chain

The chain Function
Purpose:

Loads a CP/M file of arbitrary contents at a given address and then
jumps to that address. The file control block area used for the call
must be 100 bytes in length and not overlap the space to be used by the
newly loaded program. Not a beginners function.

Fanction Header:

VOID chain(tpa,program)

char *tpa Load address for program.

char *fcb; File Control Block, 100 bytes long.
Safe area for the FCB and program
loader.

WARNING: The area at fcb must be 100 bytes in length and remain
protected during the load of the program. You must not chain to
a program that can over-write the controlling file control block
and the program loader area.

Returns:

Nothing. The routine chain() returns to the caller only in case
the file is not found. Otherwise, the COM file is loaded and run.
There is no default buffer processing.

Exanple: Load and run a prggram that resides above the BIOS, It is
assumed that addresses OxE000 to OxFFFF are unoccupied and that the file

DRIVER.PRE has been assembled to load at OxE100. The code at OxE100
should do its thing and exit to warm boot.

#include <stdio.h>
main()

makeFCB(0xE0Q0, "DRIVER.PRE") ;

chain(0xE100,0xE000);
puts("DRIVER.PRE not found") ;

Library Page 39

chain

Notes:

o The routine makeFCB() makes a CP/M standard file control block of
36 bytes from a string that is supposed to represent a file name.

o The fcb area is an array fcb[100]. The first 36 bytes store the
file control block for the file to be loaded. In the remaining 64
bytes is stored a copy of a relocatable loader program which
reads the file off the disk into memory at the set TPA address.
Clearly the area fcb[100] may not intersect the buffer area for
the file read.

o The action taken by chain() is to copy the file to the desired
tpa address and then jump to the base in order to run the
program.

o There is no internal error-checking to see if the programmer is
about to crash the system. Indeed, this routine is not for the
faint of heart, for it will certainly sustain a few crashes
during the debugging stages.

o The ability to load a program anywhere in memory and run it might
be seen as a kind of concurrency. It can be thought of as a way
to initialize and load device drivers.

o A convenient and safe place to select fcb[100] is the console
buffer for C/80 programs. It is in high memory just under FDOS
and 136 bytes in length. If the file is missing fails, then no
harm comes to the program currently in memory.

Library Page 40

chdir

The chdir Function

Purpose:
Change the working directory to a new drive and new user area.
Function Header:
chdir(s)
char *s; String of format "A0:" for drive A: user 0,
User areas are 0 to 15 and drives are A: to P:.

The drive is not changed unless it is present. The user area is not
changed unless present.

Returns:

Nothing useful. If the drive does not mount, then this function
might drop the user out to CP/M.

Example: Change the default drive to B: and the user area tol.
#include <unix.h>
#include <stdio.h>
Ta1n()
chdir(*81");
puts(“User 1, default drive B:");
system("DIR");
Exanple: Change to user 15 on the currently logged disk.

#include <unix.h>
#include <stdio.h>
main()

chdir("15");

puts(“User 15*);

system("DIR*);
Notes:

o This is for CP/M 2.2 only. Note the analog under PC-DOS.

Library Page 41

chmod

The chmod Function

Purpose:

Change the protection of an existing file. The CP/M file attributes
that can be updated are $R/W, $R/0, $DIR, $SYS.

Fanction Header:
int chmod(name,mode)
char *name; Name of the file to access
int mode; Unix mode number, see below.

The effect of chmod() is to set the file flags of a CP/M file as
follows:

CP/M MODE UNIX MODE UNIX I-NODE PATTERN
$SR/W & $DIR 04777 ~TWXTWXTWX

$R/0 & $DIR 04555 -r-xr-xr-x

$R/0 & $SYS 04444 -r--r--r--

$R/W & $SYS 04666 ~TW=TW-TW=

Returns:

0 File exists and operatfion was successful.
-1 File not found, or directory update failed.

(Write-protect tabs can cause failure]

Example: Look up the disk file "A:NAMES®, set the file to $R/W and
$DIR, open the file for append and add the name “Ritchie*, close the
file and set its file attributes to $R/0 + $DIR.

#include <unix.h>

#include <stdio.h>

main(argc,argv) int argc; char **argv;
{

FILE *fp,*fopen();

if(chmod("A:NAMES" ,04777) == 0) {
fp = fopen("A:NAMES" ,"a+");
if(fp == (FILE *)0) { puts(*File error*); exit();}
fputs(“Ritchie",fp);
fclose(fp);

) chmod("A:NAMES* ,04555) ;

else {

: puts("File not found or disk write-protected*);

Library Page 42

chmod

Notes:

o CP/M considers a file to be:

readable - exists in the disk directory
writable - exists and has $R/W attribute
executable - exists and has $DIR attribute

We map CP/M flags to permissions as follows:

$0IR execute permission on
$SYS execute permission off
$R/W write permission on
$R/0 write permission off

Chmod() makes Unix source code compile without
errors, even though it may not run properly.

The octal Unix modes are:

04000 Set user id on execution (suid)
02000 Set group id on execution (sgid)
01000 Save text in swap area after execution
00400 owner read permission

00200 owner write permission

00100 owner execute permission

00040 group read permission

00020 group write permission

00010 group execute permission

00004 all others read permission
00002 all others write permission
00001 all others execute permission

For example, 04755 means to set user id, all modes for the user
but write permission is turned of f for group and all others.

To turn off all action of chmod(), insert this code segment into
code that accesses chmod():

setatt()

return 0;

}

Library Page 43

CHmode

The CHmode Functfon

Purpose:

Switches between raw character mode and 1ine mode with built-in
editing functions.

Fonction Header:
VOID CHmode(n)
int n; Character mode with echo for n = 0,
Line mode for n = 1,
Character mode no echo for n = 2,
Returns:

Nothing useful.

Example: Get a character from the user with echo but no wait for a
carriage return and linefeed.

#include <stdio.h>
main{)

printf(*Yes or No? <Y/N>: ");

CHnode(0);

printf(toupper(getchar()) == 'Y' 7 "\bYES\n" : "\bNO\n*);
CHmode(1);

Example: Get a character from the user with no echo. No wait for a
carriage return and linefeed.

#include <stdio.h>
main()

printf("Yes or No? <Y/N>: *);

CHnode(2);

printf(toupper(getchar()) == 'Y' ? “YES\n* : *"NO\n");
ChHmode(1);

Library Page 44

CHmode

Notes:

Uses external global Omode = 0, 1, or 2 in the switching.

The backspace method used above in the first example presumes
that the terminal can backspace. It does not handle CR/LF
answers. The second method works without terminal problems.

A good tool for handling user options is:

CHmode(2);

while(index("YN" toupper(getchar())) == (char *)0)
putchar(*\7'); /* blow horn */

CHmode(1);

This method has the advantage of filtering out all bad input
and therefore reducing program bugs as the code 1s revised.

A shorter version of the above code is

while(index(*YN* toupper(getbyte())) == (char *)0)
putchar('\7'); /* blow horn */

The change to character mode from 1ine mode has its problems.

Some CP/M systems do not have interrupt driven 1/0. Function
keys may not work as expected.

The variable CCtICk controls the number of times the console
is re-tried for console input after one character is read. Its
default value is 6. Change it to any number from 1 to 255, as
follows:

extern char CCtiCk;
CCt1Ck = 12;

If you have trouble with function keys, then this variable may
have to be changed to a higher number. Especially true for
slower terminals and CPU speeds under 4mhz.

In Cmode <> 1, any character is acceptable, including NULL. The
method used for character mode is direct BIOS with manual echo
in Cmode = 0. We assume that the BIOS can be found by reading
the address at 0x0001.

In Cmode = 1, the usual CP/M editing functions are active, plus
¢ctr1-P, ctrl-S and ctr1-C. In addition, ctr1-B will cause a
jump to the ctr1-B processor Ct18 (). A ctr1-C will cause an
exit to CP/M, regardless of its entry position on the line.

Library Page 45

chown !

The chown Function

Purpose:

Change the owner of an existing file.

Fanction Header:

int chown(name,owner ,group)

char *name; Ascii file name, CP/M conventions
int owner, Owner of the file, an integer known
to Unix via the login file.
group; Unix group number, an integer that

Unix Tooks up at login.
Both the owner number and the group number are ignored by CP/M.

Returns:

0 File exists

-1 File not found
Notes:

o CP/M treats this call as a file look-up only. The user of a CP/M
system is the owner.

o Chown() makes Unix source code compile without errors, even
though it may not run properly.

0 Unix calls getuid(), getgid() can Yook up the owner and group

numbers, while setuid() and setgid() are capable of setting the
numbers. -

Library Page 46

clearerr

The clearerr Function

Purpose:
Clears a stream error, This function does nothing under C/80.
Fanction Header:

int clearerr(fp)
FILE *fp; Open stream pointer.

Returns:
Nothing.

Example: Compile Unix code under C/80.

#include <unix.h>

#include <stdio.h>

main(argc,argv)

int argc;

char *argv(];

{

int x;

while((x = getchar()) 1= EOF) {

if(ferror(stdout)) break;
putchar(x);

clearerr(stdout);
fputs(“Operation complete\n”,stdout);

Notes:

o clearerr() is a no-op under C/80 because no provision has been
made to survive a disk output error.

Library Page 47

close

The close Function

Purpose:

Flushes the file buffer to disk, writes the file control block to
the disk directory and releases the file descriptor.

Fanction Header:
int close(fd)

int fd; File descriptor
Returns:
0 It worked
-1 It failed
Exanple:

Close a file that was opened by open() and written to by write().

#include <unix.h>
#include <stdio.h>
Tain()
int fd;
fd = open("MYFILE",1);
if(fd) {
write(fd,"This is a test",14);
: close(fd);

}
Notes:

0 Requires a file descriptor as argument.
o Uses fclose() .

o The fflush() done by fclose() is a no-op in case no stream 1/0
was done.

Library Page 48

cmpi, cmpl, cmpf and cmps

The cmpt, cmpl, cmpf and cmps Functions

Purpose:

Compare integer, long integer, float and string data for gsort().
These are not 1ibrary functions but rather source code segments ready
to insert into your application. Often seen as code macros (C/80 can't
use code macros{.

Fenction source code:

int cmpi(n,m)
int *n,*m; Pointers to 16-bit integer data.
{ return (*n - *m); }

int cmpl(n,m)
long *n,*m; Pointers to 32-bit integer data.
{ return (*n - *m); }

int cmpf(n,m)
float *n,*m; Pointers to 32-bit float data.
{ return (*n - *m); }
int cmps(n,m)
char *n,*m; Pointers to strings, null-terminated.
{ return (strcmp(n,m)); }
Returns:

For numerical compares:

0 *n == *p (same as strcmp)
<0 *n < *m
>0 *n > *m

For string compares, the return is the same as for strcmp(), which in
turn is the same as the above, except for interpretation.

Example: Use gsort() to sort integer data.

tinclude <unix.h>
#include <stdio.h>

int q[10] = {12,1,3,-2,16,7,9,34,-90,10};
int p{10] = {12,1,3,-2,16,7,9,34,-90,10};
main()
int 1;

gsort{p,10,2,cmpi);

for(i=0;i<10;++1) printf(*%d. %d, %d\n",i,p[11,q(11);

Library Page 49

cmpi, cmpl, cmpf and cmps |

Program output

E
[=d
3

LCONOTNBWN-=O

¢« o o

e e e o o o

.

o

[-]

The pointer usage is required in gsort().
To overcome unterminated string problems, use a special cmps():

int length = 10;
cmps(n,m)
char *n,*m;

int 1i;
for(1=0;i<length;++1)
1f(n[1]-ﬂ{1%) return (n[1]-m[{]);

return 0;

The problem that this special compare overcomes is presented by
strings that are not null-terminated, but have a fixed length.

Library Page 50

comp

The comp Function

Purpose:

Compares two strings for a substring match beginning at the first
character of the first string.

Function Header:

int comp(strl,str2)
char *strl,*str2; Source strings, null-terminated.

Returns:

0 if strl extends str2 (str2 is a substring)
-1 if str2 is longer than strl
J if str2 mismatches strl at position J

Example: Find the word SAILOR inside a sentence typed by the user.

#include <stdio.h>
main(argc,argv) int argc; char **argv;

int 1,
if(argc <= 1) exit();
for(1=0;argv[11[1] 1= '\0';++i) {
1f(comp(&argv{1]1(1],"SAILOR*)==0) {
printf(*Word SAILOR found at index %d\n",);
return;

}
}
printf("Word SAILOR not found in string\n");

Notes:

o comp() is similar to the BASIC function instr(A$,B$). It takes
two arguments.

o The value of comp(abcd®,"abc*) is 0, because str2 = "abc” is a
substring of strl = "abcd”

o The value of comp(*xabcd*,"abc*) is 1 because the mismatch is
at the first string position (1, not 0).

o The value of comp(*abcd*,*abcabc”) 1is -1 because the second
string 1s longer than the first string.

Library Page 51

conout and con

The conout and con Functions

Purpose:

Conout() prints multiple-argument characters to the console device.
No re-direction. Used primarily as a debugging tool or as fast output in
graphics routines.

Con() is the driver routine for conout. It prints one character and
takes one argument.

Fenction Header:

int conout(cl,c2,...)

char cl,c2,... Characters to be printed.

int con(c)

char c; Character to be printed.
Returns:

Nothing useful. The printing is done by a standard BDOS function.

Example: Print escape codes to the 729 screen to enable inverse video
graphics characters to be displayed.

#include <stdio.h>
main()

{
conout(27,'p',27,'F"
conout('g’,'r',’a’,
q

);
R p‘.lh.'li"'cl.USC’l "lt.'lel’lsl,ltl);
conout(27,'6',27,'q');

»

Notes:

o Very low overhead. Recommended for ROM applications where the
essential functions of putchar() are required.

o The symbol conout() is defined in STDIO.H. The word conout is not
a library global symbol. Without the #define information in
STDIO.H, this function does not exist.

o The word CON is a global symbol in the library. It does not
require #define information to be accessible.

o Not to be confused with putc() or putchar(), which allow re-
direction. Conout() and con() work only with the console device.

Library Page 52

Copen _

The Copen_ Function

Purpose:

Opens streams stdin and stdout prior to the startup code which
calls the function main().

Fenction Header:
int Copen ()

Returns:
0 Always.

Exanple: Making a new Copen () to turn off re-direction.
([:open_()

return 0;

Notes:

o The provided Copen () routine opens files for streams stdin and
stdout using descriptors fin and fout, which are of cast extern
int. The file names are obtained from char *p fin,*p fout, which
were loaded with the proper pointers by the routine TFokens().

o The standard way to handle re-direction failures is to fall into
the abort exit. This is the method presently used by Copen () in
the main library. -

o See also Cexit (), which closes stdin and stdout streams during
the standard C exit() routine.

Library Page 53

core

The core Function

Purpose:

Obtains contiguous memory from the system and sets the upper bound
of the programtdata area. Aborts with an error message on failure.

Fenction Header:

char *core(n)
int n; Amount of memory requested. The maximum value
of n is 32767. See notes below.

