

10-24

CHAPTER TEN

Close “DATA.DAT” and kill it.

CLOSE#1
KILL"DATA.DAT"

This file is no longer needed, as the information from this file has been copied
into the file TEMP.TMP

Write the new information to “TEMP.TMP”
WRITE#2,A$,B$, CH

The data assigned to the string variables A$,B$ and C$ will be written to the disk
file.

Close the file
CLOSE#2

This step will terminate the output operation performed with this file.

Rename “TEMP.TMP” as “DATA.DAT”
NAME "TEMP.TMP" AS "DATA.DAT"

Now there is a file on disk called “DATA.DAT” that includes all the previous
data plus the new data that was added to the file.

BASIC-80 Disk File Operations | 10"25

BASIC-80 RANDOM 1/0

Creating and accessing random files requires more program steps than sequen-
tial files, but there are advantages to using random files. One advantage is that
random files require less room on the disk because BASIC-80 stores them in a
packed binary format. (A sequential file is stored as a series of ASCII characters.)

The biggest advantage to random files is that data can be accessed randomly, i.e.,
anywhere on the disk — it is not necessary to read through all the information, as
with sequential files. This is possible because the information is stored and
accessed in distinct units called records and each record is numbered.

All data stored in a random file must be a string data type.

To store numeric values in a random file, the numeric values must be converted
to strings. Several functions have been provided to convert numeric values to
strings. These functions, (MKI$,MKS$,MKDS$), are explained later in this Chap-
ter.

10'26 | CHAPTER TEN

Random Access Statements

Statement

FIELD

LSET

RSET

GET
PUT
MKI$

MKS$

MKD$

CVl

CVS

CVD

Function

Set up random file buffer.

Move data to random buffer.
(left-justified)

Move data to random buffer.
(right-justified)

Read random record.
Write random record.
Make integer into 2-byte string.

Make single-precision number
into 4-byte string.

Make double-precision number
into 8-byte string.

Convert 2-byte string to integer.

Convert 4-byte string to
single-precision number.

Convert 8-byte string to
double-precision number.

Table 10-3

Random Access Statements.

BASIC-80 Disk File Operations I 10‘27

FIELD (set up random file buffer)
Form:
FIELD#<filenumber>,<field width> AS <string variable>

The FIELD statement is used to allocate space for variables in a random file
buffer.

<filenumber> is the number assigned to the random file in the OPEN statement.
<field width> is the number of characters (bytes) to be allocated to <string
variable>.

For example:
FIELD#1, 20 AS N$, 10 AS ID$, 40 AS ADD$

allocates the first 20 positions (bytes) in the random file buffer to the string
variable N$, the next 10 positions to ID$, and the next 40 positions to ADDS$.
FIELD does not place any data in the random file buffer, but instead defines the
fields in the random file buffer.

A FIELD statement can only reference a file which has been opened for random
I/O (R mode). The FIELD statement must also be executed prior to performing
any I/O operation with the random file.

The total number of bytes allocated in a FIELD statement must not exceed the
record length that was specified when the file was opened. Otherwise, a “‘Field
overflow” error occurs. (The default record length is 128.)

If a number smaller than 128 is specified for the record length, the BASIC-801/0
processor will take care of blocking and deblocking the record. For example, if a
record length of 32 bytes is specified in the OPEN statement, the BASIC-80 I/O
processor will block 4 of these logical records per physical record (sector). The
user program is not responsible for blocking and deblocking these logical re-
cords.

If a number greater than 128 is specified for the record length, the BASIC-80 will
also take care of blocking and deblocking the record. This number must be
specified by using the /S switch when initializing BASIC-80. The largest record
size allowed is 256 bytes.

10'28 | CHAPTER TEN

With previous versions of Microsoft BASIC, the user program did have to assume
responsibility for blocking and deblocking records.

Any number of FIELD statements may be executed for the same file, and all
FIELD statements that have been executed are in effect at the same time. For
example, the following FIELD statement could be used to define a 32-byte
random buffer:

FIELD#1, 16 AS F1$,16 AS F2$%

This FIELD statement would allocate the first 16 characters (bytes) of the random
buffer to the variable F1$ and the next 16 characters (bytes) to the variable F2$.
Then, another FIELD statement could be used to redefine the buffer:

FIELD#1, 32 as BUFF$

So the variable BUFF$ would refer to all 32 characters in the buffer. F1$ would
still refer to the first 16 characters and F2$ would still refer to the second 16
characters.

Donotuseafielded variable name in an INPUT or LET statement. Once a variable
name is fielded, it points to a specific address in the random file buffer. If a
subsequent INPUT or LET statement with that variable name is executed, the
variable’s pointer is moved to string space.

Examples:
FIELD#1,128 AS IBUFF$
FIELD#4,10 AS A$(1),10 AS A$(2),10 AS A$(3)

FIELD#2,I AS STUFF$

(Note: the variable I must be assigned an integer value prior to the execution of
this statement.)

BASIC-80 Disk File Operations | 10‘29

LSET/RSET (move data to random buffer)

Forms: LSET <fielded variable> = <string expression>

RSET <fielded variable>

<string expression>

The LSET/RSET statements are special assignment statements used to assign a
string expression to a variable that has appeared in a FIELD statement (fielded
variable).

The LSET/RSET statements are used to move data from memory to a random file
buffer. This step is performed in preparation for a PUT statement. The only way
to move data to a random buffer is by using the LSET/RSET statement.

If the <string expression> requires fewer bytes than were fielded to the <fielded
variable>, LSET left-justifies the string in the field by adding spaces on theright.
RSET is used to right-justify the string in the field by adding spaces on the left.

The only difference between LSET and RSET is the fact that LSET left-justifies
the field and RSET right-justifies the field. If the string is too long for the field,
characters are dropped from the right.

Numeric values must be converted to strings before they are LSET or RSET.
Several special random I/O functions have been provided to perform this con-
version. (Refer to the.discussion of the MKI$, MKS$, and the MKD$ functions
later in this Chapter.) '

Examples:

150 LSET A$=MKS$ (AMT)

160 LSET D$=DESC$

170 LSET V$="LEFT-JUSTIFY AND PLACE IN BUFFER"
180 RSET G$="RIGHT-JUSTIFY AND PLACE IN BUFFER"

String variables A$,D$,V$ and G$ must have appeared in a previously executed
FIELD statement.

10'30 I CHAPTER TEN

GET (read random record)
Form: GET [#]<filenumber>[,<record number>]

The GET statement is used toread a record from arandom disk file into arandom
buffer. Before executing a GET statement, the file to be accessed must be opened
for random I/O.

Additionally, the random file buffer must have been defined with a FIELD
statement. If the random file buffer has not been defined, there will be no way to
access the data after the GET has been executed.

<filenumber> is the number under which the file was opened. If <record
number> is omitted, the current record is read into the buffer. The current record
is the record number one greater than that of the last record accessed. The first
time a particular file is accessed, the current record is 1. The largest possible
record number is 32767.

If an attempt is made to GET arecord whose number is higher than that of the last
record number in the file, the buffer will be filled with NUL characters (ASCII f),
although no error will be generated. The LOF function can be used to prevent
this from occurring.

Examples:
GET#1, 100
GET#2
GET FILE, IREC

GET#5, REC

BASIC-80 Disk File Operations I 10"31

PUT (write random record)
Form: PUT [#]<filenumber>[, <record number>]

The PUT statement is used to write a record from a random buffer to a random
disk file. Before executing a PUT statement, the file to be accessed must be
opened for random I/O.

Additionally, the random file buffer must have been defined with a FIELD
statement. If the random file buffer has not been defined, there will be no way to
move data into the buffer before executing the PUT statement.

«filenumber> is the number under which the file was opened. If <record
number> is omitted, the current record is written. The current record is the
record number one greater than that of the last record accessed. The first time a
particular file is accessed, the current record is 1. The largest possible record
number is 32767.

If the <record number> is higher than the end-of-file record number, <record
number>becomes the new end-of-file record number. Space will be allocated on
the disk to accommodate the new end-of-file record, as well as all lower num-
bered records.

Before executing a PUT statement, the data to be written to a disk file must be
moved into the buffer area. The LSET/RSET statements are used to move the data
to the random file buffer.

Examples:
PUT#1
PUT#2,43
PUTI,J-1

PUTI,4

10'32 I CHAPTER TEN

MKI$, MKS$, MKD$ (make a numeric value into a string)

Forms: MKI$(<integer expression>)
MKS$(<single-precision expression>)
MKD#$(<double-precision expression>)

The “make” functions, (MKI$, MKS$, MKD$) are used to convert numeric value
to string value. Any numeric value that is placed in a random file buffer must be
converted to a string.

The MKIS$ function is used to convert an integer to a 2-byte string. The integer
expression must be in the allowable range for integer values. If it is not, an
“Illegal function call” error will be generated. Any fractional portion of the
number will be truncated.

The MKS$ function is used to convert a single-precision number to a 4-byte
string. The MKDS$ function is used to convert a double-precision number to an
8-byte string.

These functions will not move the data to the random buffer. So after a numeric
value is converted to a string, it still must be moved to the random file buffer.
Additionally, the random file buffer must have been defined with a FIELD
statement.

If the random file buffer has not been defined, there will be no way to access the
data after the GET has been executed. The data must also be moved into the
random buffer using LSET or RSET.

For example, to convert the integer variable IV% to a string and assign it to the
field variable FV$, the following single program statement could be used:

LSET FV$ = MKI$(IVE)

The variable FV$ should have appeared in a previously executed FIELD state-
ment.

Example:
90 AMT=(K+T)
100 FIELD #1, 8 AS D$, 20 AS N$
110 LSET D$ = MKS$ (AMT)
120 LSET N$ = A$

130 PUT #1

BASIC-80 Disk File Operations | 10'33

CVI, CVS, CVD (Converting string to numeric form)

Forms: CVI (<2-byte string>)
CVS (<4-byte string>)
CVD (<8-byte string>)

The CVI, CVS and CVD functions are used to convert string values to numeric
values. These functions are generally used to convert numeric values that have
been read from a random disk file. Data is always stored in random files as a
string data type. Therefore, a numeric value read from arandom disk file must be
converted from a string back into a number.

The CVI function converts a 2-byte string to an integer. If the length of the string
is greater than 2 bytes, only the first two characters in the string will be used. If
the length of the string is less than 2 bytes, an “Illegal function call” error will
result.

The CVS function converts a 4-byte string to a single-precision number. If the
length of the string is greater than four bytes, only the first four characters in the
string will be used. If the length of the string is less than four bytes, an “Illegal
function call” error will result.

The CVD function converts an 8-byte string to a double-precision number. If the
length of the string is greater than eight bytes, only the first eight characters in
the string will be used. If the length of the string is less than eight bytes, an
“Illegal function call’” error will result.

Example:
PRINT CVS(A$)
A#=CVD (BUFF$)

I=TI+CVI(I$)

10'34 I CHAPTER TEN

Random Access Techniques

CREATING A RANDOM ACCESS FILE

The following program steps are required to create a random file.