Returns:
addr on success, addr = base address of the
cont iguous area of memory n bytes in length.

system Failure. Prints "Out of Memory* and warm boots.
Example: Get a buffer, fi11 it with nulls,

#include <stdio.h>
main()

char *p,*core();
p = core(4096); /* warm boot on failure */
filichr(p,'\0',4096);

}

Example: Read a file by re-direction into heap space, copying the heap
address to an array of character pointers. Print to console when done.

#include <stdio.h>
Tain()

int i,n;
char *p[1024];
char s{129];
char *core();
n=0;
while(getin(s,128) != EOF) {
if(n >= 1024) break;
strcpy(pln++] = core(strien(s)+1),s);

: for(i=0;1<n;++i) puts(p(il);

Notes:

o This function will work with n an unsigned integer. There is
no faflure recovery, however. The penalty is warm boot.

Library Page 54

The cos Function

Purpose:

Compute the cosine of real float value x. The value x s assumed
radians (not degrees).

Fanction Header:
float cos(x) Cosine.
float x; Float value for computation,
Returns:
number Answer between -1 and 1
No error checking for large x
Example:

#define pfFLOAT 1
#include <math.h>
#include <stdio.h>
main(argc,argv) int argc; char **argv;

char s[129];

float x;

extern int errno;

float atof();

float cos();
errno = 0;
printf("Enter a float x: "); gets(s); x = atof(s);
printf(*cos(1f) = %f, errno = %d\n",x,cos(x) ,errno);

Notes:
o The method used is cos(x) = sin(P1/2 + x).

o Use deg() and rad() for conversions.

Library Page 55

cosh

The cosh Function

Purpose:
Compute the hyperbolic cosine of real float value x.

Function Header:
float cosh(x) Hyperbolic cosine (eX + e X)/2.
float x; Positive, negative or zero argument.
Returns:
number x in range
INF x too large positive (see notes).
-INF x too large negative (see notes).
errno = ERANGE returned to flag error.
Example:

#define pfFLOAT 1

#include dmath.h>

#include <stdio.h>

main(argc,argv) int argc; char **argv;

char s[129];

float x;

extern int errno;

float atof();

float cosh();
errno = 0;
printf(“Enter a float x: *); gets(s); x = atof(s);
printf("cosh(%f) = %f, errno = %d\n" ,x,cosh(x) ,errno);

Notes:
0 Method used is cosh(x) = (exp(x) + exp(-x))/2.0.

o The value of EXPLARGE was found by solving the equation exp(x) =
1.0e39,

Library Page 56

creat, creata, creathb

The creat, creata, creatb Functions

Purpose:

Add a new file to the disk directory. The file can be referenced by
descriptor fd but not as a stream file.

Fenction Header:
int creat(name,pmode) Ascii create file
char *name; Null-terminated file name
int pmode; Unix protection mode, ignored
int creata(nane,pmode) Same as creat(), see unix.h
char *name;
int pmode;
int creatb(name,pmode) Binary create file
char *name;
int pmode;
Returns:
fd File descriptor for the opened file

-1 It failed
Example:
Create a binary file and write a buffer of raw data.
#include <unix.h>
#include <stdio.h>
main()
{
char buf(128];
int fd;
fd = creatb("JUNK",0);
if(fd) {
fillchr(buf,'\7',128);
wr iteb(fd ,buf,128);
close(fd);
}
}
Notes:
o creata() is update mode, ascii.
o creatb() is update mode binary.

o creat() is defined only in the unix.h header file.

Library Page 57

Cti1s_andcCctis

The Ct1B_Interrupt Function

Purpose:

Run a user subroutine each time ctr1-B is intercepted. Often this
routine exits to warm boot or sets an exit flag from a deeply buried
sequence of function calls. May be used in conjunction with setjmp()
and Tongjmp().

Famction Header:
int Ct18 () Invoke user subroutine manually.
char *CtTB; Storage for user subroutine address.
This address is initially set to warm boot.
Returns:

Return value of the user subroutine.

Example: Set up a break condition in a subroutine. This routine
sets up a function myctlb() to allow the user to break out of the
1/0 loop by typing ctri-B.

static int flag = FALSE;
myctrib()
{

flag = TRUE;

int fileprint()
{

char *p;
extern char *Ct1B;
p = Ct1B;
Ct1B = myctrib;
puts(“Enter ctr1-B to quit");
puts{*Printing...*);
while(flag == 0) {

if(g()) break; /* print a line */
Ctick(); /* check ctr1-B */
}
Ct1B = p;

Library Page 58

CtlB_and ctis

Notes:

o The routine CtiCk() intercepts type-aheads and puts them into
the type-ahead buffer at Cbuf. If Cmode == 1, then a break
character test is performed. Ctr1-B runs Ct18 ().

o You can manually run Ct1B (). No one ever does this, however.
The ctr1-B processor is a kind of limited interrupt, which
is enabled by the programmer and checked only when it makes
sense to check for a user interrupt.

o Ct1Ck() 1s called before each disk access for a read or write.
Therefore, Ct1B () may be called without the programmer's
knowledge.

Library Page 59

ctick

The Ct1Ck Function

Purpose:
Check for ctrl-C and ctrl-B at run time.

Fenction Header:
int Ct1Ck()

Returns:

In any case, available characters are added to the console buffer,
In Tine mode (Cmode = 1) ctrl-C causes an abort exit through

a exit(), while ctr1-B causes a jump to function Ct1B (). In
character mode (Cmode = 0 or 2) the abort keys are ignored and
processing continues. The character is echoed in Omode = 0.

Example: Check for ctr1-C while copying from stdin to stdout. Most
common re-direction is disk for stdin and line printer for stdout.

#include <stdio.h>
Tain()

int x;
while(TRUE) {
x = getchar();
if(x == EOF) break;
Ctick();
putchar(x);

Notes:

o The internal operation of CtiCk() is to call the keyboard
status routine to see if the user typed a character. If so,
then the character is read no-echo and added to the console
buffer.

o It 1s common to call Ct1Ck() during character output to
devices. During disk reads and writes, CtiCk() is called
before each disk access, automatically (see WRITE.CC).

o In character mode, a call to Ct1Ck() is the same as adding
available characters to the console buffer. No special
action is taken for ctri-C or ctri-B.

Library Page 60

cvupper

The cvupper Function

Purpose:

Converts a string to upper case only, skipping over those
characters that do not qualify for conversion.

Fanction Header:

char *cvupper(s)
char *s; String to convert, null-terminated.

Returns:

The string address s, with the characters of the string converted
to upper case, as appropriate. Only lower case a-z are converted.

Example: Convert an input line to all upper case.

#include <stdio.h>
main()

char s[129];

printf(*Enter a line of text: *);
gets(s);

cvupper(s);

printf(*UPPERcase 1ine:\n%s\n",s);

Notes:
o This function is unlikely to exist in other 1ibraries, but it
is easily written from toupper(). It is suggested that you
bury the uppercase conversion in cvupper().

o Cvupper() is an honest function, it is not a macro, and it has no
side effects.

Library Page 61

C _cmln

The C cmln Function

Purpose:

Copies the default buffer at 0x80 to the C console buffer located
at (char *)Cbuf. Also copies the running program name from the CCP
buffer area, if possible.

Fanction Header:
YOID C_cmIn()
Returns:
Nothing. Does a buffer copy.
Example: Making a new C_cmin() to disable command 1ine copying.
C cmin()
r

return 0;

Notes:

o To copy the command 1ine but leave out the copying of the
running progran name, use n=peekb(0x80) to find out the length
of the default buffer and then use strncpy(Cbuf,0x81,1+n).

0 One function of the current C cmin() is to copy the name of

currently running program from the CCP buffer. This may or may
not be successful, especially if program chaining is being used.
Also beware if the CCP size is not standard.

Library Page 62

decodF

The decodf Function

Purpose:
Decodes a file control block into a printable ASCII string.

Fanction Header:
char *decodF(fcb)

char fcb[13]; File control block section.
Returns:
(char *)p p = address of a static area in memory where

the decoded string is located.
Example: Print out the default file control blocks at 0x5C, Ox6C.
#include <stdio.h>
main(argc,argv)
int argc; char **argv;
{
char *decodF();
insert("FILEL.TXT FILE2.TXT");
printf(*File name from FCB at 0x5C = %s\n* decodF(0x5C));
printf(*File name from FCB at Ox6C = %s\n" ,decodF(0x6C));
}
Notes:

o The buffer for decodF() is re-used on each call. If you need to
keep the decoded name around for a while, then copy it to safety.

o Only the first 13 characters of the file control block are
accessed during the call.

o There s no bdos() or bios() call that simulates this function.

Library Page 63

deg

The deg Function

Purpose:

Changes float radians x to degrees.
Fanction Header: .

float deg(x) Conversion to degrees.

float x; Value in radians to convert.
Returns:

angle in degrees (a FLOAT)
Exanple:
#define pfFLOAT 1
#include <math.h>
#include <stdio.h>
Tain(argc,argv) int argc; char **argy;
char s[129];
float x;
float atof();
float deg();
printf(“Enter float x in radians: *); gets(s); x = atof(s);
printf(“deg(%f) = %f\n",x,deg(x));
Notes:
0 Method used is angle = (180.0/PI)*x.
o No error codes returned. No need to code for errno.
0 No overflow check.

0 No auto conversion to FLOAT.

Library Page 64

dsort

The dsort Function

Purpose:
Distribution sort in High-Speed Assembler. Implements Donald
Knuth's MathSort algorithm for a single digit. Multiple calls are

required to complete the sorting. Best for byte, integer, long and float
data types. Stable.

Fanction Header:

struct mathsort {

int

size, integer number of records to sort

offset; integer offset in bytes to target byte (+ or -)
char

*input, address of input table
*output, address of output table
;count; address of counter table

VOID dsort(table)
struct mathsort *table;

Returns:

Nothing. The output table is changed to reflect the new sorted
order. The actual data in memory is unchanged.

Library Page 65

dsort

Example: Sort a 1ist of long integers.

#define pfLONG 1

#include <stdio.h>

main()

{

int 1;

char *tmp;

static

struct mathsort table;

auto

char *data in[10],*data out[10];

auto

int scratch(256];

static

long ldatal] = {
9349324,213232,343243,655666,546554,
3454445454544 ,565421,324221,344343

5

long peekl();

for(1=0;i<10;++1) data in[1] = &ldata[i];
table.input = data in;

table.output = dat?d out;

table.count = scratch;

table.size = 10;

table.offset = 0;

for(i=0;i<4;++1) (

dsort(&table); /* sort one digit */
tmp = table.input; /* swap the input */
table.input = table.output; /* and output */
table.output = tmp; /* tables, then */
;+tab1e.offset; /* increment offset */
for(1=0;1<10;++1) printf("%1d\n", peekl(data in[i1));
} o
Notes:

o The order of the arguments is essential.

o The input table is an array of addresses of strings, which
need not be null-delimited. Generally, the strings are numbers.
The algorithm is stable, permitting sorts of byte, integer,
long, float and double data types. The output table is the
sorted order of the input table.

o Only one digit is processed on each call, To process a number of

digits, write a lToop which swaps the input and output tables.
See the example above for method.

Library Page 66

dsortlé

The dsortl6 Function

Purpose:

Distribution sort for 16-bit integers in High-Speed Assembler,
Implements Oonald Knuth's Algorithm D (MathSort).

Fenction Header:

struct mathsort {

int

size, integer number of records to sort

offset; integer flag, presently ignored. See notes.
char

*input, address of input table
*output, address of output table
*count; address of counter table

VOID dsort16(table)
struct mathsort *table;

Returns:

Nothing. The input table is changed to reflect the new sorted
order. The actual data in memory is unchanged. The output table
and the counter table return no information.

Example: Sort a list of integers.

#include <stdio.h>
Tain()
int i;
static struct mathsort table;
auto char *data in[10],*data out(10];
auto int scratch[256];
static int datal] = {
9324,3232,3243,5666,6554,
1 4445,4544,5421,4221,4343
unsigned peekw();
for(i=0; 1<10; ++1) data in[i] = &data[il;
table.input = data in;
table.output = datd out;
table.count = scratch;
table.size = 10;
dsortl6(&table);
for(1=0;1<10;++1) printf("%u\n* ,peekw(data in[11));

Library Page 67

dsortile

Notes:

(-]

]

The order of the structure arguments 1s essential, The routine
accepts the ADDRESS of a structure table.

The MathSort algorithm is stable. In particular, duplicates are
not moved relative to one another.

The input table is an array of addresses of integer data. The
output table is the sorted order of the input table. Since two
passes and a swap of in and out tables occurs, the sorted order
appears in the input table when the routine dsort16() returns.

The actual integer data is elsewhere in memory, since the
input array contains just the addresses of the data, not the
data itself. On return, the input array contains the addresses
of the integer data, in sorted order. The counter table and the
output table are used as scratch space, hence contain nothing
useful,

To sort 32-bit data with Dsort16(), use it once to sort the
first 16 bits, then increment all the input table pointers
by 2 and call Dsort16() again. Decrement all the input table
pointers by 2, and the input table gives the sorted order.

Source code is in 8080 assembler, Algorithm in C is given in
the source code comments. See the source archives.

Library Page 68

edata, end and etext

The edata, end and etext Variables

Purpose:

Defines end, etext, edata locations in a C program. These are
external character pointer variables.

Fanction Header:
extern char *end, *etext, *edata;
Example: Print the data locations in a C program.

#include <unix.h>
#include <stdio.h>
main()
{
extern char *end, *etext, *edata;
printf(“"end=%u, etext=X%u, edata=%u\n" ,end,etext,edata);

Notes:

i} end The next usable address after program load.
Marks the end of the file buffer area.

This address is returned by sbrk(0).

[} etext The physical end of the program text before
the file buffers and FCB buffers begin. The
address contained here is used in IOTABLE.CC
to define the file buffers. See the archives.

0 edata Same as etext for (/80 because code and data

are in the same place,

Library Page 69

errno

The errno Variable

Purpose:

Error return variable for the transcendental functions. Also used
for system error returns.

Fanction Header:
extern int errno; This variable is a global in CLIB.REL
Returns:
The system error number,
Exanple: Test for an error return after using the sine function.
#include amath.h>

#include <stdio.h>
main()

{
static float f = 1.0123;
float sin();
extern int errno;
errno = 0;
printf(*sin(2f) = %f, errno = %d\n",f,sin(f),errno);

Notes:

o Use perror() to print an error string for errno.

o The variable in CLIB.REL will be used if you don't use the symbol
errno in your program.

o A compile error will occur if you don't declare errno as extern
or as a global variable (outside any function and not static).

Library Page 70

error

The error Function

Purpose:

Prints multiple-argument strings to the console device. No re-
direction. Used primarily as a debugging tool.

Fanction Header:

VOID error(strl,str2,...)
char *strl, *str2... Source strings to be printed.

Returns:

Nothing useful. The printing is done by a direct console function
that acts through BDOS.

Exanple: Print error messages in a program that will be burned into
EPROM at a later date. Uses setjmp() and longjmp() to break out of
deeply buried control loops.