OPEN the file for random access
OPEN "R", 1 "FILE.DAT",32

In this example, the mode string specifies “‘R” —random access. File number 1 is
assigned to the file FILE.DAT. Since no drive specification was included with
this file name, the current default drive is assumed. This example also specifies a
record length of 32 characters (bytes). If the record length is omitted, the default
record length is 128 characters (bytes).

Set up the random file buffer
FIELD#1, 20 AS NAME$, 4 AS A%, 8 AS P$

Use the FIELD statement to allocate space in the random buffer for the variables
that will be written to the random file. The FIELD statement references file
number 1, which has been opened for random input. (It is invalid to FIELD a file
which has been opened for sequential input or output.)

This FIELD statement will allocate the first 20 characters of the random file
buffer for the variable NAMES$, the next four characters for the variable A$, and
the next eight characters for the variable P$.

BASIC-80 Disk File Operations

Move the data into the random buffer

LSET NAME$=X$
LSET A$=MKS$ (AMT)
LSET P$=TEL$

Use LSET to move the data into the random buffer. Numeric values must be made
into strings when placed in the buffer. To do this, use the “make” functions:
MKI$ to make an integer value into a string, MKS$ for a single-precision value,
and MKDS$ for a double-precision value.

In this program step, the single-precision variable AMT is first coverted to a
string, and then it is assigned to the variable A$. The variable A$ has appeared in
a previous FIELD statement. The FIELD statement was used to allocate four
characters (bytes) to the variable AS.

Write data to disk
PUT#1

Write the data from the buffer to the disk using the PUT statement. No record
number was specified with this PUT statgment, so the current record number
will be written. The current record is the record number one higher than the last
record accessed. The first time a file is accessed, the current record is one.

Do not use a fielded string variable in an INPUT or LET statement. This causes

the pointer for that variable to point into string space instead of the random file
buffer. '\

10-35

10-36 | crnpren ren

ACCESSING A RANDOM ACCESS FILE

The following program steps are required to access a random file:

OPEN the file for random access
OPEN "R",#1,"FILE.DAT", 32

This step will open the file “FILE.DAT” for random access. The file can now be
accessed by referring to file number 1.

Set up random file buffer
FIELD#1, 20 AS NAME$,4 as A$, 8 AS P$

Use the FIELD statement to allocate space in the random buffer for the variables
that will be read from the file. In this example, 20 characters (bytes) are allocated
to the string variable NAMES, four characters are allocated to the string variable
A$, and eight characters are allocated to the string variable PS$.

L)
NOTE: In a program that performs both input and output on the same random
file, you can often use just one OPEN statement and one FIELD statement.

Read data into buffer
GET#1

Use the GET statement to move the desired record into the random buffer. No
record number was specified with this GET statement, so the current record
number will beread. The current record is the record number one higher than the
last record accessed. The first time a file is accessed, the current record is one.

10-37

BASIC-80 Disk File Operations

Access data in the buffer

The data in the buffer may now be accessed by the program. Numeric values
must be converted back to numbers using the “convert” functions: CVI for
integers, CVS for single-precision values, and CVD for double-precision

PRINT NAME$
AV=CVS (A$)
DP#=CVD (P$)

Additional Features

After a GET statement, INPUT# and LINE INPUT# may be used to read charac-
ters from the random file buffer. PRINT#, PRINT# USING, and WRITE# may
also be used to put characters in the random file buffer before a PUT statement.

In the case of WRITE#, BASIC-80 pads the buffer with spaces (if necessary) and
then inserts a carriage return. Any attempt to read or write past the end of the
buffer causes a “Field overflow” error.

10'38 | CHAPTER TEN

INSERT

Microsoft BASIC-80 Summary | 11'1

Chapter Eleven

Microsoft BASIC-80 Summary

OVERVIEW

This Chapter is a summary of the important concepts, ideas, keywords, etc. of the
BASIC-80 programming language. The various intrinsic functions as well as the
string functions are also included in this chapter.

11'2 | CHAPTER ELEVEN

Abbreviations
Abbreviation Function
? Use in place of PRINT.

’ Use in place of REM.

“current line”’;use in place of line number with LIST,
EDIT, etc.

Data Type Declaration Characters

Character Data Type Examples
$ String ZDS$, WLW$
% Integer 1%, VALUE%
! Single-Precision V!,FLAG!
Double-Precision DP#, PL#
D Double-Precision 1.23456789D-12

(exponential notation)

E Single-Precision 1.23456E+23
(exponential notation)

Microsoft BASIC-80 Summary I 11"3

Arithmetic Operators

Operator Operation Performed
+ Addition
- Subtraction
* Multiplication
/ Division (floating point)
\ Integer division
A Exponentiation

String Operator

Operator Operation Performed

+ concatenate (string together)

Relational Operators

Operator Numeric Expressions

< Less than

> Greater than

= Equal to

<= or =< Less than or equal> to
>= or => Greater than or equal to
<> or >< Does not equal

Example

‘(A”+‘£B”+‘(C” N

String Expressions

Precedes

Follows

Equals

Precedes or equals
Follows or equals

Does not equal

11"4 I CHAPTER ELEVEN

Logical Operators

Operator
NOT
AND

OR
XOR
IMP

EQV

Function

Bitwise negation
Bitwise disjunction
Bitwise conjunction
Bitwise exclusive OR
Bitwise implication

Bitwise equivalence

Microsoft BASIC-80 Summary ‘ 11'5

Commands

Command/Function Examples

AUTO <line number>,<increment>

Enable automatic line numbering AUTO

starting at <line number> and ~ AUTO 10

incrementing by <increment>. AUTO 5,5
CLEAR

Set numeric values to zero, CLEAR

strings to null.
CLEAR,<expression>
Same as CLEAR, but <expression> CLEAR ,32768
is used to set the high memory limit
for use by BASIC-80.
CLEAR,<expression1>,<expression2>
Same as CLEAR<expression> but CLEAR, 32768,2000
<expression2> is used to set the
amount of stack space for use
by BASIC-80.
CONT

Continues program execution CONT
after a BREAK or STOP.

DELETE <line number>

Deletes the specified line DELETE 100
number in the current program.

DELETE -<line number>
Deletes every line of the DELETE —500

current program up to and
including <line number>.

11'6 | CHAPTER ELEVEN

Command/Function

DELETE <line number>-<line number>

Deletes all lines of the
current program up to and
including the second number.

EDIT <line number>

Enter Edit Mode at the
specified line number.

FILES “<filename>"’

List names of files residing
on the current disk.

LIST
List the program currently
in memory starting with the
lowest numbered line.

LIST <line number>

List the specified line
number.

LIST <line number>-<line number>

List all lines from the
first line up to and
including the second.

LLIST

List all or part of the

program currently in memory.
The listing will be printed

on the line printer. The

options for the LLIST command
are the same as for the LIST
command.

Examples

DELETE 10-1000

EDIT 100

FILES "*.BAS"

LIST

LIST 100

LIST 10-100

LLIST

LLIST 500
LLIST 150-
LLIST -100
LLIST 150 — 400

Microsoft BASIC-80 Summary

Command/Function

LOAD <‘filename”’>,R

Load a program file from disk
into memory. The R is optional,
and if used will run the program
after it is loaded.

MERGE <‘“filename”’>

Merges a disk file into a
program in memory.

NEW

Deletes the current program
and clears all variables.

RENUM <nn>,<mm>,<ii>

Renumbers program lines start-
ing at line <mm>, as line
<nn>, with increments of <ii>.

RESET
Changes disk in default drive.
RUN <line number>

Executes the current program
starting with specified line
number. If line number is

not specified, execution starts
at the lowest line number.

RUN <“filename”> R
Loads a program from disk and
executes it. R keeps all data
files open.

Examples

LOAD"B:GAME"
LOAD"PROG.ASC",R

MERGE"B:TEST.BAS"

NEW

RENUM
RENUM 300, ,5
RENUM 1000, 900,20

RESET

RUN 100
RUN

RUN "PROG1"
RUN"B:GAME" ,R

11-7

11'8 CHAPTER ELEVEN

Command/Function Examples

SAVE “filename” A
SAVE “filename”,P

Saves the current program on SAVE"COM2", A
disk. If A is used, the file SAVE"TEST1"
is saved in ASCII format. If SAVE"INVEN",P

P is used, the file is saved

in a protected format.

If neither the P or A is used,

the file is saved in a compressed
binary format.

SYSTEM

Closes all files and performs SYSTEM
a CP/M warm start.

Microsoft BASIC-80 Summary | 11'9

Edit Mode Subcommands and Functions

Command
RETURN
<i>Space Bar
<i>Back Space

L

<i>D

<i>C

<i>S<c>

<i>K<c>

Function

End editing and return to Command Mode.
Move cursor <i> spaces to the right.

Move cursor <i> spaces to the left.

List remainder of program line and
return cursor to the beginning of
the program line.

List remainder of program line, move
cursor to the end of the line, and go
into Insert Mode.

Insert text beginning at the current
position of the cursor. Use ESC to
exit Insert Mode.

Cancel editing changes and return cursor
to beginning of line.

End editing, save all changes and return
to Command Mode.

End editing, cancel all changes and return
to Command Mode.

Delete remainder of line and then enter
Insert Mode.

Delete specified number of characters <i>
beginning at current cursor position.

Change (or replace) the specified number
of characters <i> using the next <i>
characters entered.

Move the cursor to the <i>th occurence of
character <c>, counting from the current
cursor position.

Delete all characters from the current cursor
position up to the <i>th occurance of
character <c>.

1 1' 1 0 I CHAPTER ELEVEN

Print Using Format Field Specifiers

Numeric
Specifier = Function Example
Numeric field. vy
Decimal point position. A H#
+ Print leading or trailing signs +i#
(plus for positive numbers, minus
for negative numbers).
- Print trailing sign only if value -
printed is negative.
*x Fill leading blanks with asterisks. *x gl 4l
$$ Place dollar sign immediately to SOH## . H#4
left of leading digit.
**$ Asterisk fill and floating dollar * QA
sign.
, Use comma every three digits [
(left of decimal point only).
AAAA Exponential format. Number is # AR
aligned so leading digit is
non-zero.
String
Specifier = Function Example
! Single character !
\<spaces>\ 2+ number of spaces in character \ \
field.
& Variable length string field. &
Literal
Specifier = Function Example

— Literal character string field.

Microsoft BASIC-80 Summary | 11"11

Program Statements

Statement/Function Examples

DATA TYPE DEFINITION
DEFINT <letter range>

Declare range of variable DEFINT I-N
names as integer data types.

DEFSNG <letter range>
Declare range of variable DEFSNG A-H, 0-P
names as single-precision
data types.

DEFDBL <letter range>

Declare range of variable DEFDBL X,Y,Z
names as double-precision
data types.

DEFSTR <letter range>

Declare range of variable DEFSTR A-C,Z
names as string variables.
ASSIGNMENT AND ALLOCATION
DIM <list of subscripted variables>
Allocate storage for array. DIM A(20),B(12,2)
OPTION BASE n
Declare minimum value for OPTION BASE 1
array subscript. The default

base is 0. This may be changed
to 1.

11-12 | crapren eceven

Statement/Function

ERASE <list of array names>

Remove an array from the
program.

LET <variable> = <expression>

Assign value of expression
to variable.

REM <remark>
Insert remark into program.
SWAP <variable>,<variable>
Exchange the values of two
variables.
SEQUENCE OF EXECUTION
END
Terminate program execution,
close all files and return
to Command Mode.

FOR <V>=<X> TO <Y> STEP <Z>

Allows repetive execution of
a series of statements.

GOSUB <line number>

Branch to subroutine beginning
at <line number>.

GOTO <line number>

Branch to specified line
number.

NEXT <variable>

Terminates a FOR loop.

Examples

ERASE A,B

LET SUM = A+B+C

REM GRP IS GROSS PAY

SWAP A,B

100 END

FORI =1 TO 100

GOSUB 100

GOTO 400

NEXT I

Microsoft BASIC-80 Summary l 11'13

Statement/Function Examples

ON <expression> GOTO linel,...linek

Evaluate expression. If ON L1 GOTO 10,20, 30
INT(<expression>) equals

one of the numbers 1-k,

branch to appropriate

line number. If it is

not equal, go to the

next statement.

ON <expression> GOSUB line1,...linek

Same as ON...GOTO except ON L GOSUB 300,400
branch is to a subroutine.

RETURN
Terminates a subroutine. RETURN
Branches to the statement
following the most recent
GOSUB.
STOP

Terminates program execution STOP
and returns to Command Mode.

CONDITIONAL EXECUTION

IF <expression> THEN <statement(s)>
> ELSE <statement(s)>

Evaluate <expression>: If true, IF A=0 THEN A=1
execute THEN clause. If false, ELSE A=0
execute ELSE clause. (if present)

1 1" 14 CHAPTER ELEVEN

Statement/Function Examples
WHILE <expression>
<loop statements>

WEND

Executes a series of statements WHILE A=0
in a loop as long as a given PRINT "ZERO"

condition is true.

NON-DISK I/O STATEMENTS
INPUT <;> <‘“‘prompt string”’>;<list of variables>

Inputs data from the terminal INPUT "AGE"; A
during program execution.

LINE INPUT <;> <‘“prompt string”>;<string variable>

Inputs an entire line (up to LINE INPUT J$
255 characters) to a string

variable, without the use of

delimiters.

DATA <list of constants>

Stores numeric and string DATA 34,23.1,45.0
constants. These constants DATA "HELLO", "BYE"
are assigned to variables

by using the READ statement.

PRINT <list of expressions>

Outputs data on the terminal. PRINT "HELLO"
PRINT A$,Z,C

READ <list of variables>
Reads data into specified READ I,A,B

variables from a DATA READ A, B$
statement.

Microsoft BASIC-80 Summary l 1 1'1 5

Statement/Function

RESTORE <line number>

Resets DATA pointer so
that data may be reread.

LPRINT <list of expressions>

Prints data on the line
printer.

Examples

RESTORE

LPRINT "HELLO"

11-16

CHAPTER ELEVEN

String Functions

Function

ASC(X$)

CHRS$(I)

HEX$(X)

INKEY$

INPUT$(X,Y)

INSTR(I,X$,Y$)

LEFT$(X$.I)

LEN(X$)

MID$(X$,1,])

Operation

Returns ASCIH code of first
character in string argument.

Returns a one-character string
whose character has the ASCII
code of L.

Converts a number to a
Hexadecimal string.

Reads one character from the
keyboard.

Reads X characters from the

keyboard or from file number
Y.

Returns the position of the
first occurrence of Y$ in X$
starting at position I.

Returns left-most I characters
of the string expression X$.

Returns length of string X$.
Returns string of length J

characters from X$ beginning
with the Ith character.

Example
ASC (npn)
ASC(H$)
CHR$(66)
CHR$(N)
HEX$ (100)

HEX$ (A)

A$=INKEY$

INPUT$(1,1)

INSTR(A$.",")

LEFT$ (A$, 1)
LEFT$(C$,3)

LEN (A$)

MID$(X$,5,10)

Microsoft BASIC-80 Summary | 11'17

Function Operation Example

MID$(X$,1,))=Y$ Replaces the characters in X8, MID$ (A$,1,2)="2"
beginning at position I, with
the characters in Y$. J is the
number of characters to use in
the replacement.

OCT$(X) Conerts the numeric expression OCT$ (24)
X to an octal string.

RIGHT$(X$.I) Returns the right-most I RIGHT$ (X$,8)
characters of string X$.
SPACES$(X) Returns a string of X spaces. SPACE$ (20)
STR$(X) Converts a numeric expression STR$ (100)
to a string.
STRING$(1,)) Returns a string of length I STRING$ (20,33)

containing characters with
the ASCII code J.

STRING$(I,X$) Returns a string of length I STRING$ (20,"!")
containing the first character
of string X$.

VAL(X$) Converts the string X$ to a VAL("3.14")
numeric value.

CHAPTER ELEVEN

Arithmetic Functions

Function
ABS(X)

ATN(X)

CDBL(X)

CINT(X)

COS(X)

CSNG(X)
EXP(X)

FIX(X)

INT(X)

LOG(X)

RND(X)

SGN(X)

SIN(X)

SQR(X)

TAN(X)

Operation
Returns absolute value.

Returns arctangent of X.
(X must be in radians.)

Converts X to double-precision.

Converts X to an integer by
rounding.

Returns the cosine of X.
(X must be in radians)

Converts X to single-precision.
Returns e to the power of X.

Returns truncated integer
portion of X.

Returns largest integer
not greater than X.

Returns the natural logarithm
of X. X must be greater than
Zero.

Returns a random number between
0 and 1.

Returns -1 for negative X, 0
for zero X, +1 for positive
X.

Returns the sine of X.
(X must be in radians.)

Returns the square root of
X. X must be non-negative.

Returns the tangent of X.
(X must be in radians.)

Example
ABS(-1)

ATN(3)

CDBL(A)

CINT(46.6)
COS(A+B)

CSNG(V)
EXP(34.5)

FIX(23.2)
INT(-12.11)

LOG(45/7)

RND(0)

SGN(C/A)

SIN(A*1.3)
SQR(A*B)

TAN (X+Y+Z)

Microsoft BASIC-80 Summary I 1 1'19

Special Functions

Function

FRE(X)
INP(I)

LPOS(X)

NULL(X)
OUT L]
PEEK(I)
POKE L]
POS(X)
SPC(I)
TAB(I)
VARPT(X)

WAIT IJ[K]

WIDTH I

Operation

Returns memory space not
used by BASIC-80.

Returns the byte read from
port 1.

Returns current position
of line printer print head

within the line printer
buffer.

Sets the number of nulls
to be printed at the end
of each line.

Sends byte J to port L

Reads a byte from the
specified memory address.

Puts byte J into memory
location I.

Returns current cursor
position.

Prints I spaces on the
terminal.

Tabs carriage to specified
position.

Returns address of variable
in memory.

Status of port I is XOR’ed
with K and AND’ed with J.
Continued execution awaits
non zero result.

Sets the printed line width.

WIDTH LPRINT I Sets the line printer width.

Example

FRE(D)

INP(255)

LPOS(0)

NULL (3)

OUT 127,255

PEEK (8192)

POKE(8192,200)

POS(1)

PRINT SPC(5)

PRINT TAB(20)

VARPTR(V)

WAIT 21,1

WIDTH 80

WIDTH LPRINT 132

11'20 I CHAPTER ELEVEN

Special Features

ERROR TRAPPING

Statement/Function Example

ON ERROR GOTO <line number>

Enables error trapping and ON ERROR GOTO 100
specifies the first line of
the error trapping subroutine.

RESUME <line number>

Continues program execution RESUME
after an error recovery RESUME NEXT
procedure has been performed. RESUME 100

ERROR <integer expression>

Simulates the occurance of ERROR 10
an error, also allows error
codes to be defined by user.

ERL
Error line number. PRINT ERL

ERR
Error code number. PRINT ERR

TRACE FLAG

TRON
Enables trace flag. TRON

TROFF
Disables trace flag. TROFF

Microsoft BASIC-80 Summary I 11'21

Statement/Function

OVERLAY MANAGEMENT

CHAIN [MERGE]“<filename>""[,[<line number>]
[,ALL][,DELETE<range>]]

Calls program and passes
variables from the current
program.

COMMON <list of variables>

Pass variables to a chained
program.

Example

CALL "PROG"

COMMON A, B

11-22 | cuapren eceven

Disk Input/Output Statements

Statement/Function Example
CLOSE#[<filenumber>[,<filenumber>]

Closes disk files. If no argument CLOSE #6
is supplied, all open files are
closed.

FIELD# <filenumber>,<field size>
AS <string variable>

Allocates random buffer space to FIELD #1,3 AS A$
<string variable>, where <file number>
is the random buffer referenced, and
<field size> is the space reserved
~ for a given <string variable>.

GET#<file number>[,<record number>]

Transfers data from the <record number> GET #1,1

of the random file <file number> to the

random buffer. If <record number> is

omitted, the next record is transferred.
INPUT#<filenumber>,<variable list>

Reads data from file <filenumber> INPUT #3,A,B

and assigns the input to the

elements of <variable list>.
KILL “<filename>"’

Deletes a disk file. KILL "A:GAME.BAS"
LINE INPUT#<file number>,<string variable>

Read an entire line from a file LINE INPUT #1, A%

<file number> and assigns it to
<string variable>.

Microsoft BASIC-80 Summary | 11‘23

Statement/Function Example

LSET <string variable> = <string expression>

Stores data in random file buffer, LSET A$="HELLO"
left justified.

OPEN <mode>,[#]<filenumber>,<‘filename”>
Opens a disk file, where <mode> is OPEN "Q",1,"GM.DAT"
- the file type,<filenumber> is the
I/0O label, and <file name> is the
disk directory entry.
PRINT#<file number>,<list of expressions>
Writes data to a sequential disk file. PRINT #1,A$,B
PUT [#] <filenumber> [,<record number>]
Transfers data from the random file PUT #2,3
buffer to random file <file number>.
If <record number> is omitted,
the next record is-written.

RSET <string variable> = <string expression>

Stores data in a random file buffer, RSET B§="BYE"
right justified.

WRITE#<file number>,<list of expressions>
Writes data to a sequential disk WRITE #2,A,B$

file. Delimiters are inserted
between items in the I/O list.

11'24 I CHAPTER ELEVEN

Disk Input/Output Functions

Function

CVD(X$)
CVI(X$)
CVS(X$)
EOF(file no.)

LOC(file no.)

MKD$(Z#)

MKI$(1%)

MKS$(B)

Operation

Converts 8-character string

to double precision number.