#include <stdio.h>
#include <setjmp.h>
jmp buf env(1];
r?aﬁ()
switch(setjmp{env)) {
case 0: break;
case 1: error("Error 1 from InitSystem\n"); break;
case 2: error("Error 2 fram WakePorts"); break;
case 3: error("Error 3 from MainLoop\n®,*Dead solenoid\n*);
break;
case 4: error("Error 4 from MainLoop\n",“Bad timing\n"); break;
case 5: error(“"Error 5 fram MainLoop\n","Bad robotics\n");
break;

}
InitSystem();
WakePorts();
MainLoop();

Notes:

o Very low overhead. Recommended for ROM applications where real
estate is at a premium but some of the functions of printf()
are required.

o

The symbol error() is defined in STDIO.H. The word error is not
a library global symbol.

o Not to be confused with ferror or perror.

Library Page 71

exit

The exit Function
Purpose:

Standard exit. Flushes buffers and closes the file control block to
the disk directory for stream stdout.

Fanction Header:
VOID exit()

Returns:
Nothing. Exits to warm boot.

Exanple: Use of exit().

#include <stdio.h>
main()

printf(“Standard C exit\n*);
exit();

Notes:
o Calls the routine Cexi@_(), then falls into the abort exit.

o If the Cexit () routine is the one provided, then buffer
flushing andclosing will occur for at least stream stdout.
But any other open streams will be ignored. Open files will
leave orphan disk directory entries with 0 records.

o To change the character of the standard exit requires a new
routine Cexit (). Most systems flush all buffers and close
all file contvol blocks back to the disk directory. See Cexit ()
for an example of how to re-write it to simulate such a system,

Library Page 72

exp

The exp Function

Purpose:
Compute the exponential of real float value x
Fenction Header:

float exp(x) Power with base e = 2.718 and exponent x.

float x; Positive, negative or zero argument.
Returns:

number x in range

INF x too large positive (see notes).

0 x too large negative (see notes).

errno = ERANGE returned to flag error.
Example:

#define pfFLOAT 1

#include <math.h>

#include <stdio.h>

main(argc,argv) int argc; char **argv;

char s[129];

float x;

extern int errno;

float atof();

float exp();
errno = 0;
printf("Enter a float x: *); gets(s); x = atof(s);
printf(“exp(1f) = %f, errno = %d\n",x,exp(x) ,errno);

Notes:

o Method used is exp(x) = pow(EBASE,x) where EBASE = 2.71828
base for natural logarithm, approximately.

o The error range is found by solving exp(x) = 1.0e39.

Library Page 73

expand

The expand Function

Purpose:

Expands wild card file names on the command 1line into a complete
list. The 1ist is passed to main() by the usual argc, argv[] method.

Fanct ion Header:
expand(a,b)
int *a; Address of argc variable
Usually you insert &argc
char *b; Address of array argv[
Usually you use &argv
Returns:

New argc value, old value is lost.
New table *argv[] with expanded wild cards.
Duplicates from expansion are ignored.

Example: Normal wildcard expansion in a C program. This example
displays the wildcard expansions.

#include <unix.h>
#include <stdio.h>
main(argc,argv)
int argc;

char *argv(];

int 1;
expand(&argc ,8argv) ;
for(1=0;1<argc;++1)
printf(“argv(2d] = %s\n",i,argv[i]);

Library Page 74

exp and

Example: Wildcard expansion of a command line inside a program. Commas
or blanks may separate names. Note &-operator usage and the extra
pointer char **bn,

#include <unix.h>
#include <stdio.h>
?ain()

int 13

int a;

char buf[129];

char *b[128];

char *p,*name,**bn;

char *sob(),*fnb();

b{0] = "Unused"; a = 1; p = name = buf;
printf(“Enter wildcard names: *); gets(buf);
while(*p) {if(*p == ',') *p = ' *; +ip;])
do {
name = sob(name);
if(name(0]) b[a++] = name;
p = fnb(name); 1f(p[0] == *'\0') break;
p(0] = '\0'; name = p+l;
} while(*name);
bn = b;
expandl&a,&bn);
for(i=0;i<a;++1)
printf("b[%d] = %s\n",i,bn(1]);

Example: Break a command 1ine into tokens using the tokens() routine
in the library. No wildcard expansion.

#include <stdio.h>
?ain()

int 1,a;
char buf[129];
char *b[100];

printf(*Enter a C-style command line\n: *);
gets(buf); 1f(buf[0] == '\0') exit();
b[0] = b{1] = "Not in use®;
a = tokens(b,buf);
printf("Re-direction files: %s, %s\n",b[0],b[1]);
for(i=0;i<a;++i)

printf("b[%d] = ¥s\n",i+2,b(1+2]);

Library Page 75

expand

Notes:

o It can run out of room. Uses sbrk() to get the space for the
expansions.

o Takes 600 bytes of stack space.

0 CP/M-80 lets you access the command 1ine from the default buffer,
Copy it to safety with: strncpy(buffer,129,peekb(128));

o The above won't work with re-direction because C/80 uses the
default buffer to open the < & > files before running main.

0 See also TOKENS.C and the tokens() routine for a method of
decoding a C command line.

o Complete source code for expand(). It is often the case that you
need a similar expansion function, with minor changes. Here is
food for thought:

static int nomatch(n,f,t)
:nt n; char *f[1,*t;

while(--n) {if(strcmp(fn],t)==0) return 0;} return 1;

#define MAXFILES 255 /* max number of expansions */
expand(argcp,argvp)
}nt *argcp; char **argvp;

char *fa[MAXFILES];

static int j,nf,c;

static char **v *arg *p;

char *core(),*decodfF(),*strcpy(),*index();
char *findfirst(),*findnext();

¢ = *argcp; v = *argvp; fn[0] = v[0];
for (nf=1,j=1;((nf < MAXFILES) 88 (j < c)); ++j) {
cvupper(arg=v[jl);
if(index(arg,'?') { index(arg,'**)) {
p = findfirst('\0',arg);
while (p != (char *)(-1)) {
p = decodF(p);
1f(nomatch(nf,fn,p))
strepy(fnlnf++]=core(1+strien(p)),p);
) p = findnext();

}

else if(nomatch(nf,fn,arg)) falnf++] = arg;
}
*argep = nf; fnlnf++] = -1,
v = *argvp = core(sizeof(char *) * nf);
while(nf--) v[nf] = fnlnf);

Library Page 76

fabs

The fabs Function

Purpose:
Compute the absolute value of a float number.

Function Header:

float fabs(value) Float Absolute value
float value; Float argument, 32 bits
Returns:

The absolute float value of the argument.

Exanple: Print the float absolute value of a floating point number
entered at the console.

#define pfFLOAT 1
#include <stdio.h>
main()

{
char s[129];
float f,fabs(),atof();

printf(*Enter float number f: *);
gets(s); f = atof(s);
| printf("fabs(%f) = %f\n",f,fabs(f));
Notes:

o Not a macro. But other libraries will use one. Watch out when you
write your code, and when you port it to other machines.

o There are no side effects. This is an honest function.

o The cast must appear explicitly in your program. For example, if
you use fabs(), then include a declaration of the form

float fabs();

o To print out floats using printf(), employ the header file switch
called pfFLOAT. See the example above.

o A common error is to write g = abs(f) where f,g are floats. This
has undefined results with no compile-time error reporting.

Library Page 77

fclose

The fclose Function

Purpose:

Flush the stream buffer to disk. Close the file control block to
the disk directory. Remove the stream pointer from system tables.

Fenction Header:
int fclose(fp)

FILE *fp; Open stream pointer.
Returns:

EOF On error.

0 Success.

Example: Close the stream stdout.

/* Command 1ine is A>main >foo.bar */
#include <stdio.h>
main()

printf("This line is sent to stream stdout\n");
fclose(stdout);

Notes:

o An fclose() operation will fail if the buffer flush does
not camplete due to a disk error or lack of disk space. It
can also fail due to a write-protect tab.

o An fclose() on a device sends an end of file character in
case the device requires one. This is true for the printer
LST:. It gets ctri-L.

o An fclose() on the console is a NOP.

o Streams with descriptors 252,253,254,255 are devices. They
are treated differently than files during 1/0 because there
is no buffering.

o Programs written with re-direction in force always call
Cexit () to close stdout. The close is done by fclose().

Library Page 78

fdopen

The fdopen Function

Purpose:

Open a stream file using an existing file descriptor. Applies to
disk files only. No devices allowed.

Fenction Header:
FILE *fdopen(fd ,mode)

int fd; Open file descriptor

char *mode; Mode from fopen().
Returns:

0 Open failed

fp Open worked, fp=stream pointer

Example: Create a TMP file by descriptor, then re-open as a stream.

#include <unix.h>
#include <stdio.h>
main(argc,argv)
int argc;

?har *argvl];

int fd;
FILE *fp,*fopen();
fd = creat("™P",0); /* protection mode ignored */
if(fd 1= -1) {
fp = fdopen(fd,"w");
fputs(*It worked\n",fp);
fclose(fp);
, puts("TMP created®);

else puts("Open failure on TMP");

Notes:

o In this library, all files that use file descriptor tables are
also buffered files. Do not expect this feature on other systems.

o The function fdopen() can change the access mode of the file.

o Fdopen() uses a call to freopa(). Since the latter can handle
ascii and binary mode changes, no further code is needed.

Library Page 79

feof

The feof Function
Purpose:

Tests for end of file on a stream.

Fenction Header:
int feof(fp)
FILE *fp; Open stream pointer,
Returns:
0 Not at end of file
nonzero Stream at end of file

Example: Check for end of file when using getw().

#include <unix.h>
#include <stdio.h>
main(argc,argv)
int argc;

fhar *argv[];

while(TRUE) {
1f((x = getw(stdin)) == EOF) if(feof(stdin)) break;
) putw(x,stdout);

}
Notes:

o Testing putc() is impossible, since C/80 normally aborts when it
runs out of disk space.

o Files opened for write are at end of file, unless seek() has been
used, in which case the use of feof() makes no sense at all,

o The best way to understand feof() is to study its source code:

int feof(fp)
FILE *fp;
{

static int x,fd;
extern char IOmode[]; -
fd = fileno(fp);
if(I0mode[fd]=="w’' ll (x = getcbinary(fp)) == EOF 1
(x == 26)) return'1;
ungetc(x,fp);
return 0;

Library Page 80

ferror

The ferror Function

Purpose:
Tests for a stream error, This function returns O under C/80.
Fenction Header:

int ferror(fp)

FILE *fp; Open stream pointer.
Returns:
0 Always.

Exanple: Compile Unix code under C/80.

#include <unix.h>
#include <stdio.h>
main(argc,argv)
int argc;

char *argv(];

int x;
while((x = getchar()) 1= EOF) {
if(ferror(stdout)) break;
putchar(x);
}
Notes:

o ferror() is a no-op under C/80 because no provision has been
made to survive a disk output error.

Library Page 81

fflush and uflush

The fflush Function

Purpose:

Writes all buffered data onto the disk without changing file

pointers or disturbing character 1/0 functions. Writes the current file
control block into the disk directory, but leaves the file open for 1/0.

Fenction Header:
#include <unix.h> Service is #define fflush uflush
int fflush(fp)
FILE *fp; Stream pointer for a disk file

WARNING: The header file UNIX.H defines fflush as uflush. The main
library has a function called fflush(), which does the same flush
operation, but fails to update the disk directory or check for
devices. If you want to use both, then #undef fflush and call

each by its internal library name, fflush or uflush.

Returns:
0 Success
-1 Failure

Example: Flush random file block to disk during 1/0 wait.

while(TRUE) {
if(bdos(11,0)) return getchar();
: if(dirtyblock) { fflush(fp); dirtyblock=0;}

Notes:

o The uflush() function writes the disk buffer to disk and then
the file control block to disk.

o The main 1ibrary fflush() does not check for devices. It does
not write the file control block back into the disk directory.
The symbol FFLUSH is retained for old software compatibility,

o Hew software should use UNIX.H. Direct reference to uflush()
should be avoided.

0 Under C/PM 2.2, devices 1ike the console and printer are not
files, so uflush() does not act on these devices. Devices do not
need flushing under CP/M because they are not buffered. When you
print to the console or printer, it happens a byte at a time.

Library Page 82

fgets

The fgets Function
Purpose:

Reads up to n characters from an open stream and null-terminates
the string. Breaks before n characters if end of file or a newline is
encountered.

Function Header:

char *fgets(s,n,fp)

char *s; Base address of the storage area,
int n; Max imum size of storage area in bytes.
FILE *fp; Open stream pointer.

Returns:
(char *)0 End of file and string empty.
(char *)0 Stream error and partially filled string.
(char *)s Success, base of storage area.

Example: Echo lines typed at the console until ctri-Z.

#include <stdio.h>
main()

char s[129];
while(TRUE) {
fprintf(stderr,*Enter a string or ctri-I to exit: ')
1f(fgets(s,40,stdin) == (char *)0) break;
fprintf(stderr,*%s",s);

}
Notes:

o It is impossible to tell whether a null pointer return stands for
an error or end of file,

o The array s[] may be filled with invalid data in case of an
error.

o Newlines read from the stream are appended to the array s[]. This
is different from gets(), which strips the newline on input. In
practise, it means puts() is not useful for input obtained from
fgets().

Library Page 83

*“fileno

The fileno Function

Purpose:

Returns the file descriptor for a stream.
Function Header:

int fileno(fp)

FILE *fp; Open stream pointer.
Returns:
fd File descriptor for stream fp.

In the C/80 implementation, fd is the device handle 252, 253, 254
or 255, or fd is in the range 1..MAXCHN-1, which represents the array
index which accesses the file information in IOTABLE.

Example: Use read() on an open stream fp.

#include <unix.h>
#include <stdio.h>
main()

{

char *buf,buffer[128];
FILE *fp,*fopen();
int fd,n;

fp = fopen("MYFILE*,"r");
if(fp) (

buf = buffer;

fd = fileno(fp);

n = read(fd,buf,128);

while(n--) putchar(*buf++);
) fclose(fp);

Notes:

o Use fileno() to maintain Unix System III compatibility.

o While C/80 treats streams and descriptors as the same object,
other systems do not.

0 Read() and write() use descriptors rather than streams. This

area of distinction accounts for most compile-time errors for
older C/80 source code using Unix-style compilers.

Library Page 84

fillchr

The fillchr Function

Purpose:
Fills a region of memory with a byte value.
Function Header:

char *fillchr(dest,c,n)

char *dest; Destination address.

char c; Byte value for fill.

int n; Number of bytes to fill.
Returns:

dest+n Next locatfion after fill.

Example: Fill a buffer with nulls.