Converts 2-character string
to an integer.

Converts 4-character string
to single precision number.

Returns true (—1) if a file
is positioned at its end.

Returns next record number
to read (random file).
Returns number of sectors
accessed (sequential file).

Converts double-precision
number to an 8-character
string.

Converts an integer to
a 2-character string.

Converts a single-precision
number to a 4-character
string.

Example

A#=CVD (A$)
I%=CVI(I$)
B=CVS(B$)
IF EOF (1)

X=L0C(1)

AB=MKD$ (A#)

I$=MKIB(I%)

B$=MKS$% (B)

INSERT

APPENDIX A | A"'1

Appendix A

Error Messages

After an error occurs, BASIC-80 returns to the Command Mode and types Ok.
(Although overflow and division by zero errors will not cause BASIC-80 to stop
execution.) Variable values and the program text remain intact, but you cannot
continue the program with the CONT command. However, execution can be
continued with a Command Mode GOTO.

The formats of error messages are:

Direct Statement <error message>
Indirect Statement <errror message> in nnnnn

where nnnnn is the line number where the error occurred. When an error occurs
in a direct statement, no line number is printed.

The error messages are listed on the next few pages, along with the error number.
If an error should occur for which there is no error code, BASIC-80 will print the
message ‘‘Unprintable error”.

A'z | APPENDIX A

GENERAL ERRORS

1 NEXT without FOR

The variable in a NEXT statement corresponds to no previously executed FOR
statement.

2 Syntax error

A line has been encountered that contains some incorrect sequence of characters
(such as unmatched parenthesis, misspelled statement or command, incorrect
puncuation, etc.).

3 RETURN without GOSUB

A RETURN statement has been encountered before a GOSUB was executed.

4 Out of data

A READ statement was executed but all of the DATA statements in the program
have already been read.

5 Illegal function call

The parameter passed to an arithmetic or string function was out of range. Illegal
function calls can occur due to:

1. A negative array subscript (LET A(-1)=0).

2. An unreasonably large array subscript (>32767).
3. LOG with a negative or zero argument.

4. SQR with a negative argument.

5. A*B with A negative and B not an integer.

6. A call to a USR function before the address of a machine language
subroutine has been entered.

7. Calls to MID$, LEFT$, RIGHTS, INP, OUT, WAIT, PEEK, POKE, TAB,
SPC, STRINGS$, SPACES$, INSTR, or ON...GOTO with an improper
argument.

APPENDIX A | A'3

6 Overflow

The result of a calculation was too large to be represented in BASIC-80’s number
format. If an underflow (i.e. a number is too small to be represented) occurs, zero
is given as the result and execution continues without any error message being
printed. ’

7 Out of memory

A program is too large, has too many variables, too many FOR loops, too many
GOSUB’s, or too complicated expressions.

8 Undefined line number

The line reference in a GOTO, GOSUB, IF...THEN...ELSE or DELETE was to a
non-existent line.

9 Subscript out of range

An attempt was made to reference an array element which is either outside the
dimensions of the array, or with the wrong number of subscripts.

10 Duplicate Definition

After an array was dimensioned, another dimension statement for the same array
was encountered. The error often occurs if an array was given the default
dimension of 10 and later in the program the same array is specified in a DIM
statement.

11 Division by zero

A division by zero has been encountered in an expression, or the evaluation of an
expression results in zero being raised to a negative power. Machine infinity
with the sign of the numerator is supplied as theresult of the division, or positive
machine infinity is supplied as the result of the involution, and execution
continues.

12 Illegal direct

A statement that is illegal in Direct Mode has been entered as a Direct Mode
command.

A-4

APPENDIX A

13 Type mismatch

A string variable has been assigned a numeric value or vice versa; a function that
expects a numeric argument has been given a string argument or vice versa.

14 Out of string space

String variables have caused BASIC-80 to exceed the amount of free memory
remaining. BASIC-80 will allocate string space dynamically, until it runs out of
memory.

15 String too long

An attempt was made to create a string more than 255 characters long.

16 String formula too complex

A string expression was too long or too complex. The expression should be
broken into smaller expressions.

17 Can't continue
An attempt has been made to continue a program that:
1. Has halted due to an error.
2. Has been modified during a break in execution.
3. Does not exist.
18 Undefined user function
Areference was made to a user-defined function which had never been defined.
19 No RESUME

BASIC-80 entered an error trapping routine, but the program ended before a
RESUME statement was encountered.

20 RESUME without error

A RESUME statement was encountered, but no error trapping routine had been
entered.

APPENDIX A I A'5

21 Unprintable error

An error message is not available for the error condition which exists. This is
usually caused by an ERROR with an undefined error code.

22 Missing operand

During evaluation of an expression, an operator was found with no operand
following it.

23 Line buffer overflow

An attempt has been made to input a line that has too many characters.
26 FOR without NEXT

A FOR was encountered without a matching NEXT.

29 WHILE without WEND

A WHILE statement has been encountered without a matching wend.
30 WEND without WHILE

A WEND was encountered without a matching WHILE.

A'6 | APPENDIX A

DISK RELATED ERRORS

50 Field overflow

An attempt was made to allocate more bytes than were specified for the record
length of a random file.

51 Internal error

An internal malfunction has occurred in BASIC-80. Report conditions under
which error occurred and all relevant data to Zenith Data Systems Customer
Service.

52 Bad file number

A statement or command has referenced a file number that is not OPEN or is out
of the range of numbers specified at initialization.

53 File not found

A LOAD, KILL, or OPEN statement referenced a file that did not exist.

54 Bad file mode

An attempt was made to perform a PRINT or WRITE on arandom file, to OPEN an
already open random file for sequential output, to perform a GET or PUT on a
sequential file, to load from a random file, or to execute an OPEN statement
where the file mode is not 1,0, or R.

55 File already open

A sequential output mode is issued for a file that is already open; or a KILL is
given for a file that is open.

57 Disk I/O error

An I/O error occured on a disk I/O operation. It is a fatal error, i.e., the operating
system cannot recover from the error.

58 File already exists

The file name specified ina NAME statement is identical to a file name already in
use on the disk.

APPENDIX A | A"7

61 Disk full

All disk storage space is in use.

62 Input past end

An INPUT statement is executed after all the data in the file has been INPUT, or

for a null (empty) file. To avoid this error, use the EOF function to detect the end
of file.

63 Bad record number

In a PUT or GET statement, the record number is either greater than the
maximum allowed (32768) or equal to zero.

64 Bad file name

An illegal form is used for the file name with LOAD, SAVE, KILL, or OPEN.

66 Direct statement in file

A direct statement is encountered while an ASCII-format file is being loaded.
The LOAD is terminated.

67 Too many files

An attempt is made to create a new file (using SAVE or OPEN) when all 255
directory entries are full.

A'8 I APPENDIX A

RESERVED WORDS

Some words are reserved by BASIC-80 for use as statements, commands,
operators, and so on, and therefore may not be used in variable or function
names. The reserved words are listed below. Note that all intrinsic functions are
considered to be reserved.

ABS AND ASC ATN
AUTO BASE CALL CHAIN
CINT CDBL CHR$ CLEAR
CLOSE COMMON CONT CO0S

CSNG CvD CVI CVsS
DATA DEF DEFDBL DEFINT
DEFSNG DEFSTR DEFUSR DELETE
DIM EDIT ELSE END
EOF ERASE ERL ERR
ERROR EXP FIELD FILES
FIX FN FOR FRE
GET GOSUB GOTO HEX$
IF IMP INKEY$ INP
INPUT INSTR INT KILL
LEFT$ LEN LET LINE
LIST LLIST LOAD LOC
LOF LOG LPOS LPRINT
LSET MERGE MID$ MKD$
MKI$ MKS$ MOD NAME
NEW NEXT NOT NULL
OCT$ ON OPEN OPTION
OR ouT PEEK POKE
POS PRINT PUT RANDOMIZE
READ REM RENUM RESET
RESTORE RESUME RETURN RIGHT$
RND RSET RUN SAVE
SGN SIN SPACE$ SPC
SQR STEP STOP STR$
STRINGSH SWAP SYSTEM TAB
TAN THEN TO TROFF
TRON USR VAL VARPTR

WAIT WEND WHILE WIDTH
WRITE XOR

APPENDIX B I B'1

Appendix B

ASCII Codes

=}
=
Q

11

16 .
17 .
18 .
19 .
20 .
21 .
22 .
23 .

24 .
25 .
26 .
27 .
28 .
29 .
30 .

31

N o uhbhAN®MRE O

10 .

12 .
13 .
14 .
15 .

0oCT

0oo

oo1 .
. 02
003 .
004 .
005 .

oo2

006

007 .

010 .

011

012 .
013 .
014 .
015 .
016 .
017 .

020 .
021 .
022 .
023 .
024 .
025 .
026 .
027 .

030 .
031 .
032 .

033

034 .
035 .
036 .
037 .

DECIMAL TO OCTAL HEX TO ASCII CONVERSION

HEX ASCII
. 00 . NUL
01 . SOH
STX
03 . ETX
04 . EOT
05 . ENQ
. 06 . ACK
07 . BEL
08 . BS
. 09 . HT
0A . LF
0B . VT
0Cc . FF
0D . CR
OE . SO
OF . SI
10 . DLE
11 . DC1
12 . DC2
13 . DC3
14 . DC4
15 . NAK
16 . SYN
17 . ETB
18 . CAN
19 . EM
1A . SUB
1B . ESC
icC . FS
iD . GS
1E . RS
1F . US

DEC

43

50

53

60
61

32 .
33 .
34 .
35 .
36 .
37 .
38 .
39 .

40 .
41 .
42 .

44 .
45 .
46 .
47 .

48 .
49 .

51 .
52 .

54 .
55 .

56 .
57 .
58 .
59 .

62 .
63 .

II

oCT
040

042
043

044 .
045 .
046 .
047 .

050 .
051 .
052 .

053

054 .
055 .
056 .
057 .

0eo .
061 .
oez2 . .
. 33 .
34 .
35 .
36 .
37 .

063

064 .
0es .
066 .
o067 .

Q070
071

072 .
073 .
074 .
075 .
076 .
or7 .

HEX ASCII

. 20
041 .

21

. 22
. 23 .
24 .
25 .
26 .
27 .

28 .
29 .
2A .
. 2B .
2C .
2D .
2E .
2F .

30

32

. 38 .
. 39 .
3A .
3B .
3C .
3D .
3E .
3F .

31 .

. SPACE

- 3N Fh

4+ ok — o~

PERIOD

© O Od N O N < I

o VoA

DEC

64 .
65 .
66 .
67 .
68 .
69 .

70

71 .

72 .
73 .
T4 .

75

76 .
77 .
78 .
79 .

80 .

81

82 .

83

84 .
85 .
86 .
87 .

88 .
89 .

S0

91 .
92 .
93 .
94 .
95 .