#include <stdio.h>
main()

{
char *p,*fillchr();
char s[100];
p = fillchr(s,"\0',100);
\ printf(*s = %u, fillchr(s,'\0',100) = %u\n*,s,p);

Notes:

o Some libraries call this function setmem(). The ordering of
the arguments is different, however. We use the same orderin
as 1s used by strncpy() and strncat(). It looks 1ike setmen(g
has assembly language origins for an Intel CPU. It is not a
Bell Labs Unix V7 function, so let the argument continue.

o The integer n could be unsigned, because this function does
its aritmmetic using unsigned compares. For portability we
recommend restraining its argument to type integer.

o PASCAL has a function called fillchar() that is similar to

the one implemented in this library. It accounted for glowing
claims about the speed of PASCAL over C when the first BYTE
Sieve of Eratosthenes Benchmark was published (Sept, 1981).

Library Page 85

fin and fout

The fin and fout Variables

Purpose:
File descriptors fin and fout for streams stdin and stdout.

Example: Display the file descriptors for the standard input and output
streams. Unix-compatible calling sequence.

#include <unix.h>
#include <stdio.h>
main()

printf(“fin = %d, fout = %d\n",fileno(stdin),fileno(stdout));

Example: Display the file descriptors for the standard input and output
streams. Direct method.

#include <stdio.h>
n{tain()

extern int fin,fout;
| printf(*fin = %d, fout = %d\n",fin,fout);
Notes:

o This library simulates stream pointers in STDIO.H by means of
special functions fin_ () and fout ().

o The function fileno() returns a file descriptor for a given
open stream pointer.

o Descriptors fin and fout are both 0, which refers to the
console device, unless re-direction is in force.

o The naming conventions for the descriptors comes from obsolete

versions of Unix. Beware in using fin and fout when trying to
write portable code.

Library Page 86

fin and fout

The fin_ and fout_ Functions

Purpose:
Return the file descriptors for streams stdin and stdout.

Fanction Header:

int fin ()
int fout ()
Returns:
fin () The file descriptor for stream stdin
fout” () The file descriptor for stream stdout

Exanple: Define macros for streams stdin and stdout.

#define FILE int
#define stdin (FILE *)fin ()
#define stdout (FILE *)fout ()

Notes:
o The above macros are implemented in STDIO.H.

0 Meaningless statements like stdin = 0 will hopefully produce
compiler error messages.

o The fact that fin and fout are extern variables will cause
compile errors, unless they are declared properly. You can
usually use fin () and fout (), thereby avoiding the
extern declarations. -

o The functions fin () and fout () present a portable interface
across the versions of Unix, [T is best not to use these
functions at all. However, if you must, then it is better to
bury the problems in fin () and fout () than to directly
use the externs fin and Tout. -

Library Page 87

findFIRST

The findFIRST Function
Purpose:

Finds a disk file by name or wildcard file spec.
Fanction Header:

char *findFIRST (extent,f1{lename)
char extent; Extent, '\0' s normal.
char *filename; Name of file, null-terminated.

Returns:

(char *)-1 Failure

(char *)p p = address of matching file control block
taken from the disk directory. Actually, p
points into the default buffer at 0x80,

Example: Search for a wildcard file name and print the first one found.

#include <stdio.h>
main(argc,argv)
int argc; char **argy;

char *p;
char *decodF(),*findFIRST();
if(arge <= 1) exit();
if((p = findFIRST(*\0' ,argv[11)) 1= -1)
printf(*First match = Xs\n" ,decodF(p));
: else printf(*File not found\n");

Notes ;

o Decodf(fcb) decodes a file control block into a printable ASCII
file name in the usual CP/M format.

0 An extent of '?' will search all user areas,

o A file name of "*.** w11 search for all files. The question mark
wildcard also works.

o This function uses the default buffer at BOOT+0x80. In most
applications you have to copy the file control block to safety
or else use decodF() and copy the return string to safety.

0 The findFIRST() function can be simulated on other systems by

us ing makeFCB(fcb,file) and bdos(17,fcb). The latter returns the
directory entry offset (mod 32) into the default buffer,

Library Page 88

findNEXT

The findNEXT Function

Purpose:

Finds the next file name match after a call to findFIRST().
Fanction Header:

char *findNEXT ()

Returns:
(char *)-1 Failure
(char *)p p = address of matching file control block

taken from the disk directory. Actually, p
points into the default buffer.

Example: Search for a wildcard file name and print all occurrences.

#include <stdio.h>
main(argc,argv)
int argc; char **argv;

int i;

char *p;
char *decodF(),*findFIRST(),*findNEXT ();
if(argc <= 1) exit();

i=0;

p = findFIRST('\0',argv(1]);

while(p != (char *)-1) {
printf(*%s\n" decodF(p));
p = findNEXT();
+Hi;

if(1 == 0) printf("File not found\n");

Notes:

o

Decodf(fcb) decodes a file control block into a printable ASCII
file name in the usual CP/M format.

o

This function uses the default buffer at BOOT+0x80. In most
applications you have to copy the file control block to safety
or else use decodF() and copy the return string to safety.

o findNEXT () MUST follow an initial call to findFIRST() without
any intervening disk I1/0 than can disrupt the default buffer.

0 On other systems, findnext() is just bdos(18,0) or ccBOOS(18).

Library Page 89

fixfile

The fixfile Function

Purpose:

Inserts drive name, file name and extension defaults into a string
that contains a supposed file name. Does not process wildcards.

Fanction Header:

YOID fixfile(filename,pattern)

char *pattern; Pattern to be used to fix the
file name,
char *filename; Name of file, null-terminated.
Must be large enough to receive
the fix.
Returns:

Nothing. Area assigned to the filename is over-written.
Example: Fix a file name entered by the user.

#include <stdio.h>
Tain()

char *p,s[129],t[129];
printf(“Enter a file name: ");
gets(t);
strepy(s,t);
fixfile(s,p="A:");
printf(“pattern = %s, fixed file name = %s\n",p,s);
strcpy(s,t);
fixfile(s,p="B:.C*);
printf(“pattern = %s, fixed file name = %s\n",p,s);
strcpy(s,t);
fixfile(s,p="A:MYFILE.TXT");
printf(“pattern = %s, fixed file name = %s\n",p,s);

o A null file name will cause the pattern to be used as the
complete file name - the pattern is the default file name.

o If the pattern contains a drive spec and the user input does not
then the file name is fixed: the drive spec is inserted. A
similar action is taken for the other two fields: file name and
extension, If the pattern contains a blank field, then no fix is
done to the user file name.

o To use fixfile to add a default extension of .COM, use the
pattern ".COM". In this case, the user is forced to add the drive
name and the file name. The extension .COM will be appended by
fixfile if the user entered no extension.

Library Page 90

floor

The floor Function

Purpose:

Compute float floor, the largest integer less than or equal to the
given number. For example, floor(-1.1) = -2 and floor(1.1) =1,

Fanction Header:
float floor(f)

float f; Float argument.
Returns:
g Where g is a whole number, signed,

with g <= f and f < g+l,
Example:

#define pfFLOAT 1

#include <math.h>

#include <stdio.h>

main(argc,argv) int argc; char **argv;

{

char s[129];

float f;

float atof();

float floor();
printf(“Enter float f: *); gets(s); f = atof(s);
printf(*floor(xf) = %f\n",f,floor(f));

Notes:

o No error codes returned. No need to code for errno.

o

Floor() does not truncate. For x > 0, truncate, but for
x < 0 subtract one and truncate.

o No overflow check.

o No auto conversion to FLOAT.

Library Page 91

fmod

The fmod Function

Purpose:

Solves for float f in the equation x = k*y + f such that x*f >= 0

fabs(f) < fabs(y), for some long integer k.
Fanction Header:
float fmod(x,y)

float x,y; Arguments x, y as above,
Returns:
f As computed above, a remainder (not a modulus).

For this float library, k = x/y and f = x - k*y.
Example:

#define pfFLOAT 1

#include <math.h>

#include <stdio.h>

Tain(argc,argv) int argc; char **argv;

char s[129];

float x,y;

float atof();

float fmod();
printf(“Enter float x: "); gets(s); x = atof(s);
printf(“Enter float y: *); gets(s); y = atof(s);
printf(“fmod(%f,%f) = %f\n",x,y,fmod(x,y));

Notes:
o No error codes returned. No need to code for errno.
o No qverf1ow check.
o No auto conversion to FLOAT.
o Fmod() works because the float library converts to integer by

truncation. If it didn't, then it would be much more difficult
to write.

Library Page 92

’

fab

The fnb Function

Purpose:

Skips over non-blank characters to Jocate the first blank. Stands
for Find Next Blank. Blanks are defined by isspace().

Fenctfon Header:

char *fnb(s)
char *s; String, null-terminated.

Returns:

The address of the null terminator in the string, or the address
of the first blank character. Blanks are defined by isspace().

Exanple: Find and print the first word in a line of text.

#include <stdio.h>
‘main()

{
char buf[129];
char *s,*t,*sob(),*fnb();

printf(*Enter a line of text: *);
gets(buf); s = sob(buf); t = fnb(s);

while(s<t) putchar(*s++);
putchar(*\n');

Notes:

o This function is almost always used in conjunction with sob(),
in order to fsolate tokens in a line of text.

o High-overhead functions 1ike scanf() can often be avoided in
a portable way by using sob() and fnb().

o Both sob() and fab() return the address of the null delimiter
of the string in case the character class check ing runs off the
end of the string.

o See also the STRINGS PACKAGE for useful string utilities, all
in portable C.

o The source code for fnb():
char *fnb(s) char *s;

{
while(*s 1= EOS &% isspace(*s) == FALSE) ++s; return s;
}

Library Page 93

fopen_ - C/80 Standard fopen

The fopen Function for C/80

Purpose:

Opens a device or buffered file for 1/0 as a stream using the mode
conventions in the Software Toolworks C/80 library.

Fenction Header:

#include <stdio.h>
FILE *fopen (file,mode)

char *file;” Null-terminated file name.
char *mode; Mode string. Options:
“r* Read only. Must exist.
w" Write (or read/write/seek)
“u" Update. Must exist.
“rb" Binary “r*
“wb* Binary "w"

"ub® Binary "u"
WARNING: Use UNIX.H to get modes "r+" “w+",*a","a+". The above
function is low-level. It matches usage in C/80 programs that
use the Software Toolworks fopen().

01d C/80 code that uses fopen() should compile and 1ink without
change, New source code should use the symbol fopen .

Returns:

(FILE *)0 Failure,
(FILE *)fp File pointer on success.

Example: Open a file for read only to see if it exists.
#include <stdio.h>
main()
FILE *fp,*fopen ();
if(fp = fopen (*TMP","r"))
puts(*File TMP exists");

else
puts(*File TMP does not exist®);

Library Page 94

fopen - C/80 Standard fopen

Hotes:

o An fopen () operation will fail if 10ch[] does not have an
empty sTot. There are 4 devices LST:,CON:,RDR:,PUN: plus
MAXCHN-1 files (usually 6). The macro nfiles can be set
to less than MAXCHN-1, but the number of slots is fixed.

o Devices do not require an fopen (). If you know the file
descriptor, then simply read/write to that stream, Streams
with descriptors 252,253,254,255 are devices.

o If nfiles = 3 and MAXCHN = 7 and you try to open file #4,
then fopen () has to call sbrk() to get space for the file
control bTock and the file buffer. This can fail. It can
also succeed and fragment the heap, because the sfree()
function won't free up a file buffer.

0 Under Bell Labs Unix, a file descriptor fd is related to
the stream fp by fd = fileno(fp).

o

The C/80 fopen () is more 1imited than the general fopena()
and fopenb() functions, whieh also allow append. Use UNIX.H
to access the latter.

o To use more than 6 files, you have to re-compile IOTABLE.CC

and put the new IOTABLE.REL into the library or else link
in I0TABLE.REL as a separate module.

o In the C/80 library, read() and write() communicate with

files only and operate on quanta of 128 bytes. If you
use UNIX.H, then all the rules change. See read() and

write() for details plus UNIX.H.

o For safety, use only getc() and putc() when operating on
devices CON:, LST:, ROR:, PUN:. The resulting code is much
more portable and substantially easier to debug.

o A call to fopen () in mode "w" creates a new file if it does
not exist. If 1T does exist, then it is erased from the disk
directory and a new file is created.

o A call to fopen () in mode "u® opens the file in "r" mode and
then changes its flag to "u®. So files opened for update must
already exist. Generally, this is the mode used for random
files using seek(). Such files are read/write.

Library Page 95

fopen, fopena

The fopen, fopena Functions

Purpose:
Unix Ascii File fopen() implemented for C/80.

Function Header:
FILE *fopena(name,mode)
char *name; Ascii file name, null-terminated
char *mode; Mode string, see below
Returns:
(FILE *)0 Open failed
(FILE *)fp Open worked, fp=stream pointer

Example: Open a file for append, creating it as necessary, ready to
write on the end.

#include <unix.h>

#include <stdio.h>
main()

{

FILE *fp,*fopen():
fp = fopen(*MYFILE","a+");
if(fp) {

fputs(“This goes on the end\n*,fp);

: fclose(fp);

}

MWARNING: In UNIX.H we make this definition:
#define fopen fopena

Both fopena(), fopenb() are honest functions. See FOPENB.C for
details about fopenb().

Library Page 96

fopen,fopena

Notes:

o Use of this function requires seekend() which adds about 300

bytes to the object code size.

o Unix does not support binary modes. The Unix Modes are

r,w,a,r+,wt,at as follows:

r open for read, file must exist

W open for write, any existing file
with the same name is truncated

a open for append, add onto end of
an existing file or create a new one.

r+ open for reading and writing starting
at the beginning of the file. The file
must already exist.

w+ open for reading and writing starting
at the beginning of the file. The file
is truncated 1f it already exists, or
created if it does not.

a+ open for reading and writing starting
at the end of the file. The file is
created 1f it does not already exist.

For maximum portability, use stub functions fopena and fopenb for
Ascii and Binary opens. These functions present a portable
interface to most libraries.

Binary modes are supported by both fopen() and fopena() 1ibrary
functions. However, the mode string method will cause grave
portability problems. The following mode access strings will
work. However, it is recommended that you use fopenb() to achieve
the desired result. '

rb Binary mode for r (existing file, read binary)

rb+ Binary mode for r+ (existing file, update binary)
wb Binary mode for w (write bgnary)

wb+ Binary mode for w+ (overwrite binary update)

ab Binary mode for a (create or binary append)

ab+ Binary mode for a+ (create or append, binary update)
u Same as r+

ub Same as rb+

Librarngage 97

fopenb

The fopenb Function

Purpose:
Binary File fopen() for C/80. Not a Unix standard function,
Fanction Header:

FILE *fopenb(name,mode)

char *name; Null-terminated file name

char *mode; Mode string. see fopen().
Usually *r*, "w", "a".

Returns:
0 Open failed
fp Open worked, fp=stream pointer

Example: Open a binary file for read, count all the carriage returns.

#include <unix. h>
#include <stdio.h>
main()

int x,n;

FILE *fp,*fopenb();
fp = fopenb(“MYFILE",'r)
n=20;
if(fp) {

whﬂe((x = getc(fp)) != EOF) {
if(x == *\r') +;

: putchar(x);

fclose(fp);
, printf("\n%d carriage returns\n“,n);

}
WARNING: In UNIX.H the following definition is made:
#define fopen fopena

Note that fopena(), fopenb() are honest functions and not macro
definitions.

Library Page 98

fopenbd

Motes:

o Use of this function requires seekend() and its corresponding
overhead of about 300 bytes.

o Unix does not support binary modes. The Unix Modes are
r,w,a,r+,w+,a+, See fopena.c.

o For maximum portability, use the functions fopena() and fopenb()
for Ascii and Binary opens. These functions present a portable
interface to the various modes.

o Binary modes are supported by both fopen() and fopena() 1ibrary

functions. However, mode string usage differs across compiler
libraries. To be safe, use fopenb().

Library Page 99

fprintf

The fprintf Function
Purpose:

Outputs formatted data to an open stream using a control string and
an appropriate argument 1ist of variable length.

Fanction Header:

fprintf(fp,control,argl,arg2,...);

FILE *fp; open stream

char *control; control string, see below

argl,arg2,... appropriate arguments,

8, 16 or 32-bit data, see below

Returns:

Nothing.

Example: Print an Ascii chart in Decimal, Octal, Hex, Binary.

#include <stdio.h>
?ain()

int 1;
for(1=0;1<128;++1{)
fprintf(stdout,*%-3d %030 %02x %016b\n",i,i,i,1);

Notes:

o Syntax and usage follows printf() exactly. See printf() for all
the tricks.

o In this 1ibrary, fprintf() is supplied in two versions. The
fast version lacks some of the features found in the denser
version for longs and floats. Both versions support multiple
arguments.

o Fprintf() 1is not recursive. You cannot do something 1ike

fprintf(stdout,"%s*,f(s)) where f(s) calls sprintf(). Across
Tibraries, such coding appears to be non-portable.

Library Page 100

fputs

The fputs Function

Purpose:

Prints a null-terminated string to an open stream. Writes all
characters in the string, except the terminating null.

Fenction Header:

int fputs(s,fp)

char *s; Source string base address
FILE *fp; Open stream pointer
Returns:
1] Operation completely successful.
EOF Error occurred.
Example:

#include <stdio.h>
main()

{
char s[129];
fprintf(stderr,"Enter a string: *)s

gets(s);
fputs(s,stderr);
, fputs(*\n",stderr);
Notes:

o A newline is NOT appended, as is the case for puts().

o If the string is void, then no character is output and 0 is
returned. If an error occurs or End of Media is detected on the
output file, then EOF is returned.

o Unfortunately, the C/80 standard under CP/M is to bail out
to the system when an output error occurs. This is because
CP/M cannot gracefully handle a full disk situation.

o The standard for fputs() requires that some character other
than EOF be returned if the operation succeeds. We chose 0,
rather than the last character output by putc(), in order to
avoid problems with sign extension.

Library Page 101

fread

The fread Function
Purpose:

Transfers bytes from a stream file to main memory. Move bytes in n
packets of size s.

Fanction Header:

int fread(buff,s,n,fp)

char *buff; Buffer of data

int s; Size of each data element

int n; Number of elements

FILE *fp; Stream pointer, open stream
Returns:

n The number of packets of size s that

were actually transferred.
0 Error, including end of file

Example: Read 10 long integers into an array.

#include <unix.h>
#include <stdio.h>
Tain()
auto
long n1[10];
FILE *fp,*fopenb():
fp = fopenb(“LONGDATA.DAT","r");

if(fp) {
fread(nl,s1zeof(long),10,fp);
fclose(fp);
}
Notes: :

o Use feof() to distinguish a disk error from end of file.

o Useful for reading in more than 64k without the use of a program
Toop.

o The primitive read() is used implicitly, but all Unix re-
direction is in force, because of the explicit use of getc().

o fread() 1is slower than the primitive read().

o The UNIX.H definition of read() is reada(), which does slow,
correct Unix 1/0.

Library Page 102

free and cfree

The free and cfree Functions

Purpose:

Free() releases memory assigned by malloc(). Cfree() is a synonym
often used with calloc().

Fanction Header:

int free(a)
char *a; Character pointer to contiguous area
obtained from malloc().

int cfree(a)
char *a; Character pointer to contiguous area
obtained from calloc().

Returns:

0 if the request to free the area was honored
-1 if the request failed

Example: Get 2048 bytes from malloc(), then free it.

#include <unix.h>
#include <stdio.h>
?etmem()

char *p;

p = malloc(2048);
if(p == (char *)0) puts(*Request failed");
else

l free(p);

Structure used by malloc(): The following 4-byte header appears just
before the base address returned by malloc(). It is used by both
malloc() and free(), so be careful not to corrupt it.

struct block {

struct block
*nxtblk;

uns igned
siz;
IH
Notes:
o Code for free() derived from K&R(1978), pp 174-177.

o Brk() and Sfree() don't know about malloc() or free().

Library Page 103

freopen,freopa

The freopen, freopa Functions
Purpose:

Substitutes a new file for an open stream. The name and access mode
may be changed during the call.

Fanction Header:

FILE *freopen(name, mode, fp)
FILE *freopa(name, mode, fp)

char *name; File name, null-terminated
char *mode; Mode "r", "w", “a", see below
FILE *fp; Stream pointer, open stream

MARNING: In UNIX.H the following definition is made:
#define freopen freopa

The function freopa() 1s an Ascii re-open function. It 1is not
supposed to implement binary I/0. The binary re-open function is called
freopb().

Example: Re-assign stream stdout to a file at run time without using
re-direction on the command line. This example appends a fixed output
file each time it runs.

#include <unix.h>
#include <stdio.h>
?ain()
extern int fout;
FILE *fp,*freopen():
fp = freopen(*OUTPUT*,"a"*,stdout);
fout = fileno(fp);
} printf("This message should go to file QUTPUT\n"*);

Motes:

o Always closes the existing stream before the re-open. This
function does not do binary opens. See freopb().

o Descriptors fin and fout are fixed as required.

o It so happens that this particular freopa() can handle 3-char
mode strings and hence binary opens. However, for maximum
portability, use freopb().

o There is no way to re-assign the descriptors fin and fout to
reflect stdin and stdout changes without going through the
process in the example. This is one of the very few places where
the Unix V7 standard is violated.

Library Page 104

freopb

The freopb Function

Purpose:

Substitutes a new file for an open stream. The name and access mode
may be changed during the call. The new open is done in binary mode.

Famction Header:
FILE *freopb(nane, mode, fp)
char *name; File name, null-terminated
char *mode; Mode string "r*, "w", "a“
FILE *fp; Stream pointer, open stream

MARNING: In UNIX.H the following definition is made:
#def ine freopa freopen

The functions freopen and freopa are Ascii re-open functions. They
cannot implement binary.

Exanple: Re-assign stream stdin from a command line re-direction
argument. This example reopens stdin as a binary file so we can read
characters without CR/LF translation. The example counts the number of
CR/LF pairs.

#include <unix.h>

#include <stdio.h>
main()

{
extern int fin;
extern char *p fin;
int x,y; -
FILE *freopb():
if(p fin == (char *)0) exit();
fin = fﬂeno(freopb(p_fln,"r‘,stdin));

y =03
while((x = getchar()) 1= EOF && x 1= 26) {
1f(x == '\r' 8& getchar() == '\n') +¥y;

}
printf(*File %s contains %u lines\n® ,p_fin,y);

The descriptor fin and the file name pointer p fin are special to
this library. It is here that we see some real differences between Bell
Labs Unix V7 and the present upgrade from Unix V3. However, the use
being made is not portable to Unix anyway - binary 1/0 is not featured.

Library Page 105

freopb

Notes:
0 Always closes the existing stream before the re-open.
o File descriptors fin and fout are fixed as required.

o This function does binary opens. See freopen() for Ascii
re-opens.

o There is no way to re-assign the descriptors fin and fout to
reflect stdin and stdout changes without going through the
process in the example. This is one of the very few places where
the Unix V7 standard is violated. See also freopen, freopa.

Library Page 106

frexp

The frexp Function

Purpose:

Splits x into x = f*(radix**n) where n is an integer and the value
of f satisfies 0.5 <= f < 1.0. The value of radix is 2 for this 1ibrary.

Fanction Header:

float frexp(x,nptr)

float x; Float to be split into mantissa &
exponent.
int *nptr; Where to store the integer exponent.
Returns:
f The fraction, a FLOAT,
n via *nptr = n;
Exanple:

#define pfFLOAT 1
#include <math,.h>
#include <stdio.h>
?ain(argc.argv) int argc; char **argv;

char s[129];
int n;
float x,f;
extern int errno;
float atof();
float frexp();
errno = 0;
printf(
"frexp(x,nptr) splits float x into mantissa & exponent\n®*);
printf(“Enter a float x: "); gets(s); x = atof(s);
f = frexp(x,&n);
printf(“frexp(f,nptr) = %f, *nptr = %d, errno = %d\n",
: x,f,n,errno);

Notes:
o The float exponent in this library 1s r = ((int)255 &
(int)x.c[3]) - (int)128, where the float is expressed as a union
{ char c[4]; float f; } x. The float library is radix 2,

o There is always a better way to do this calculation based on
knowledge of the float representation.

Library Page 107

fscanf

The fscanf Function

Purpose:
Parses formatted input text from a specifed open stream.
Function Header:

tinclude <stdio.h>
int fscanf(fp,control,sargl,sargz,...)

FILE *fp; Open stream pointer
char *control; Control string, see below
&argl,darg2,... Appropriate arguments

See below for rules.
Returns:

The number of successfully parsed arguments. An error occurred
if the number returned does not match the number of arguments
following the control string. C/80 requires that fscanf() be
enclosed in parentheses in order to check the return value, i.e.,

i = (fscanf(fp,"%d*,8x)); RIGHT WAY
rather than
1 = fscanf(fp,"%d",4x); WRONG WAY

Example: The following reads numbers from a file entered on the
command line until either a data file error occurs or end of file is
reached.

#include <stdio.h>
main(argc,argv)
int argc;

char **argyv;

FILE *fp,*fopen();
int x;
if(argc <= 1) exit(0);
if((fp = fopen(argv1],*r*)) == (FILE *)0) {
puts(“Open failure"); exit(0);

while((fscanf(fp,"%d",&x))>0) printf(“Zd\n"*,x);

Library Page 108

fscanf

Notes:

o The scanf family of functions accepts only addresses for its

argument list. To error-check coding, verify that each argument
has the address operator & as a prefix, or else the argument is
a pointer (hence already an address).

The converted values are stored at the given addresses in order
left to right. Skips in the control string do not have an
argument so the:argument count may not match the conversion
count. -

Short counts may hang the run-time package. Overly abundant
counts will leave variables unfilled at run time.

Always check the return of fscanf() to see if matches the
expected value, It is easy to program infinite loops using
fscanf().

€/80 and its multiple-argument kludge cause us to write
parentheses around fscanf() in order to recover the returned

value. For example,
1f((fscanf(fp,"%d",&4x)) > 0)
will not work under C/80 with the extra parentheses removed.

To turn on float or long libraries for use with fscanf(), use
the appropriate switches:

#define sfLONG 1 /* turn on long fscanf */
#define sfFLOAT 1 /* turn on float fscanf */

The compiled code will change in size according to how much of
the float and long libraries are actually used.

Library Page 109

fseek

The fseek Function

Purpose:

Positions the read/write pointer in an open file. Has no effect on
devices like the console or printer,

Fanction Header:
int fseek(fp,offset,position)
FILE *fp; Stream pointer, open stream
Tong
offset; Long integer offset from position
described below, Offset can be
negative,
int
position; 0 = Beginning of file
1 = Current position in file
2 = End of the file
Returns:
0 It worked
-1 It failed

Example: Seek to the last record of a CP/M file that was opened in
binary mode.

#include <unix.h>
#include <stdio.h>
main(argc,argv)

int argc; char **argv;

int x;
FILE *fp,*fopenb();

if(argc <= 1) exit():
fp = fopenb(argv(1],"r");
if(fp) {
if(fseek(fp,-128L,2) == 0) {
puts(“seek worked");
: while((x = getc(fp)) != EOF) putchar(x);

else
puts(“Bad seek");

}

WARNING: Numbers 1ike 128 are 16 bits whereas 128L is 32 bits. Look
out for stack misuse with functions 1like fseek.

Library Page 110

fseek

Notes:

0 Requires the long/float library in order to be used. This has
been automated through the header file STDIO.H. If it doesn't
work, then use #define mathlib 1 to get the required library
search.

o The largest file possible under CP/M-80 is 65536*256 = 16777216
bytes.

o The second argument of fseek() is a long, 32 bits. The most
common usage error is to write in a small number not cast
as a long integer. In the example we used -128L. To use -128
instead is a serious error, as it causes the stack to be off
by 16 bits. Note that the error would not occur if we used
a variable for the second argument or if the number used was
larger than 32767.

Library Page 111

C/80 Standard ftell and ftellr

The C/80 Standard ftell and ftellr Functions

Purpose:
Reports the position of the file pointer for an open stream.

Fenction Header:

int ftell(fp)
FILE *fp; Open stream pointer

int ftellr(fp)
FILE *fp; Open stream pointer

Returns:

- ftell: Byte count from the beginning of the file, or for files
over 64k bytes, the position of the file pointer in the
current sector. -

ftellr: Number of bytes from the beginning of the file divided by
256 (number of whole 256-byte sectors),

WARNING: The header file UNIX.H re-defined ftell to be ftellu,
which returns a long integer. The above functions are primitives
that are used by ftellu. For future compatibility, try to use
the long integer return of ftellu (or ftell with UNIX.H). :
Example: Print the file pointer position for an open stream.
VOID report(fp) FILE *fp;
{
- int 1; unsigned amt,ftell();

amt = ftellr(fp);

if(amt < 256) { /* then ftell gives byte count */

) printf("Pointer at byte %u\n*,ftell(fp));

else {
printf(“Pointer at sector %u, byte %u\n",amt,ftell(fp));

Notes:

o The Bell Labs Unix V7 compatible 1ibrary CLIBU.REL uses ftellu()
which returns a long integer answer. If you do NOT include the
header file UNIX.H, then the standard C/80 ftell will be used.

o If you use UNIX.H, then ftell, ftellr and ftellu will appear in

the symbol table from M30/L80. Your code will reference ftell()
but actually use ftellu().

Library Page 112

ftell and ftellu

The ftell and ftellu Functions
Purpose:

Reports the position of the read/write pointer in an open disk
file. Not for devices 1ike the console or printer.

Fanction Header:

#include <unix.h>
long ftell(fp)

FILE *fp; Stream pointer, open stream
Returns:
-1 Failure
p long integer offset of read/write pointer

from the beginning of the file.
WARNING: In UNIX.H is made the definition
#define ftell ftellu
This definition allows you to use the Unix calls with standard long
integer arguments. If you want to mix and match, then undo the
definition and use ftellu().
Exanple: Report the position in an open file,

#include <unix.h>
#include <stdio.h>
findPosition(fp)
FILE *fp;

{

long ftell();

printf(*Position of file is %lu\n", ftell(fp));

Notes:

o Requires the long/float 1ibrary in order to be used. This is
autamated in STDIO.H

o The largest file possible under CP/M-80 is 65536*256 = 16777216
bytes.

o You must make a declaration for ftel1() as in the example. The
header files and the 1ibrary cannot do it for you.

o It is a disaster to use ftell() returns as an integer. The

return conventions for integers versus long are assumed to
be different. It is an accident if it works at all.