III

0oCT

100 .
101 .
102 .
103 .
104 .
105 .
106 .
107 .

110 .

111
112
113

114 .

115

116 .
117 .

120
121
122
123

124 .
125 .
126 .
127 .

130
131

132

133

134 .
135 .
136 .
137 .

HEX ASCII

40
41
42

43 .
44 .
45 .
46 .
47 .

48 .
. 49 .
. 4A
. 4B .
4C .
. 4D .
4E .
4F .

50

51 .
52 .
53 .
54 .
55 .
56 .
57 .

58 .
59 .
. 5A .

5B .
5C .
5D .
5E .
5F .

oOoZ=E=2rxXacHT QEmM@EUQwEEe

D ,r—mN M E<<cHnNDOY

|

DEC

96 .
97 .
98 .
.99 .

100

101 .
102 .
103 .

104 .
105 .
106 .
107 .
108 .
109 .
110 .

111

112 .

113

114 .

115

116 .
117 .
118 .
119 .

120
121
122

123 .
124 .
125 .
126 .
127 .

IV

0CT

140
141

142 .
143 .
144 .
145 .
146 .
147 .

150 .
151 .
152 .
153 .
154 .
155 .
156 .
157 .

160 .

161
162

163 .
164 .
165 .
166 .
167 .

170

171 .

172

173 .
174 .
175 .
176 .
177 .

HEX ASCII

. 60 .
. 61 .
62 .
63 .
64 .
65 .
66 .
67 .

68 .-
69 .
6A .
6B .
6C .
6D .
6E .
6F .

70 .
R
.72 .
73 .
T4 .
75 .
76 .
77 .

. 78 .
79 .
. TA .
B .
7C .
7 .
TE .
TF .

£ 4 2 +0 10T OB H XN B Q| -0 Q0 0D

T AN X

DELETE

B'z l APPENDIX B

NUL
SOH
STX
ETX
EOT
ENQ
ACK
BEL
BS
HT
LF
VT
FF
CR
SO
SI
DLE
DC1
DC2
DC3
DC4
NAK
SYN
ETB
CAN

SUB
ESC
FS
GS
RS
us

Control Character Definitions

Null: Tape feed,

Start of Heading; Start of Message
Start of Text; End of Address
End of Text; End of Message

End of Transmission; Shuts off TWX machines
Enquiry; WRU

Acknowledge; RU

Rings Bell

Backspace

Horizontal TAB

Line Feed or Space (New Line)
Vertical TAB

Form Feed (PAGE)

Carriage Return

Shift Out

Shift In

Data Link Escape

Device Control 1; Reader on
Device Control 2; Punch on
Device Control 3; Reader off
Device Control 4; Punch off
Negative Acknowledge; Error
Synchronous Idle(SYNC)

End of Transmission Block; Logical End of Medium
Cancel (CANCL)

End of Medium

Substitute

Escape

File Separator

Group Separator

Record Separator

Unit Separator

Refer to the chart on Page B-1. Note that any print control character defined
above and listed in column I of the chart can be produced from the combination
of CTRL and the alphabetical character in column III or IV which is on the same
line and to the right of the print control character. That is, DLE is CTRL-P or P,
BEL is CTRL-G or *G, and so on.

APPENDIX C I 0'1

Appendix C

New Features in BASIC-80

New Reserved Words

BASIC-80 has new reserved words: CALL, CHAIN, COMMON, WHILE, WEND,
WRITE,OPTION BASE, RANDOMIZE.

Type Conversions

Conversion from floating point to integer values results in rounding. (Previous
versions of Microsoft BASIC would truncate the value.) This affects not only
assignment statements (e.g., I%=2.5 results in I%=3), but also affects function
and statement evaluations [e.g., TAB(4.5) goes to the fifth position, A(1 .5) yields
A(2), and X=11.5 MOD 4 yields 0]

FOR/NEXT Loop Evaluation

The body of FOR/NEXT loop is skipped if the initial value of the loop exceeds the
terminal value (or if a negative STEP is specified and the initial value is less than
the terminal value). See Chapter Four, “‘Program Statements,” for more informa-
tion about FOR/NEXT loops.

Division by Zero and Overflow

Division by zero and overflow no longer produce fatal errors. See Chapter Two,
“Expressions,” for more information.

RND Function

The RND function has been changed so that RND with no argument is the same as
RND with a positive argument. The RND function generates the same sequence
of random numbers each time it is executed. The RANDOMIZE option should be
used to reseed the random number generator. See Chapter Seven, “Functions,”
for more information.

APPENDIX C

Printing Numeric Values

The rules for PRINTing single-precision and double-precision numbers have
been changed. See Chapter Four, ‘“Program Statements,” for more information
about the PRINT statement.

String Space Allocation

String space is allocated dynamically, so the CLEAR statement is no longer used
to set aside memory for string storage. The first argument in a CLEAR statement
is used to set the end of memory, and the second argument is used to set the
amount of stack space.

Invalid Input

Responding to INPUT with too many or too few items, or with the wrong type of
value (numeric instead of string, etc.), or with only a carriage return causes the
message ‘‘?Redo from start” to be printed. No assignment of input values is made
until an acceptable response is given.

PRINT USING Characters

There are two new field formatting characters for use with PRINT USING. An
ampersand is used for variable length string fields, and an underscore signifies a
literal character in a format string.

WIDTH Statement

If the expression supplied with the WIDTH statement is 255, BASIC-80 uses an
“infinite” line width; that is, it does not insert carriage returns. WIDTH LPRINT
may be used to set the line width at the line printer.

EDIT Characters

The at-sign and underscore are no longer used as editing characters.
Variable Names

Variable names are significant up to 40 characters and can contain embedded
reserved words. However, reserved words must now be delimited by spaces. To
maintain compatibility with earlier versions of BASIC, spaces will be automati-
cally inserted between adjoining reserved words and variable names. This inser-
tion of spaces may cause the end of a line to be truncated if the line length
exceeds 255 characters.

Protected Binary Format

BASIC-80 programs may be saved in a protected binary format so that they may
not be LISTed or EDITed.

APPENDIX D | D"1

Appendix D

Programming Hints

As your level of programming experience increases, you will eventually have to
concern yourself with program efficiency. The two main resources you will have
to conserve are: memory space and execution time. This Appendix has been
included to aid in your programming effort.

CONSERVING MEMORY SPACE

To conserve memory space, make sure that you do the following:
Place multiple program statements on a single line.

BASIC-80 must keep track of each program line as well as the program line
number. If you place multiple statements on a single line, less space will be used
for program line overhead.

Remove all unnecessary REM statements.

When you use a REM statement, BASIC-80 will store the one-byte code which
represents the REM keyword plus the ASCII representation of the actual remark.
This can result in a lot of memory being used simply for remarks. (You will have
to consider the trade-off of program documentation vs. memory space when you
remove these REM statements.)

Use a subroutine call (GOSUB) only when a GOTO won’t work.

The GOSUB statement should be used only when a routine must be called from
several different places within the main program. If a routine is to be called from
the same place every time, then use a GOTO. Each active GOSUB will consume
memory space (to update the stack), but a GOTO will not.

D'z | APPENDIX D

Use as few parentheses in an expression as possible.

Structure your arithmetic expressions so they use as few parentheses as possible.
Each time BASIC-80 has to evaluate an expression enclosed in parentheses, it
will consume more memory space. BASIC-80 will also have to store the result of
this evaluation in a temporary storage location, thus using more memory space.

Use integer variables whenever possible.

This is very important, as integer variables only consume two bytes of memory.
A single-precision variable will take four bytes, and a double-precision will take
eight bytes.

Dimension arrays sparingly.

Make sure that you only allocate as much space for an array as you will use. For
example, if you allow BASIC-80 to establish the 11-element default array size,
and then only use four of these elements, you have wasted more space than you
have used. So always set the array size with a dimension statement, never let
BASIC-80 assume the default size of 11 elements. (Unless your array size is only
11 elements.)

Split large programs into smaller modules.

BASIC-80 will allow you to CHAIN between programs, as well as pass variables
between programs. This makes it very easy to write a large program as several
small programs and pass variables between them.

Use DEF statements to declare variable types.

This will prevent you from having to use the type declaration characters, thus
saving you one byte for every variable that is not a single-precision data type.

Reduce the number of simultaneously open data files.

Every data file requires a buffer area, so it is more efficient to use the same buffer
for several different files. To do this, open the first file as file #1, and then access
it as needed. Then close this file and open the second file as file #1. Although
you will not be able to simultaneously access both files, you will still be able to
access both files as needed.

Reduce the number of variables and arrays in a program.
You can accomplish this by reusing variables and arrays in a program when they

are no longer needed. Or, you can establish one variable to be used as a
FOR/NEXT counter, and then use it for every FOR/NEXT loop.

APPENDIX D | D'3

SAVING EXECUTION TIME

To save execution time make sure you do the following:
Define the most commonly used variables first.

The variables are placed in the BASIC-80 variable table as they are encountered.
When a variable is referenced, the table is searched sequentially. Thus, if a
variable is near the top of the table, it will take less time to access.

Use integer variables in FOR/NEXT loops.

This is very important and can result in a significant time savings. If you wish to
try an experiment, set up a FOR/NEXT with a single-precision loop counter and
time the execution. Then simply define the loop counter as an integer data type
and time the execution again. (Make sure you set the loop for at least 10,000
iterations.) You will notice a significant difference in the execution times.

Use variables instead of constants in arithmetic expressions.

BASIC-80 uses a floating point decimal representation for numeric values. It
takes less time for BASIC-80 to access a variable than to convert a constant to this
representation. If you have a constant you are planning to use quite often in a
program, assign it to a variable and use the variable instead.

This list is by no means exhaustive, but if you adhere to the above suggestions,
you will be well on the way to generating efficient code.

APPENDIX D

APPENDIX E | E'1

Appendix E

Assembly Language Subroutines

BASIC-80 provides two methods for calling assembly language subroutines from
a BASIC-80 program. The first method uses the USR function, which allows
assembly language subroutines tobe called in the same way BASIC-80’s intrinsic
functions are called. The second method uses the CALL statement, which gener-
ates the same calling sequence as the Microsoft FORTRAN, COBOL, and BASIC
Compilers.

Since assembly language subroutines bypass some of the built-in safeguards of
BASIC-80, calling assembly language subroutines renders BASIC-80 vulnerable
to and defenseless against the errors in those subroutines. Therefore, write your
subroutines with caution.

E'z I APPENDIX E

MEMORY ALLOCATION

When using assembly language subroutines with BASIC-80, an important con-
sideration is memory space allocation. Memory space must be set aside for an
assembly language subroutine before it can be loaded.

During initialization, enter the highest memory location minus the amount of
memory needed for the assembly language subroutine(s). The /M switch can be
used during initialization to set the top of memory. (See Chapter One, ‘‘System
Introduction & General Information,” for more information about the initializa-
tion procedure.) BASIC-80 uses all memory available from its starting location
up, so only the topmost locations in memory can be set aside for user sub-
routines.