Library Page 113

ftoa

The ftoa Function

Purpose:

Converts a 32-bit internal format floating point number into a
null-terminated string of decimal digits. Decimal point, precision
and exponent field options exist. SPECIAL C/80 MATHPACK FUNCTION.

Function Header:

ftoa(how,pr,f,s)

char how; Conversion 'E', 'F', 'e', 'f', ‘g’

int pr; Precision, 6 is K&R default.

float f; Float to be converted to ASCII.

char *s; Storage string for digits and exponent.
Returns:

Storage s is filled with converted digits and exponent field,
null-terminated. This area must be large enough to hold the
conversion.

Example: Get a float from the console and print without using
the printf() family of functions.

#include <stdio.h>
main()

{
float f,atof();
char s[129];

fputs(“Enter a float: *,stderr);

gets(s); /* e.g., s="23e-1" */
f = atof(s); /* f is 4 bytes */
ftoa('f',6,f,s); /* e.g., $="2.300000* */
: fputs(s,stderr); .
Notes:

0 Floats are 32 bits (4 bytes), Storage of a float is documented
in the C/80 Mathpack. See also the Transcendental function
library for information about the floating point exponent.

o

This function differs for every float library implementation.
The best way to avoid facing the rules is to use sprintf().

0 The source for ftoa() is provided in assembler with The Software

Toolworks MathPack.

Library Page 114

furite

The fwrite Function

Purpose:

Transfers bytes from main memory to a stream file. Move bytes inn
packets of size s.

Function Header:

int fwrite(buff,s,n,fp)

char *buff; Buffer for data

int s; Size of each data item

int n; Number of data items

FILE *fp; Stream pointer, open stream
Returns:

n The number of packets of size s that

were actually transferred.
0 Error, including end of file

Example: Write a buffer of 4096 bytes to an output file. Return number
of bytes actually written.

#include <unix.h>
#include <stdio.h>
int dowWrite(fp,buf)
FILE *fp;

?har buf[4096];

int x;
x = fwrite(buf,1,4096,fp);
return (x);

WARNING: Some libraries on other target systems foolishly write
this function to some unknown standard that returns less than
the number of packets requested, even though the write did not
fail. They break on terminators 1ike carriage return and line-
feed. Beware as you try to transport this particular function.

Notes:

o Useful for writing out more than 32k without the use of a program
Toop.

o The primitive writea() is used implicitly, but all Unix re-
direction is in force, because of the explicit use of putc().

Library Page 115

getatt

The getatt Function

Purpose:
Get the CP/M file attributes, which are:

ATTRIBUTE SYMBOLS
NAME USED
1. Read-only $R/0 or $R/W
2. System $SYS or $DIR
3. Archive Used by some backup

programs, but not
by CP/M at present

Function Header:
int getatt(name) CP/M coded attribute, see below
char *name; File name, usual CP/M conventions
Returns:
-1 File not found, otherwise
n Coded attribute word, 0 <= n <= 7,
where:

n&l = Read-only attribute

n&2 = System attribute
n&4 = Archive attribute

Example: Print the attributes of a CP/M file entered on the cammand
line.

#include <unix.h>

#include <stdio.h>

main(argc,argv) int argc; char **argv;
{

int n;
if(argc <= 1) {
puts(“Usage: A>main filename®); exit();

if((n = getatt(argv[1])) == -1) {
puts(*File not found"); exit();

printf("Attributes for file %s\n",argv[1]);
puts((n&)1 ? "$R/0" : "$R/W");

puts((n&2) ? “$sys" . “$DIR");

puts((n84) ? “Archive set" : "Archive not set");

Library Page 116

getatt

Notes:
o The name is a normal C string with NULL delimiter.

o To decode the attributes on return, use the logical AND operator
& as outlined in the example above.

Library Page 117

getbyte

The getbyte Function
Purpose:

Reads a byte from the console, no-echo, even though going through
the standard C library function getchar() to obtain the character.

Fanction Header:

int getbyte()
Returns:

X The byte read from the keyboard, no translation, or from
open stream stdin, in which case translation can occur.

Example: Get a yes or no answer from the user.

#include <stdio.h>
main()
while(TRUE) {
fputs(“Do you want to continue? * stderr);
1f(toupper(getbyte()) 1= 'Y') break;
: puts(*YES");

puts(*N0*);

Notes:

[=]

Below is the source code for getbyte(). It does a direct BIOS
call via getchar() to obtain the character without console echo
and without any kind of translation. The reason for the BIOS call
is to allow NULL to be read as a character (CP/M function 6
disallows NULL).

int getbyte()
{

extern char Cmode;
int x,y;
y = Cmode; Cmode = 2;
x = getchar();
Cmode = y;
return x;

0 The function getbyte() gets characters from files under stdin
re-direction. The console 1/0 will be the same, but character
translation will depend upon the open mode of the file. See
freopen() for ways to invoke binary mode. See the Binary Flags
section and GC BIN for other ideas.

Library Page 118

getc

The getc Function

Purpose:

Reads the next character from an open stream. Not a macro.
Function Header:

int getc(fp)

FILE *fp; Open stream pointer

Returns:
-1 If end of file was reached. We define EOF to be -1.
c Next character from stream fp, on success.

Exanple: The following reads characters from a file entered on the
command line until either a data file error occurs or end of file is
reached. Each character is printed as it is read.

#include <stdio.h>
main(argc,argv) int argc; char **argv;

int x;
FILE *fp,*fopen();
if(arge <= 1) exit(0);
if((fp = fopen(argv[1],*r")) == (FILE *)0) {
puts("Open failure"); exit(0);

}
while((x = getc(fp)) I= EOF) {
printf("%c”,x);

}
Notes:

o Expect getc to be a macro in most C 1ibraries. It's not in this
one.

o Under CP/M, the BIOS will complain on a disk read error, which
is the only possibility besides end of file. In this case, the
system will k111 the running program.

0 A return of -1 under C/80 means that end of file was encountered.
Other C systems will require that you check EOF with feof(). The
RDR: device never returns EOF, but CON: does in line mode.

o Beware of mixing file descriptors and stream pointers. While
€/80 will buy it, other systems won't. The connection is
fd = fileno(fp), where fd is an integer and fp is a stream.

o Both CON: and RDR: devices are recognized. The RDR: device does
not translate characters, but CON: does unless in binary mode.

Library Page 119

getcbinary

The getcbinary Function
Purpose:

Reads the next character from an open stream in binary mode. Not a
macro. Recognizes CON: and RDR: devices. Not a K&R standard function.

Fenction Header:

int getcbinary(fp)

FILE *fp; Open stream pointer
Returns:
-1 If end of file was reached. We define EOF to be -1.
Disabled for CON: and RDR:.
[Next character from stream fp, on success, with no

translation of any kind.

Example: The following reads characters from stdin in binary mode until
EOF or ctrl1-Z {is encountered. The total carriage return count is
reported. .

#include <stdio.h>
main(argc,argv)
int argc;

char **argv;

int x,y;

y =05
while((x = getcbinary(stdin)) != EOF && x != 26) {
1f(x == "\r') +4y;

}
printf(*%d returns\n",y);

Notes:
0 Both CON: and RDR: devices are recognized.

0 A return of -1 under C/80 means that end of file was encountered.
The RDR: device never returns EOF, but CON: does in line mode. In
binary mode, CON: returns the characters entered without
transiation.

o For portability, do not use this function. It is a library

internal documented for your convenience. It is not supported on
most systems.

Library Page 120

getchar

The getchar Function

Purpose:

Reads the next character from the standard input stream stdin. Not
a macro in this library.

Fenction Header:
int getchar()

Returns:
c Next character from stream stdin, on success.
EOF If end of file was reached. We define EOF to be -1.

The end of file character for the console s ctri-Z.
For files (under re-direction), it is ctr1-Z or EOF.

Exanple: The following reads characters from the console until end of
file is reached. Each character is printed as it is read.

#include <stdio.h>
main()

X3
while((x = getchar()) t= EOF) {
} printf(*%c",x);

Motes:

o

Expect getchar to be a macro in most C libraries. It has no side
effects.

o Under CP/M, the BIOS will complain on a disk read error, which
is the only possibility besides end of file. In this case, the
system will ki1l the running program unless you insist upon
continuing with the error.

o A return of -1 under C/80 means that end of file was encountered.
Other C systems will require that you check EOF with feof().

o A normal use of getchar() may use the companion function
ungetc(x,stdin). This function puts the input value x back onto
the stream so that the next getchar() call receives x.

o getchar() reads from stream stdin, which may in fact be a file
due to re-direction. For console properties see CHmode() .

o Binary console mode (Cmode < 1) turns off editing, ctr1-B
processing, CR/LF transiation and EOF return for ctri-Z.

Library Page 121

getddir

The getddir Function
Purpose:

Fills an array char *p[] with file names and sizes, using a
wildcard mask to direct the file selection. Total memory use for 255
files is about 5k bytes. The programmer handles memory management.

Function Header:

int getddir(s,p,nmax)

char *s; Wildcards for file name.
char *p(]; pli] points to 17-byte area.
int nmax; Size of array p[].
Retwrns:
n Number of files processed. n <= mmax.
pl11[0] - p[i1(14] Null-terminated filename in special
format “A:FILENAME.EXT".
pli1(15] Last extent, 0-255.
plill16] Number of records in the last extent.

Example: Print a sorted directory with file sizes for any mixed
combination of wildcards across any number of disk drives.

#define RECLEN 17

#include <stdio.h>

main(argc,argv) int argc; char **argv;
{

static char *w; static int 1,j,k,n; static unsigned total;
char s[1291,*p[2551, q[255*RECLEN];

for(J=1=0;1<255;++1,j += RECLEN) p[i] = &qljl;
total =n=0; i=1;
if(argc==1) argv[++argc] = **;
do {
strcpy(s,argv[il);
1f(index(s,'.')==0) strcat(s,"*.**);
n += getddir(s,8pln],255-n);
} while(++i<argc && n<255);
ssort2(n,p,RECLEN) ;
for(j=1=0;1<n;++i) {
k = kilos(p[i]); total += k;
printf(*%-14s%3dk" ,p[i1,k);
if(++j==4) {putchar('\n'); j = 0;}
else putchar(' *);

if(j) putchar('\n');
printf("%d Files using %u kilobytes\n" ,n,total);

Library Page 122

getddir

kilos(r) char *r;

{
} return (16*r[15]+(7+r[16])/8);

Notes:
0

[¢]

]

For CP/M 2,2xx only. Library hooks are documented in STDIO.H.

To just print the file names, use puts(p[i]). The null terminator
always appears before the extent and last record count.

The file size is usually 128*recs+16384*extent. This will require
long integer arithmetic in general. Ascii files mark the end with
ctr1-Z (usually in the last record of the file).

To get the file size in kilobytes, using only integer arithmetic,
use 16*extent + (recs+7)/8.

Extents of a file need not be consecutively located in the
directory tracks. Further, two extents may be lumped into one
entry, A full directory entry uses 16k bytes.

The complete source for the function getddir follows. It is
often the case that this program is engineered for a special
application. Use the archives to get a working copy.

int getddir(s,p,nmax)

char *s; /* wildcards for file name */
char *pl]; /* pl[1] points to 17-byte area */
int nmax; /* size of array p[] */

static char *q;
static int 1,n,drive;
char *findFIRST(),*findNEXT (),*decodF();

if((q = findFIRST('?',s)) == (char *)-1) return 0;
drive = (s[1]==":") 27 ((s[0]]32)-"a') : (logged());
n=0;
do {

if(n >= nmax) break;

ql0] = drive+tl;

strepy(pln],decodF(q));

for(i=0;i<n;++i){

1f(stremplpl1],pn])==0 8% p[1][15]<q[12]) break;
}

pli1(15] = q[12]; /* extent */
pL11[16] = (255 & q[15]); /* records */
if(1 == n) ++n;

} while((q = findNEXT()) t= (char *)-1);

return n;

Library Page 123

getddir

Extended Directory Utility

Below is the source code for a sorted directory utility which is an
extension of the example above. Source appears in the archives.

The features:

o Displays sorted directory on any number of drives for
any number of wildcard filespecs. Output to disk or
printer via 1/0 re-direction.

o Gives disk space report on command which includes group
size and disk capacity.

0 Output can be in 1,2,3,4 columns.

Command strings can be as long as the CP/M command line. Here are
some examples:

A>dd A: B: C: Disk directories of drives A:,B:,C:
A>dd A: 4-column directory of drive A:

A>dd A: ;1 1-column directory of drive A:

A>dd A: ;2 1-column directory of drive A:

A>dd A: ;3 1-column directory of drive A:

A>dd A: Directory of drive A: plus free space.
A>dd A:*.COM Display all files ending with .COM
A>dd .com Same as A:*.COM

A>dd A:f* * Display all files starting with f.
A>dd f Same as A:f* *

A>dd ?. Display one-letter file names.

A>dd B:*.com ; Display .COM files on B: plus free space.
A>dd B:*.C *.COM A1l .C files and .COM files on B:.

A selected drive remains the default, as in the last example above.
Free space reports are issued when encountered, therefore they will
occur before file displays. A disk free space report causes a drive
reset, in order to insure that disk changes are recognized.

#include <stdio.h>
kilos(r) char *r;
{

return (16*r[15)+(7+r[161)/8);

struct dfree {

unsigned avail; /* free groups */
unsigned total; /* total groups */
uns igned bpsec; /* bytes per sector */
unsigned spg; /* sectors per group */

Library Page 124

getddir

freespace(d)
int d;

{
char s[3];
unsigned kbytes; struct dfree df; unsigned getdfree();

if(d==0) d = logged(); else --d;

s[0] = d+'A'; s[1] = ':*; s[2] = 03

kbytes = getdfree(s,4df);

printf("%c: %uk free in %d groups\n“,
s[O],kbytes,df.avail?;

printf("Disk capacity %dk using %d-byte groups\n®,
df .total*(df.bpsec*df.spg/1024),
df.bpsec*df.spg);

#define RECLEN 17
main(argc,argv) int argc; char **argv;

static int 1,j,k,n w‘drive' static unsigned total; int getddir();
char fcb(361,5{129),%p[255],q[255*RECLEN];

for(j=1=0;1<255;++1,J += RECLEN) p[i] = &q[j);
total =n=0; i=1; w=4;
if(argc==1) argv[++argc] = *";
drive = logged?);
do {
strepy(s,argvlil);
1f(1ndex(s,'.')-=0) strcat(s,"*.*");
makeFCB(fcb,s);
if(fcb[0]) drive = fcb[0]-1; else fcb[0] = drivetl;
if(feb(1]==";") {
w = fcb[2]-'0"; 1f(1<=w && w<=4) continue;
if(w == '2'-'0") { freespace(fcb[0]); continue;}
w=4;

}
if(fcb{1]==" ') feb[1]="*";
strcpy(s,decodF(fcb));
n += getddir(s,8p(n],255-n);
} while(++i<argc && n<255);
ssort2(n,p,RECLEN);
for(j=i=0;i<n;++i) {
k = kilos{p(i]); total += k;
printf(“%-14s%3dk",pli],k);
if(++j >=w) [putchar('\n's; j=0;}
} else putchar(' ');
1f(j) putchar('\n');
if(n) printf(*td Files using %u kilobytes\n",n,total);

Library Page 125

getdfree

The getdfree Function

Purpose:

Computes the number of free kilobytes on the disk. Return disk
drive info. See below. Disk drive is entered as a string.