After an assembly language subroutine is called, the stack pointer is set up for
eight levels (16 bytes) of stack storage. If more stack space is needed, BASIC-80’s
stack can be saved and a new stack set up for use by the assembly language
subroutine. BASIC-80’s stack must be restored, however, before the program
returns from the subroutine.

The assembly language subroutine may be loaded into memory by means of the
CP/M system monitor, or by using the BASIC-80 POKE statement. Assembly
language subroutines may also be assembled with the MACRO-80 assembler and
loaded using the LINK-80 linking loader. (These programs are not provided with
BASIC-80, they must be purchased separately.)

APPENDIX E | E'3

USR FUNCTION CALLS

Before a USR function is called, the entry address for the USR subroutine must be
defined in a DEF USR statement.

DEF USR
(define entry address for USR subroutine)

Form: DEF USR<digit>=<expression>

The DEF USR statement is used to define entry points for up to 10 assembly
language subroutines.

The <digit> is the number of the assembly language subroutine. <digit> may
be any number from 0-9. If <digit> is omitted, it it assumed to be 0.

The value of <expression> is the starting address of the assembly language
subroutine. This address is assumed to be in decimal unless a special base
specifier character is used. Hexadecimal numbers are specified with the prefix
&H and octal numbers are specified with the prefix &O or &.

The format of the USR function call is:
USR[<digit>](argument)

where <digit> is from 0 to 9 and the argument is any numeric or string expres-
sion. <digit> specifies which USR subroutine is being called, and corresponds
with the digit supplied in the DEF USR statement for that subroutine. If <digit>
is omitted, USRO is assumed. The address given in the DEF USR statement
determines the starting address of the subroutine.

E'4 I APPENDIX E

When the USR function call is made, register A contains a value that specifies the
data type of the argument that was given. The value in A will be one of the
following:

Valuein A Type of Argument

2 Two-byte integer (two’s complement)

3 String

4 Single-precision floating point number

8 Double-precision floating point number
Table E-1

Register Values Used to Specify Data Types.

If the argument is a numeric data type, the [H,L] register pair will point to the
Floating Point Accumulator (FAC) where the argument is stored. The FAC
occupies eight bytes in memory — enough for a double-precision number.

APPENDIX E | E'5

NUMERIC STORAGE FORMAT

Integer Storage Format

An integer argument is stored as a 2-byte data value. The integer is stored in a
two’s complement representation.(In the following discussion, the Floating
Point Accumulator will be referred to as the FAC.) An integer argument will be
stored in the FAC as follows:

FAC-3 — Contains the lower 8 bits of the argument
(the least significant byte)

FAC-2 — Contains the upper 8 bits of the argument
(the most significant byte)

Single-Precision Storage Format

A single-precision argument is stored as a 4-byte data value. The first byte will be
the exponent. The exponent will be stored in excess 128 (200 octal) notation.
This means that 200 (octal) represents an exponent of 0, 201 (octal) represents an
exponent of 1, 177 (octal) represents an exponent of -1, and so forth. A single-
precision number will be stored in the FAC as follows:

FAC-3 — Contains the lowest eight bits of the mantissa.
FAC-2 — Contains the middle eight bits of the mantissa.

FAC-1 — Contains the highest seven bits of the mantissa with leading 1
suppressed (implied). Bit 7 is the sign of the number (0=positive,
1=negative).

FAC — Contains the exponent stored in “‘excess 128" (200 octal) format

Double-Precision Storage Format

A double-precision argument is stored using the same format as the single-
precision number, only four more bytes are used to store the mantissa. A
double-precision number is stored in the FAC in the same manner as a single-
precision number, except:

FAC-7 through FAC-4 contain four more bytes of the mantissa (FAC-7
contains the lowest eight bits).
(least significant).

E'6 | APPENDIX E

STRING STORAGE FORMAT

If the argument is a string, the [D,E] register pair points to three bytes called the
“string descriptor”. Byte 0 of the string descriptor contains the length of the
string (0 to 255). Bytes one and two, respectively, are the lower and upper eight
bits of the string starting address in string space.

CAUTION: If the argument is a string literal in the program, the string descriptor
will point to the program text where the string appears. Be careful not to alter or
destroy your program this way. To avoid unpredictable results, add +"" to the
string literal in the program.

Example:
A$ = "BASIC-80"+""

This will force BASIC-80 to copy the string literal into string space and will
prevent alteration of program text during a subroutine call.

Data Type Conversions

Usually, the value returned by a USR function is the same type (integer, string,
single-precision or double-precision) as the argument that was passed to it.
However, calling the MAKINT subroutine returns the integer in [H,L] as the
value of the function, thus forcing the value returned by the function to be
integer.

To execute MAKINT, use the following sequence to return from the subroutine:

MAKINT EQU 105H ;address of MAKINT for CP/M
PUSH H ;save value to be returned
LHLD MAKINT ;get address of MAKINT subroutine
XTHL ;save return on stack and
;get back [H,L]
RET ;return

Also, the argument of the function, regardless of its type, may be forced to an
integer value of the argument in [H,L]. Execute the following subroutine:

FRCINT EQU 103H ;address of FRCINT for CP/M
LXI H ;get address of subroutine
;continuation
PUSH H ;place on stack
LHLD FRCINT ;get address of FRCINT

PCHL

APPENDIX E l E'7

CALL STATEMENT

BASIC-80 user function calls may also be made with the CALL statement. The
calling sequence used is the same as that in Microsoft’s FORTRAN, COBOL and
BASIC compilers.

The general format of the CALL statement is:
CALL <variable name>[(argument list)]

<variable name> is assigned an address that is the starting point in memory of
the assembly language subroutine. The address should be assigned to <variable
name> before a CALL statement is executed. <variable name> may not be an
array variable name. <argument list> contains the arguments that are passed to
the assembly language subroutine.

A CALL statement with no arguments generates a simple “CALL” instruction.
The corresponding subroutine should return via a simple “RET.” (CALL and
RET are 8080 opcodes - consult an 8080 reference manual for details.)

A subroutine CALL with arguments results in a somewhat more complex calling
sequence. For each argument in the CALL argument list, a parameter is passed to
the subroutine. That parameter is the address of the low byte of the argument.
Therefore, parameters always occupy two bytes each, regardless of data type.

The method of passing the parameters depends upon the number of parameters
to pass:

A. If the number of parameters is less than or equal to 3, they are passed
in the registers. Parameter 1 will be in HL, 2 in DE (if present), and 3 in

BC (if present).

B. If the number of parameters is greater than 3, they are passed as
follows:

1. Parameter 1 in HL.

2. Parameter 2 in DE.

3. Parameters 3 through n in a contiguous data block. BC will point
to the low byte of this data block (i.e., to the low byte of parameter

3).

Note that, with this scheme, the subroutine must know how many parameters to
expect in order to find them.

APPENDIX E

Conversely, the calling program is responsible for passing the correct number of
parameters. There are no checks for correct number or type of parameters.

If a subroutine expects more than three parameters, and needs to transfer them to
a local data area, there is a system subroutine named $AT (located in the
FORTRAN library, FORLIB.REL) which will perform the transfer. If you do not
have FORTRAN, the $AT argument transfer subroutine is listed on Page E-9.

$AT is called with HL pointing to the local data area, BC pointing to the third
parameter, and A containing the number of arguments to be transferred (i.e., the
total number of arguments minus 2). Your subroutine is responsible for saving
the first two parameters before calling $AT.

For example, if a subroutine expects five parameters, it should use the following
general procedure:

SUBR: SHLD P1 ; SAVE PARAMETER 1
XCHG
SHLD P2 ; SAVE PARAMETER 2
MVI A3 ;NO. OF PARAMETERS LEFT
LXI ; POINTER TO LOCAL AREA
CALL $AT ; TRANSFER THE OTHER 3 PARAMETERS

[body of subroutine]

RET ; RETURN TO CALLER

P1: DS 2 ; SPACE FOR PARAMETER 1
P2: DS 2 ; SPACE FOR PARAMETER 2
P3: DS 6 ; SPACE FOR PARAMETERS 3-5

When parameters are accessed in a subprogram, remember that they are only
pointers to the actual arguments passed.

It is entirely up to the programmer to insure that the arguments in the calling
program correspond in number, type, and length with the parameters expected
by the subprogram.

APPENDIX E I E'g

A listing of the argument transfer subroutine $AT follows.

00100 ; ARGUMENT TRANSFER

00200 ;[B, C] POINTS TO 3RD PARAMETER

00300 :[H, L] POINTS TO LOCAL STORAGE FOR PARAMETER 3

00400 i[A] CONTAINS THE # OF PARAMETERS TO XFER(TOTAL-2)

00500

00600

00700 ENTRY $AT

00800 $AT: XCHG :SAVE [H,L] IN [D,E]

00900 MOV H,B

01000 MOV L.C :[H,L] = PTR TO PARAMETERS

01100 AT1: MOV C,M

01200 INX H

01300 MOV B.M

01400 INX H :[B,C] = PARAM ADR

01500 XCHG :[H,L] POINTS TO LOCAL STORAGE

01600 MOV M,C

01700 INX H

01800 MOV M,B

01900 INX H :STORE PARAM IN LOCAL AREA

02000 XCHG :SINCE GOING BACK TO AT1

02100 DCR A : TRANSFERRED ALL PARAMS?

02200 INZ AT1 :NO, COPY MORE

02300 RET :YES, RETURN
INTERRUPTS

Assembly language subroutines can be written to handle interrupts. All inter-
rupt handling subroutines should save the stack, registers A-L, and the PSW.
Interrupts should always be re-enabled before returning from the subroutine,
since an interrupt automatically disables all further interrupts once it is re-
ceived. It is also very important to choose the proper interrupt vector. With CP/M
BASIC-80, all interrupt vectors are free.

APPENDIX F I F'1

Appendix F

Random and Sequential I/O
Programming Examples

A directory application, such as a computerized telephone book, is a practical
use of random files. The following two sample programs illustrate this
technique. The first program, “DIRECTORY”, accepts the data required to build
the random file and a sequential directory file. The second program, “QUERY”,
retrieves the data from the directory file.

To fully understand this method of random I/O, you should look at what infor-
mation is contained in the directory file. The directory file has a key created from
putting together the individual’s first and last names. The other field in the
directory is the record number. The record number is used as an index, and
points to that particular individual’s entry in the random file.

When you run the “QUERY” program, you will supply the firstand last name of a
person. If it is a valid name (that is, if it is an entry in the directory), the record
number will be used. This will point to the proper record in the random file, so
the telephone number can be retrieved.

Note that these examples are NOT intended to be efficient examples of random
file usage. They are designed to show how to use the random and sequential file
commands.

The example does not show how to add to the data in the file once it has been
created. This was done to keep the example simple. If you want to add more
names to the file, you will need to modify or rewrite the build program.