Fanction Header:
unsigned getdfree(drive,dfp)
char *drive; Drive, e.g., "A:"
struct dfree *dfp; See the example below.
Returns:
u Free disk space in kilobytes.

+ Additional information {is returned in the 4-word
structure passed as the second function argument. The
array is organized as follows:

DESCRIPTION ARRAY STRUCTURE
Free group count info[0] dfp->avail
Full disk group count info[1] dfp->total
Bytes per logical sector info[2] = 128 dfp->bpsec

Logical sectors per group info[3] = 8 or 16 dfp->spg
Example: Print disk drive statistics for any drive.

struct dfree {

unsigned avail; /* free groups */
unsigned total; /* total groups */
unsigned bpsec; /* bytes per sector */
unsigned spg; /* sectors per group */

#include <stdio.h>
main()

unsigned kbytes;

char s[129];

struct dfree df;

uns igned getdfree();
fputs("Enter disk drive letter: ", stderr);
gets(s);
kbytes = getdfree(s,&df);
printf(*%uk free on %c:\n" kbytes,s[0]);
printf(“%d free groups (group size = %d bytes)\n",

df.avail, df.bpsec*df.spg);

printf(*Disk capacity %d groups\n",df.total);

Library Page 126

getdfree

Notes:
o For CP/M 2.2xx only. Library hooks are documented in STDIO.H.

o The current version resets the disk system each time it is
called. This feature logs in drive A: and also the drive to
be accessed. A1l other disks are reset.

o The disk free space report has the additional feature of taking
proper action for diskette changes. Reports the correct free
space regardless of the number of disk swaps.

0 Bad drive specs are mapped to drive A:. Some bad drive input
can make its way to the program, in which case CP/M itself will
abort.

o The complete source for the program getdfree follows. It is
often the case that this program is altered and engineered for a
particular application. See the archives to get a working copy.
Below is for reference during brainstorming.

#define CURDISK 25 /* BDOS */
#def ine RESETDRIVES 13 /* BDOS */
#define LOGDISK 14 /* BDOS */
#define SELDSK 9) /* BIOS */
#define SECSIZ 128 /* Logical sector size */
struct dfree {

unsigned avail; /* free groups */

unsigned total; /* total groups */

unsigned bpsec; /* bytes per sector */

uns igned spg; /* sectors per group */

.
’

unsigned getdfree(drive,dfreep)
char *drive;
?truct dfree *dfreep;

/* CP/M 2.x Disk Parameter Tables */

struct dpb { /* Disk Parameter Block */
unsigned spt; /* Sectors/track */
char bsh; /* block shift (3 = 1k, 4 = 2k, 5 = 4k) */
char bim; /* a bit mask 'bsh* bits wide */
char exm; /* extent mask */

unsigned dsm; /* maximum block number for drive */
unsigned drm; /* max imum directory entry index */
char al[2]; /* Directory Allocation Bitmap */
unsigned cks; /* size of checksum vector */

unsigned off; /* Number of reserved tracks */

} /* pointer obtained from dphp->hdpbp */

Library Page 127

getdfree

struct dph { /* Disk Parameter Header */
char *x1tp; /* pointer to sector translation table */
int dscr[3]; /* BDOS scratch */
char *dirbp; /* Pointer to directory buffer */
struct dpb *hdpbp; /* Disk Parameter Block pointer */

char *csvp; /* pointer to checksum vector */
char *alvp; /* Pointer to Allocation Bitmap */
} /* pointer returned by bios seldsk */

static

int maxblock,blk, freeblk,disk,cdisk,n;

static

char bitnumber[] = {
128,64,32,16,8,4,2,1};

static

uns igned *u;

static

char *map;

static

struct dph *dphp;

static

struct dpb *dpbp;

disk = ccBDOS(CURDISK);

ccBDOS(RESETDRIVES) ;

n= toupper(drive[oi) - 'A*;

cdisk = (0 <= n 8& n <= 15 & drivell] == ':') ?

n : disk;
ccBDOS(cdisk,LOGDISK);
dphp = ccBIOS(1,cdisk,SELDSK); /* pointer disk param header */
dpbp = dphp->hdpbp; /* pointer disk param block */
maxblock = dpbp->dsm; /* max block number, 0=first */
map = dphp->alvp; /* pointer to allocation bitmap */

for(freeblk=b1k=0;blk<=maxblock ;++b1k)
1f((map[b1k/8] & bitnumber[b1k%8])==0) ++freeblk;

u = (unsigned *)dfreep;

ut+ = / dfreep->avail */ freeblk;

ut+ = / dfreep->total */ maxblock+l;

u++ = / dfreep->bpsec */ SECSIZ;

y / dfreep->spg */ (SECSIZ << dpbp->bsh) /SECSIZ;

ccBDO0S(disk,LOGDISK);
return ((unsigned) ({(*u/(1024/SECSIZ))*freeblk));

Library Page 128

getl

The get1 Function
Purpose:

Reads a 32-bit long integer from the stream, in Intel Reverse
Format.

Fenction Header:
long get1(fp)

FILE *fp; Stream pointer, open stream
Returns:

-1 Error or end of file

n 32-bit word, otherwise
Example:

YOID getlongs(fp)
FILE *fp;

long x,get1();
int feof();
while(1) {
1f((x = getl(fp)) == EOF) {
if(feof(fp) == EOF) break;

}
printf(*Long x = %1d\n",x);
}

Notes:

o To detect end of file, use feof() every time getl() returns a
value of -1, Do not check end of file on every read - the
overhead of feof() is too much.

0 Beware of this function on other machines. It hides the byte sex
problem. See for example CP/M-68K on the Motorola 68000
processor. In addition, poorly constructed 1ibraries may write
get1() from getc(), which introduces the possibility of CR/LF
translation.

o Get1() calls the library primitive getcbinary() to avoid any
character translation. Most Unix Ports to newer machines do not
translate characters in files anyway. Code that uses get1() on an
ASCII file should run without changes on other targets.

Library Page 129

getline

The getline Function
Purpose:
Reads a 1ine of text from the console, or the re-direction file for

stream stdin, up to and including the newline. The string is null-
delimited.

Function Header:

int getline(s,n)

char *s; Base address of string buffer.

int n; o Size of the buffer in bytes minus 1.
Returns:

EOF If end of file was read before any other characters.

n The number of characters read, which always includes

a newline character for a successful read operation.
Example: Read a line of text from the console, print it.

#include <stdio.h>
main()

char buf[129];
int 1i;
printf("Enter a line of text: *);
i = getline(buf,128);
if(1 1= EOF) {
printf("Characters = %d\n",i);
printf(“Data = %s*,buf);

Notes:

o Reading more than the allowed number of bytes without an
intervening newline causes the excess characters to be lost.

o Empty input returns 1, not 0, and buf[0] = '\n'.
o At end of file, getline returns -1.

Library Page 130

getln

The getin Function
Purpose:

Reads a line of text from the console, or the re-direction file for
stream stdin, up to the newline. The string is null-delimited. The
newline is stripped from the buffer.

Function Header:

int getin(s,n)

char *s; Base address of string buffer.

int n; Size of the buffer in bytes minus 1.
Returns:

EOF If end of file was read before any other characters.

n The number of characters read, which always includes

a newline character for a successful read operation.
Exaiﬂe: Read a line of text from the console, print it.

#include <stdio.h>
main()

char buf[129];
int 1;
fprintf(stderr,”Enter a line of text: *);
i = getin(buf,128);
if(1 = EOF) {
fprintf(stderr,"Characters = %d\n",i);
: fprintf(stderr,“Data = %s",buf);

Example: Read lines of text from stream stdin, write to stdout.

#include <stdio.h>
main()

char buf[129];
while(getIn(buf,128) != EOF) puts(buf);
}

Library Page 131

getln

Notes:

0 Reading more than the allowed number of bytes without an
intervening newline causes the excess characters to be lost.

o Empty input returns 1, not 0, and buf[0] = *\0', Return is the
same as getline().

o Overcomes the 1imitation of getline(), which is the extra
newline.

o Replaces the more dangerous and limited gets(), which can write
over the data area due to long lines. But for up to 128 bytes of
input, gets() and getin() are the same function.

o This function is not in K&R nor is it in the Unix System III
standard. It should be. Range and error checking are essential
to the production of bullet-proof user interfaces.

o Entry of ctrl-z returns 0. See K4R.

Library Page 132

getpass

The getpass Function
Purpose:

Reads in a password without console echo.

Function Header:
char *getpass(q) Returns a static storage location

char *q; Prompt string to issue to console
before password is typed. Must be
null-terminated.

Returns:

Null-terminated password string pointer

to a static area of memory where the user
input resides. This area is 8 bytes long

plus one NULL. It is overwritten on each call.

Notes:

o The standard ccBIOS(3) interface is used so that we read directly
from CP/M. This prevents type-aheads.

o The caller must map case and worry about things 1ike delete and
backspace.

o The user's carriage return is echoed, and it happens
automatically if the character limit is exceeded.

Exanple: Ask for user password "SPECIAL® and return 0 on success, -1 on
failure.

VOID getmypassword()
{

#define MYPASSWORD “SPECIAL"
char *p,*getpass();
p = getpass("Enter password: ");

cvupper(p);
1f(strcmp(p,MYPASSWORD) == 0) return 0;

return -1;

Library Page 133

getpid

The getpid Function

Purpose:

Get the process ID of the current process.
Function Header:

int getpid()
Returns:

Bogus value of 0, for Unix compatibility.
Notes:

0 May not make a Unix program work, but it helps it to compile
without errors.

Library Page 134

gets

The gets Function

Purpose:

Reads characters from open stream stdin and null-terminates the
string. Breaks on newline or EOF. The newline is purged from the buffer.

Fenction Header:

char *gets(s)

char *s; Base address of the storage area.
Returns:

(char *)0 End of file and string empty.

(char *)0 Stream error and partially filled string.

(char *)s Success, base of storage area.

Example: Read lines from stdin and print until end of file. Note the
stripped linefeed and the extra newline on output.

tinclude <stdio.h>
main()

char s[129];
while(TRUE) {
fprintf(stderr,”Enter a string or ctr1-1 to exit: *);
if(gets(s) == (char *)0) break;
fprintf(stderr,*¥s\n",s);

}
Rotes:

o It is mpossible to tell whether a null pointer return stands for
an error or end of file.

o The array s[] may be filled with invalid data in case of
an error,

o Newlines read from the stream are NOT appended to the array s[].
This is different from fgets(), which appends the newline on
input. In practise, it means puts() will output exactly the input
received by gets().

o There is no way to protect the storage area s[] from long 1ines
when using gets(). It is best to use fgets() in the cases where
over-run is possible.

o0 Under C/80 and this library, gets() is a call to fgets() with
buffer size 128. The newline is stripped off upon return from
fgets(). This affords users some protection against crashes at
the expense of a 1imited buffer size.

Library Page 135

getw

The getw Function
Purpose:
Reads a 16-bit word from the stream, in Intel Reverse Format.

Function Header:

unsigned getw(fp) Unsigned integer, 16 bits
FILE *fp; Stream pointer, open stream

Returns:

-1 Error or end of file
n 16-bit word, otherwise

Exanple: Read and print integers taken from an open binary file.

YOID getwords(fp)
;ILE *fp;

int x,get1();
int feof();
while(1) {
if((x = get1(fp)) == EOF) {
if(feof(fp) == EOF) break;

printf(*Wword x = %u\n",x);

Notes:

o To detect end of file, use feof() every time getw() returns a
value of ~1. Do not check end of file on every read - the
overhead of feof() is too much.

o Beware of this function on other machines. It hides the byte sex
problem. See for example CP/M-68K on the Motorola 68000
processor. In addition, poorly constructed 1ibraries may write
getw() from getc(), which introduces the possibility of CR/LF
translation.

o Getw() calls the library primitive getcbinary() to avoid any
character translation. Most Unix Ports to newer machines do not
translate characters in files anyway. Code that uses getw() on an
ASCII file should run without changes on other targets. Beware of
size restraints: getw() is 16 bits, but on 36-bit machines it may
actually be 18 bits (9 bits per byte instead of 8).

Library Page 136

heaps

The heapsort Function

Purpose:

Heapsort for an array of character strings with easy-to-change
comparison method. Changes pointers but not actual data in the string.

Fanction Header:

YOID heaps(base,n,cmp)

char *basel[]; Base address of pointer array
int n; Number of array elements to sort
int (*cmp)(); Compare routine for two strings p,q

that returns an integer with the
same rules used by Unix strcmp(p,q):

0 strings p,q are equal
0 pP<q
0 P>4q

v A N

Returns:
Nothing of value
Example: Sort an array of strings.

Char *p[lol = [uau’ucu‘-du’uou,ngn'-zu’nlu’u3u’n8n,n5-};
Char *Q[IO] = [nau.-cn'ud-’non,ngn.uzn’-ln'n3-'-8n'-5u‘;
int stremp();

#include <unix.h>

#include <stdio.h>

main()

int i3
heaps(p,10,strcmp);
} for(1=0;1<10;++1) printf(*%d. %s, %s\n",1,pl11,ql1]);

Results from the above program

(=]
-

Numerals are less than letters
in the ASCII standard

.

-

UPPERCASE is less than lowercase
in the ASCII standard

.

LONONEWN - O
PN]
o.nanooa:.ﬂurv—-a
-
Ow~RNYoaOo

Library Page 137

heaps

Notes:
o0 You can most often use stremp() as the argument for cmp().

o It is necessary to declare the function cmp() before the call to
heaps(). The required ASM code for the call is LXI H,cmp ! PUSH
H. Look out for the incorrect LHLD cmp ! PUSH H.

o To make a compare for mixed upper and lower case string data,

write a function called mycmp() and use it instead of stremp() in
the example below.

o This source file is very portable. Use it on any system with
minimal C compiler.

Reference:
A C Reference Manual, pp 62-63,

by Harbison & Steele
Prentice-Hall, Englewood Cliffs (1984)

Library Page 138

highmenm

The highmem Function

Purpose:

Computes the highest memory address that is assignable by sbrk().
Function Header:

char *highmen()
Returns:

The address below the stack which is the last possible address
assignable by sbrk(). This implementation assumes 600 bytes of
stack space, which is used in the computation in order to give
a conservative estimate.

Exanple: Find out how many bytes of free cont iguous memory are
available. Do it three ways.