As it stands, the build program assumes that there is no pre-existing directory
file and starts building one. If it were changed to read in the old directory file,
then new entries could be added. (Lines 50 to 80 in the query program read the
file.)

F'z | APPENDIX F

If you want to do this, first open A:TABLE.EXT for input and read all of it into an
array such as NP$ and SP. Then close the file, but reopen it for output before you
write out the directory.

Again, this example is not designed to be efficient. An efficient program would
put the directory as the first or last few records of the file A:RFILE.EXT. In
addition, the directory would be kept in alphabetical order for efficient search-
ing.

You will understand these examples best if you type them in and use them.

5 REM "DIRECTORY PROGRAM"

10 OPEN "O",1,"A:TABLE.EXT"

20 OPEN "R",2,"A:RFILE.EXT"

30 FIELD #2,12 AS LN$,9 AS SN$,12 AS SR$<operator types LINE FEED>
12 AS CI$, 10 AS SZ$,2 AS CD$,2 AS EX$,2 AS PN

40 REC=REC+1

50 LINE INPUT "LAST NAME? ":N1$

60 LINE INPUT "FIRST NAME? '":N2§

70 LINE INPUT "STREET ADDRESS? ";N3%

80 LINE INPUT "CITY?" ";N4$

90 LINE INPUT "STATE ZIP? ";N5$%

100 INPUT "PHONE NUMBER (XXX, XXX, XXXX) ";N%,N1%,N2%

110 LSET LN$=N1$:LSET SN$=N2%:LSET SR$=N3$: <operator types LINE FEED>
LSET CI$=N4$:LSET SZ$=N5%

120 LSET CD$=MKI$(N%) :LSET EX$=MKI$ (N1%)<operator types LINE FEED>
:LSET PN$=MKI$ (N2%)

130 KEY$=N1$+N2$

140 PRINT #1,KEY$:;"," REC

150 PUT #2,REC

160 LINE INPUT "MORE INPUT (Y OR NO)";MI$<operator types LINE FEED>
IF MI$="Y" GOTO 40

170 CLOSE

180 END

APPENDIX F I F'3

Line Number

10

20

30

40

50 - 100

110

120

130

140

150

160

170

180

Explanation

Open directory file and label it “A:TABLE.EXT".

Open a random file and label it as “A:RFILE.EXT.”

Reserve space in the random file buffer for directory en-
tires.

LN$=Last Name
SN$=First Name
SR$=Street Address
CI9=City
SZ$=State and Zip Code
CD$=Area Code
EX$=Telephone Exchange
PN$=Last 4 digits of
telephone number

Increment record number counter.

Accept input data.

Left-justify the string input for the random buffer.
Left-justify and convert integers to string values. (You
must convert to strings before PUTting values into the
buffer.)

Construct the key from first and last names.

Output data to the directory file.

KEY$=Key for directory
REC=Record number of random file

Put the record in the random buffer.
Check for more data.
Close all files.

End the program and return to MBASIC Command Mode.

F-4 | appenonr

5 REM "QUERY PROGRAM"

10 CLEAR 200

20 OPEN "I",1,"A:TABLE.EXT"

30 OPEN "R",2,"A:RFILE.EXT"

40 FIELD #2,12 AS LN$,9 AS SN$,12 AS SR$.12 AS CI$,<operator types LINE FEED>
10 AS SZ$.2 AS CD$,2 AS EX$,2 AS PN$

50 IF EOF(1) THEN GOTO 90

60 CT=CT+1

70 INPUT #1,NP$(CT),SP(CT)

80 GOTO 50

90 INPUT "NAME (LAST,FIST)";L$, F$

100 KEY$=L$+F$

110 FOR I%=1 TO CT

120 IF KEY$=NP$(I%) THEN GO TO 150

130 NEXT IY

140 PRINT "NO RECORD EXIST":GOTO 170

150 GET #2,SP(I%)

160 PRINT LN$,SN$,CVI(CD$);"-";CVI(EX$);"-";CVI (PN$)
170 INPUT"MORE QUERIES? (Y OR N) ";M§:IF M$="Y"GOTO 90
180 CLOSE

190 END

Line Number

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

Explanation

Set up string storage space.

Open directory file for input.

Open the random file.

Reserve space in random file buffer.
Check for end-of-file condition.
Increment directory record counter.
Read directory into string.

Loop back for EOF check.

Supply the name for which you want the telephone
number.

Cfeate key from the first and last names.

Set up loop to search for record in the directory.
Compare input key to directory key.

If no match on first comparison, try the next key.

If no match is found after comparing all keys, print the
message.

If match is found, put the requested record in the random
buffer.

After converting the requested record back to integer, print
it.

Check for more queries.
Close all files.

End the program and return to Microsoft BASIC’s prompt.

APPENDIX F I F'5

INSERT

INDEX | |'1

Index

ABS, 7-3
absolute value function, 7-3
accessing a random access file, 10-36
accessing a sequential file, 10-21
Adding Data to a Sequential File, 10-23
Additional considerations for IF statements, 4-16
additional features of random access files, 10-37
address, entry for USR routine, 7-24
allocation of

string space, 3-3

stack space, 3-3
arccosine, 7-11
arcsine, 7-11
arctangent function, 7-3
Arithmetic Functions, 7-2
Arithmetic Operators, 2-8
Array

Declarator, 6-2

Subscript, 6-3

Vertical, 6-4
Arrays, 6-1
ASC, 5-5
ASCII to numeric conversion, 5-5
ASCII to string conversion, 5-5
Assembly Language

Programs, 7-24

subroutines, 7-25,E-1
assign value to a variable, 4-5
associate file number with file name, 10-5
ATN, 7-3
AUTO, 3-2

automatic insertion of delimiters in disk file, 10-18

automatic line numbering, 3-2
avoiding Input past end errors, 10-9

Bad file mode, A-6,3-9
Bad file name, A-7
Bad file number, A-6
Bad record number, A-7
base specification characters, 7-24
BASIC-80
new features, C-1
Random 1/O, 10-25
Sequential 1/0O, 10-11
BEL character, 5-5
branch to subroutine, 4-11
buffer, moving data to, 10-29
buffer, sequential file, 10-22
buffer, random file, 10-27
build string, 5-12
call overlay, 8-15
CALL statement, E-7
calling sequence, E-7
Can’t continue, A-4,3-4
cancel and quit (Edit Mode), 9-10
CDBL, 7-4
CHAIN, 8-15
change contents of memory location, 7-15
change sequence of random number, 7-8
change text (Edit Mode), 9-8
character pending at terminal, 5-6
Character Set, 1-13
check for end-of file, 10-9
CHRS$, 5-5
CINT, 7-4
CLEAR, 3-3
close disk data file, 10-8
CLOSE, 10-8
Command Mode Statements, 3-1

|-2 INDEX

COMMON, 8-16 DATA, 4-18
concatenation, 5-3 data file, opening, 10-5
conclude I/O activity to disk file, 10-8 Data Type Conversion, 2-6
Conditional Execution, 4-14,4-15,4-17 Data Type Definition, 4-2
Conserving Memory Space, D-1 debugging aid, 8-14
Constants, 2-2 decimal to hexadecimal conversion, 5-6
Fixed Point Constants, 2-2 decimal to octal conversion, 5-10
Floating Point Constants, 2-2 declare variable
Hex Constants, 2-3 as double-precision, 4-3
Integer Constants, 2-2 as integer, 4-2
Octal Constants, 2-3 as single-precision, 4-2
Single and Double-Precision Numeric Constants, 2-3 a5 string, 4-3
String Constants, 2-2 ' DEF FN, 7-23
CONT, 3-4 DEF USR, 7-24
continue execution after error trap, 8-3 default
continue program execution, 3-4 extension, 3-13,3-8
Control Characters, 1-14 printer line width, 7-22
Control Statements, 4-7 record length, 10-5
Conversion, Type, 2-6 terminal line width, 7-22
conversion from ASCII to numeric, 5-5 DEFDBL, 4-3
conversion from ASCII to string, 5-5 define entry address for USR routine, 7-24
conversion from decimal to hexadecimal, 5-6 define function, 7-23
convert defintion of data types, 4-2
decimal to octal, 5-10 DEFINT, 4-2
numeric values to string, 10-32 DEFSNG, 4-2
string to numeric form, 10-33 DEFSTR, 4-3
string to numeric value, 5-13 default drive, 10-5
to double-precision, 7-4 DELETE, 3-4
to integer, 7-4 : delete current program, 3-9
to single-precision, 7-5 delete program lines, 3-4
COS, 7-5 Deleting Text (Edit Mode), 9-6
cosecant, 7-11 delimiters in sequential files, 10-13
cosine function, 7-5 DIM, 4-4
cotangent, 7-11 Dimension statement, 6-2
CP/M extents, 10-9 Direct statement in file, A-7
CP/M file name, 10-5 disable error trapping, 8-2
Creating a Sequential file, 10-21 disable trace flag, 8-14
CSNG, 7-5 disk file, opening, 10-5
Current Line Editing, 9-11 Disk File Operations, 10-1
CVD, 10-33 Disk full, A-7
CVI, 10-33 Disk I/O error, A-6
CVS, 10-33 Division by zero, A-3,2-9

double-precision, 4-3
Double-Precision Storage Format, E-5
Duplijcate definition, A-3,4-4,6-3

INDEX

e raised to a power, 7-6
EDIT, 3-5
Editing, 9-1
ELSE, 4-15
enable automatic line numbering, 3-2
enable Edit Mode, 9-2
enable error trapping, 8-2
enable trace flag, 8-14
Ending and Restarting Edit Mode, 9-10
END, 4-7
enter Edit Mode, 3-5
entry address for USR routine, 7-24
EOF, 10-9
ERASE, 4-5
ERL variable, 8-5
ERR variable, 8-5
Error Codes, 8-6
error simulation, 8-4
Error Trapping, 8-2
ERROR, 8-4
examine contents of memory location, 7-15
Example of
Error Trap, 8-3
input from terminal, 4-19
INPUTS, 5-7
integer to string conversion, 10-32
LINE INPUT, 4-20
numeric input, 10-12
RESTORE statement, 4-24
WHILE/WEND loop, 4-17
BASIC-80 Variables Names, 2-5
FOR/NEXT loop, 4-9
IF statements, 4-15
Nested IF statement, 4-16
Nested Loops, 4-9
numeric output, 4-22
excess 128 storage format, E-5
exchange variable values, 4-6
execute program, 3-12
exit BASIC-80, 3-13
Expressions and Operators, 2-8
Expressions, 2-1
EXP, 7-6
extend line (Edit Mode), 9-5

FIELD, 10-27
Field overflow, A-6,10-27
fields in sequential files, 10-13
File already exists, A-6
File already open, A-6
File Management Statements, 10-4
File Manipulation Commands, 10-2
File not found, A-6
FILES, 3-6
Finding Text (Edit Mode), 9-7
FIX, 7-6
FOR without NEXT, A-5
FOR/NEXT Loop Evaluation, C-1
FOR/NEXT, 4-8
formatted

numeric fields, 8-9

output, 8-8

output errors, 8-13

string fields, 8-8
formatting characters, 8-7
FRE, 7-13
function, user-defined, 7-23
Functional Operators. 2-14
Functions, 7-1

generate error, 8-4
GET, 10-30
GOSUB, 4-11
GOTO, 4-12

hack and insert (Edit Mode), 9-6
hard copy device output, 4-21
HEXS$, 5-6
high-order byte, 7-18
hints, programming, D-1
hyperbolic cosecant, 7-11
cosine, 7-11
cotangent, 7-11
secant, 7-11
sine, 7-11
tangent, 7-11

I-3

|'4 I INDEX

I/O port, monitoring of, 7-21
1/O port, input from, 7-13
I/O Statements (Non-Disk), 4-18
IF/THEN/ELSE, 4-15
Illegal direct, A-3
Illegal function call, A-2
illegal input, 4-19
incremental value of loop counter, 4-8
infinite line width, 7-22
initial value of loop counter, 4-8
initialize variables, 3-3
INKEYS, 5-6
INP, 7-13
INPUT, 4-19
INPUT#, 10-11
INPUTS$,5-7
input
byte from I/O port, 7-13
data from sequential file, 10-11
entire line from sequential file, 10-16
entire line, 4-20
from terminal, 4-19
past end, 10-9
Input past end, A-7,10-19
insert (Edit Mode), 9-4
insert remark, 4-6
inserting delimeters in sequential files, 10-17
Inserting Text (Edit Mode), 9-4
Installation Guide, 1-2
INSTR, 5-8
Integer, 4-2
Integer Division, 2-9
Integer Storage Format, E-5
Internal error, A-6
INT, 7-7
Invalid Input, C-2
inverse cosine, 7-11
inverse sine, 7-11
Initialization of BASIC-80, 1-13
invoke assembly language subroutine, 7-25
invoking Edit Mode, 9-2

largest record number, 10-10
least significant byte (LSB), 7-18
LEFTS$, 5-8

left-justify and place in random buffer, 10-29
LEN, 5-9

length of file, 10-9

LET, 4-5

Line buffer overflow, A-5

Line Format, 1-17

LINE INPUT, 4-20

LINE INPUT#, 10-16

Line numbers, 1-17

line printer, outputting data to, 4-21
list line (Edit Mode), 9-9

list names of files, 3-6

list program on line printer, 3-7
list program on terminal, 3-7
listing a program, 3-7

LIST, 3-7

LLIST, 3-7

load and execute program, 3-12
load overlay, 8-15

load program file from disk, 3-8
LOAD, 3-8

LOC, 10-10

LOF, 10-9

LOG, 7-7

Logical Operators in Relational Expressions, 2-14

Logical Operators, 2-11
logical record size, 10-27
logical records, 10-27
loop counter, 4-8

loop, 4-8

low-order byte, 7-18
LPOS, 7-14

LPRINT, 4-21

LSET, 10-29

INDEX I |'5

make numeric value into spring, 10-32
Manual Scope, 1-9
Mathematical functions, 7-11
Matrix
Addition, 6-8
Input Subroutine, 6-6
Manipulation, 6-6
Multiplication, 6-8
maximum record number, 10-10
Memory Allocation E-2
memory location, examining contents of, 7-15
memory space conservation D-1
MERGE, 3-9
merge programs, 3-9
MID$ function, 5-9
MID$ statement, 5-10
minimum subscript, 6-3
Missing operand, A-5
MKD$, 10-32
MKIS$, 10-32
MKS$, 10-32
mode string, 10-5
Modes of Operation, 1-14
Modulus Arithmetic, 2-9
monitor port, 7-21
most significant byte (MBS), 7-18
move data to random buffer, 10-29
Moving the Cursor (Edit Mode), 9-3
Multi-dimensional arrays, 6-5
multi-dimensional array subscripts, 6-5
multiple statements in an IF, 4-15

natural logarithm base value, 7-6
natural logarithm function, 7-7
Nested IF statements, 4-16
Nested Loops, 4-8

New features in BASIC-80, C-1
New Reserved Words, C-1

NEW, 3-9

NEXT without FOR, A-1,4-10
NEXT, 4-8

No RESUME, A-4

numeric fields, formatted, 8-9
Numeric Input (from sequential disk file), 10-12
Numeric Storage Format, E-5

OCTS$, 5-10
ON ERROR GOTO, 8-2
ON/GOSUB, 4-13
ON/GOTO, 4-13
one-dimensional arrays, 6-4
ON, 4-13
open disk data file, 10-5
OPEN, 10-5
Operator

Arithmetic, 2-8

Logical, 2-11

Functional, 2-14

Relational, 2-10
Option Base statement, 6-3
OPTION BASE, 4-4
Other Edit Mode Features, 9-11
Out of data, A-2,4-23
Out of memory, A-2
Out of string space, A-3,3-3
output byte to I/O port, 7-14
output data to line printer, 4-21
output data to terminal, 4-25
Overflow, A-3,2-9,7-4,7-6
Overlay Management, 8-15

passing variables to a chained program, 8-16
PEEK, 7-15

pending character at terminal, 5-6

POKE, 7-15

port, output to, 7-14

port, input from, 7-13

port, monitoring of, 7-21

POS, 7-16

Precedence of Arithmetic Operators, 2-8
Preparing the Diskette 1-11

print blanks, 7-16

print line number as its executed, 8-14
PRINT# USING, 10-17

Print Positions, 4-21

PRINT USING, 8-8

print zones, 4-21

printed line longer than terminal width, 4-21

I'G I INDEX

printer line width, 7-22 RESET, 3-11

printing data on the line printer, 4-21 RESTORE, 4-24

printing numeric values, 4-22 RESUME, 8-3

program editing, 9-1 RESUME without error, A-4,8-3
Program Statements, 4-1 return

Programming Hints, D-1 address of FIELD buffer, 7-20
prompt string, 4-19 address of variable, 7-18
protected files, 10-2 amount of free memory, 7-13
Protected File, 3-13 current cursor position, 7-16
PUT, 10-31 current record number, 10-10

from subroutine, 4-11
leftmost characters, 5-8
length of string, 5-9
number of records, 10-9
number of sectors accessed, 10-10
numerical representation, 5-13
position of print head, 7-14
rightmost characters, 5-11
string of spaces, 5-11
string representation, 5-12
return substring, 5-9
RETURN without GOSUB, A-2

random access
file, creation of, 10-34
record size, 10-5
Statements, 10-26
Techniques, 10-34
random number generator, 7-8
random record, reading, 10-30

random record, writing, 10-31 RETURN, 4-11
RIGHTS, 5-11
RANDOMIZE, 7-8) . .
range of a FOR/NEXT loop, 4-8 right-justify and place in random buffer, 10-29
READ. 4-23 ’ RND function, new features, C-1
read one character from keyboard, 5-6 RND;;'B_
read random record, 10-30 llz)SuElllT to integer, 7-6
read values from DATA statement, 4-23 » 10-29
RUN, 3-12

reading a random access file, 10-34
- record length, 10-5

Redo from start, 4-19

register values, E-4

Reglational Expressions using Logical Operators, 2-14 SAYE’ 3-13 . .

Relational Operators, 2-10 Saving Ex ecutl.on :I‘lme, D-1

REM, 4-6 Scalar Multiplication, 6-7

scaled format, 4-22

search (Edit Mode), 9-7

search and ‘‘kill ”’ (Edit Mode), 9-7
search for substring, 5-8

secant, 7-11

seed random number generator, 7-8
send special character to terminal, 5-5
Sequence of Execution, 4-7

save changes and exit (Edit Mode), 9-9

renumber program lines, 3-10
RENUM, 3-10

repetive execution loop, 4-8
replace portion of a string, 5-10
Replacing Text, 9-8

reserved words, A-8

reserved words, new, C-1

reset data pointer, 4-24

INDEX | |'7

sequence of random numbers, 7-8
Sequential
Access Statements, 10-10
Access Techniques, 10-21
data pointer, 10-11
disk file, writing to, 10-16
disk file, reading from,10-11
file, accessing a, 10-22
file, I/O buffer, 10-22

sequential file, creation of, 10-21
sequential file input, 10-12 -
set
line width 7-22
random access record size, 10-5
random file buffer, 10-27
set-up array, 4-4
SGN, 7-9
sign of expression, 7-9
simulate occurrence of error, 8-4
sine function, 7-10
Single-Precision Storage Format, E-5
single-precison, 4-2
SIN, 7-10
SPACES$, 5-11
SPC, 7-16
Special Features, 8-1
Special functions, 7-12
SQR, 7-10
square root function, 7-10
stack space allocation, 3-3
STEP, 4-8
STOP, 4-14
store constants, 4-18
STRS, 5-12
stream of ASCII chararacters, 10-10
string
arrays, 6-5
fields, formatted, 8-8
formula too complex, A-4
Functions, 5-4

Input (from sequential disk file), 10-14

Input/Output, 5-2

of spaces, 5-11
Operations, 5-3

space allocation, 3-3,C-1

String Storage Format, k-6

String too long, A-4

STRINGS, 5-12

Strings, 5-1

string, 4-3

Subscript out of range, A-3,4-4,6-2
substring search, 5-8

suspend execution, 4-14

SWAP, 4-5
Syntax error, A-2,4-3,10-5
SYSTEM, 3-13

System Software Requirements, 1-10

TAB 7-17
tab carriage, 7-17
tangent function, 7-10
TAN, 7-10
terminal
line width, 7-22
value of loop counter, 4-8
width, 4-21
terminators in sequential files, 10-13
text insertion (Edit Mode), 9-4
THEN, 4-15
Too many files, A-7
Trace Flags, 8-14
Transposition of a Matrix, 6-7
trapping error, 8-2
TROFF, 8-14
TRON, 8-14
truncate supplied argument, 7-6
Type Conversion, 2-6,C-1
Type mismatch, A-4,4-5,7-23

unconditional branch, 4-12

Undefined line number, A-3,4-16,4-12,8-2

Undefined user function, A-4
unmatched WEND, 4-17
unmatched WHILE, 4-17
Unprintable error, A-5,8-4
unscaled format, 4-22
user-defined errors, 8-4
User-Defined Functions, 7-23
USR function calls, E-3

USR function data type conversions, E-6

USR, 7-25

1-8 | oex

VAL, 5-13

variables, 2-4

Variable Names and Declaration Characters, 2-4
variable pointer, 7-18

VARPTR, 7-18

Vertical Arrays, 6-4

WAIT, 7-21
WEND without WHILE, A-5,4-17
WEND, 4-17

WHILE without WEND, A-5,4-17
WHILE/WEND, 4-17
WIDTH LPRINT, 7-22
WIDTH, 7-22
write
data to sequential disk file, 10-19
directory information to disk, 3-11
program to disk, 3-13
random record, 10-31
to sequential disk file, 10-16
WRITE, 4-25
WRITE#, 10-19