#include <stdio.h>
main(argc,argv) int argc; char **argv;

{

char *highmen() ,*1owmem();

unsigned amt memsize();
amt = highmem() - lowmem();
printf("%u bytes available for use by sbrk()\n* ,amt);
amt = ((char *)(8argc) - (char *)sbrk(0));
printf("%u bytes available for use by sbrk()\n" ,amt);
amt = memsize();

| printf(*%u bytes available for use by sbrk()\n" ,amt);

Notes:

o The 600 bytes of slop is a guess. The right amount depends on
your program.

o The value returned from highmem() depends on its location in the

calling program. If called from main(), then the answer is
accurate. If buried deeply in subroutine calls, the answer could

be very optimistic.

o The method used for finding out about heap sgace works on 8080
machines with CPM 2.2. It will not work with CP/M 3.0. It will
not generalize to mainframes or 8086-type CPU machines. It does
work on a Motorola 68000 with CP/M-6&K.

Library Page 139

Horner

The Horner Function

Purpose:
Compute a polynomial value by Horner's method..
Function Header:
float Horner(x, p, n)
float x; Polynomial variable x value.
float pf]; Coefficients of polynomial.
int n; Degree of the polynomial.
Retwrns:

The computed float value obtained by putting x into the polynomial
equation.

Example: Given p[2] = 3, p[1] = 4, p[0] = 6, then 3*(x**2) + 4*x + 6 =
x(x(3) + 4) + 6 = x(x(p[2]) + p[1]) + p[0]). The degree of the
polynomial is 2 and the factorization scheme is known as Horner's
method.

#define pfFLOAT 1
#include <math.h>
#include <stdio.h>
?ain(argc,argv) int argc; char **argv;

char s[129];
float x;
static float p[] = {

» 7y

};
float atof();
float Horner();
printf(“Enter a float: *); gets(s); f = atof(s);
printf("For x = Xf, 3*(x**2) + 4*% + 6 = %f\n",
x,Horner(x,p,2));

}
Notes:

o No error checking. This function uses the standard factorization
method taught in college algebra.

0 To understand the method, study the above example carefully. Note

in particular the dimensfon of the array p[] versus the degree of
the polynomial generated from the coefficient array.

Library Page 140

index

The index Function

Purpose:
Finds the character position of a byte inside a string.
Function Header:

char *index(str,c)

char *str; Source string.
char c; Character to locate.
Returns:
sstr(i] where ¢ == str[i], on success.
(char *)0 Failure.

Example: Find the colon in a file spec, strip off the file name, print.

#include <stdio.h>
main()

{

char s[129],t[1291,*p;
printf(*Enter a file name: *);
gets(s);
cvupper(s);
if(p = index(s,':")) strcpy(t,ptl);
else strepy(t,s);
printf("Stripped file name: 1s\n",t);

Notes:

o Usage of this function differs among libraries. The Unix V1
standard, according to Bourne, is the above.

o Index() should be capable of locating the null terminator in
a string. For portability, we recommend using p + strien(p)
as a pointer to the end of a string.

o Index() is the same function as strchr(). See Harbison & Steele.

Library Page 141

inport

The inport Function

Purpose:
Reads a value from a given CPU port.

Function Header:

int inport(port)
int port; Port number,

Returns:

The value read from the port. Assumes data was available. See
system notes below and the example.

Example: Read characters from the modem port.

#def ine MODEM 0330 /* 790A computer, 180 CPU, 255 ports */
#define OFFSET 0005 /* 8250 UART, line status register */
#define READY 0001 /* test data ready at port */
#include <stdio.h>

main()

while(TRUE) {
while((inport (MODEM+OFFSET)SREADY)==0 &4
bdos(11,0)==0) ; /* wait for keyboard or modem */
outport(MODEM,x) ; /* ship the byte */

}
Notes:

0 On most machines the status of the port must be interrogated in
order to read from the data port. Buffered ports may require a
different method, namely checking the character count in the
buffer.

o Disk I/0 ports are often interrupt driven. Reading from the port
will require set-up of the interrupt vector for return.

o Clock and timer chips 1ike the 8253 Intel make for good examples
of port usage in C programs. See also Analog-to-Digital boards
and parallel port interfaces. These appear on music boards and
game interfaces. The signals are joysticks, mice, light pens,
plotters, graphics tablets and the 1ike.

o Port operations are inherently machine-dependent. Don't expect
to write portable code. But do expect READABLE code. Watch out
for 8-bit and 16-bit ports on other machines. Not all ports are
8-bits wide.

Library Page 142

insert

The insert Function

Purpose:

Inserts a CP/M command tail into the two default file control
blocks and then copies the command tail to the CP/M default buffer.

Fanction Header:

VOID insert(tail)
char *tail; CP/M command tail to be inserted.

Returns:
Nothing. Similar to the insert command in the DOT debugger.,

Example: Swap in a new command tail into the default buffers prior to
chaining to a new overlay. The link program LEXI.COM takes a command
line with three file name arguments.

#include <stdio.h>
main()

extern char *Cbuf; /* C console buffer is 136 bytes */

insert(" TEST1.TXT TEST2.TXT OUTPUT.TXT");
makeFCB(Cbuf ,"LEXI");
chain(0x100,Cbuf);

\ puts("LEXI not found”);

Notes:

o Multiple arguments may be used. The command line 1imit of 128
characters must be obeyed, however.

o A1l characters are acceptable, however uppercase translation is
performed to simulate CP/M handling of command lines.

o The string may contain whatever you wish.

o CPM 2.2 might demand in certain applications that the
{nformation found in the default buffers also be present in the
CCP buffers. This is highly unusual, but may be a problem,

o The file control blocks are built at BOOT+0x5C and BOOT+0x6C .
Tokens for these file control blocks are the first two found
in the command tail.

Library Page 143

instr

The instr Function

Purpase:
Computes the offset position for a substring match.

Function Header:
int instr(n,strl,str2)
int n; A Character position to start.
char *strl, *str2; Source strings, null-terminated.
Returns:
0 No substring match
k Substring of strl matched str2 at position k.

Example: Find the word SAILOR inside a sentence typed by the user.

#include <stdio.h>
Tain(argc.argv) int argc; char **argv;

int k;
if(argc <= 1) exit();
if(k = instr(1,argv[1],"SAILOR"))
printf("Word SAILOR found at position %d\n" k) ;
else

printf(*Word SAILOR not found in string\n®);
Notes:

o Instr() is similar to the BASIC function of the same name. It
takes)three arguments. You may not drop arguments (as is done in
BASIC).

o The value of instr(1,"abcd","abc") is 1, not zero.

o The value of instr(1,"xabcdabcd®,*abc®) is 2 whereas the value
of instr(3,“xabcdabcd”,"abc*) s 6. Counting of the offset index
starts at 1. The maximum offset is the string length of strl.

o This function also works with unsigned integers.

Library Page 144

TOTABLE

The IOTABLE module

Purpose:

Storage area for 1/0 information, channel data. Used by file
routines such as read() and write(), seek(), getc(), putc(), fopen(),
fclose(), fflush(), ffb(), fseek(), ftell().

VARIABLE LIST

MAXCHN Equals l+n, where n is the maximum number of disk files.
Settable by re-assembly to any number from 1 to 251.
Currently, n = 6 and MAXCHN = 7,

DEVICES Numbers 252,253,254,255 are reserved for CON:, RDR:,

PUN:, LST: respectively. Number 0 is translated by the
software into the console number 252.

char *I0buf[MAXCHN]; Addresses of the file buffers
int I10sect[MAXCHN]; Sector count in 128-byte hunks

char I0rw[MAXCHN]; 0 or 1 for last operation, read or write
int 10tmp; Storage for buffer address, work variable
char 10ch[MAXCHN]; Channel numbers (-1 means empty).

int 10ind[MAXCHN]; Offset into file buffer for next char

char I0mode[MAXCHN]; Mode byte ‘r', ‘w', ‘'u'
char 10bin[MAXCHN]; Binary flag '\0' or 'b’
" char *I0fcb[MAXCHN]; File control block addresses

char 10pchan{4]; Physical device numbers 252,253,254,255

char I0pread{4]; Physical read CP/M function numbers 1,3,0,0

char 10pwrit[4]; Physical write CP/M function numbers 2,0,4,5

char 10peof[4]; Physical device EOF characters 26,26,26,12

char *10dev; Physical device string ‘con:rdr:pun:lst:’
with null terminator, all lowercase.

int I0nchx[MAXCHN]; Anount in bytes read by ffb() into buffer

int 10end[MAXCHN]; Saves EOF record number for seek

int 10size[MAXCHN]; 10 buffer sizes (0 for chan 0, 256 default)

Library Page 145

IOTABLE

The IOTABLE module

The first MARNING to be issued is that offset 0 is not used in any
of the arrays. A1l descriptors start at offset 1 or higher but never
exceed MAXCHN-1,

The functions of the I/0 1ibrary access the IOTABLE, and use the
module END,CC, which contains the end-of-program label. This module is
pure data (no code segment). It holds the secret to understanding the
method by which dynamic buffers are handled in the C library.

Pre-defined file buffers appear in memory as though they were
assigned by sbrk(), which means they are located immediately after the
physical end of the program. Walt Bilofsky's library puts them into high
memory, which is unsuitable for buffer re-allocation and recovery of
buffer space via sfree(). The placement of the file buffers in this
library allows for programmable buffer sizes and buffer locations.

File buffer size defaults to the size pre-set in STDIO.H. We
recanmend a buffer size of 256 for C/80 library compatibility. To obtain
Unix compatibility, use default buffer size 512.

The size of a file buffer is set by the symbols $SIZ1, ... , $SIZ6.
These are assembly language equates that are recognized by IOTABLE. The
number of symbols equals the number of possible open files, MAXCHN-1. In
order to change the number of files beyond 6, you must edit IOTABLE.CC,
re-assemble and invoke LIB.COM to insert the new module into the
library.

The macro variable nfiles defined in STDIO.H allows you to select
the number of files from 1 to MAXCHN-1. This setting has an effect on
the amount of heap space.

The macro variables bufszl, bufsz2, bufsz3 defined in STDIO.H are
used for the purpose of selecting the buffer sizes. The interface allows
file buffer size definition directly from language C, in a convenient
fashion that is self-documenting.

File control blocks are assigned as needed as though sbrk() were
called. Each file control block consumes 36 bytes. File control blocks
with 10fcb[fd]=0 will force a call to sbrk() to get space. The
construction of file control blocks is handled through routines in
XFCB.C, which supports wildcard expansion and uppercase translation,
plus white space skipping.

Library Page 146

IOTABLE

The I0TABLE module

The essential arrays in IOTABLE.CC are I0fcb[1, I0buf[], 10size[].
The address of the file control block is saved in I0fcb(fd], If the
contents of I0fcb(fd] is zero, then fopen() will call sbrk() for 36
bytes of space and update 10fcb{fd] accordingly. Similarly, fopen()
checks I0buf{] for a nonzero value, and calls sbrk() for 10size[fd]

bytes as needed, with I0buf(fd] updated to reflect the new buffer
address.

To fool the system, you must change 10size[fd] at a time when the
file buffer is empty. The safest method is to rewind the file or change
when the file is open and not yet accessed. You can always fool with the
buffers and sizes when the channel is unused, but there is no guarantee
that an fopen() call will return that channel.

Changes to 10size[] must be matched with a change of I0buf[]. If
the stream is unused, then it is safe to set I0buf[fd]=I10fcb[fd]=0 and
call sfree() to free up the buffer space for re-use. A later call to
fopen() will automatically get the desired space from sbrk().

As you may have guessed, all the file buffer and file control block
space can be recovered by closing all the files and setting I0fcb[] =
10buf[] = 0 for all MAXCHN-1 channels. Use sfree(-1) to get all of
manory back. Beware: this invalidates all previous core() and sbrk()
function calls!l.

Library Page 147

isatty

The isatty Function

Purpose:

Tests a file descriptor fd to see if it is attached to the console
device.

n
n
]

Fenction Header:
int isatty(fd)
int fd; File descriptor fd (as distinguished from a
stream pointer fp). Use fileno() to obtain fd
from a stream pointer:
fd = fileno(fp);
Returns:
0 fd not attached to console
1 fd is mapped to the console device

Example: Test re-direction channel stdin to see if it s set to the
console,

#include <unix.h>
#include <stdio.h>
VOID whichone()
{
int fd;
fd = fileno(stdin);
if(isatty(fd)) puts(*Input is from the console");
MNotes:
o The library uses fd = 252 for the console.

o However, 0 is mapped to the console too. For compatibility with
defaults, the special value fd = 0 returns isatty = 1.

Library Page 148

isgraph

The isgraph Function

Purpose:
Test for a printable character in the range 041 to 0176 (octal).

Fenction Header:
int isgraph(c)

char c; Character to test
Returns:
0 Not a graphic character

NONZERO Is a graphics character

Source code: This function is so often i11-defined and wrongly used
that we include the source code to communicate the precise difference
between this function and its popular aliases.

int 1isgraph(c)
?har c;

if(c == ' ') return 0;
return isprint(c);
}

Notes:
o This range includes all characters from isprint() except SPACE
itself.

e

Library Page 149

Istype Character Classes

The istype Functions

Purpose:

The purpose of this group of tools is to classify and test
individual characters for inclusion in a particular class.

Fanction Header:

int isascii(c) - Tests ¢ for the range 0 to 127 decimal.

int isalnum{c) - Tests c for alphabetic or numeric.

int isalpha(c) - Tests ¢ for alphabetic.

int isupper(c) - Returns -1 for uppercase c, else 0.

int 1slower(c) - Returns -1 for 'a' <= ¢ <= 'z', else 0.

int isxdigit(c) - Tests for a valid hexadecimal digit, 0-9,A-F.
int isdigit(c) - Tests for a valid digit, 0-9.

int 1isspace(c) - Tests for blank, tab, carriage return, linefeed.
int iscntri(c) - Tests for a control character 0-31 decimal.

int 1isprint(c) - Tests for a printable character.

int ispunct(c) - Tests for punctuation (not ctrl or alphanumeric).

Throughout, ¢ is assumed to be a character, however it may be an
integer variable instead. These routines ignore sign extension.

Returns:

-1 - TRUE The K&R standard is NONZERO return.
0 - FALSE

Example: Access istype functions by the array method.

#include <unix.h>

#include <ctype.h>

#include <stdio.h>

main()

{

{* same example as below, but uses macros and the array method */

Library Page 150

Istype Character Classes

Example: Access standard library functions.

#include <stdio.h>
main()
{
int c;
char buf[129];
while(TRUE) {
printf(“Enter a character: ");
gets(buf);
c = buf(0];
printf(isascii(c) ?

*isascii(c) = TRUE" : “isascii(c) = FALSE");
printf(isalnum(c) ?

"isalnum(c) = TRUE* : “isalnum(c) = FALSE");
printf(isalpha(c) ?

*isalpha(c) = TRUE" : “isalpha(c) = FALSE");
printf(isupper(c) ?

isupper(c) = TRUE : “isupper(c) = FALSE");
printf(islower(c) ?

islower(c) = TRUE : "islower(c) = FALSE");

printf(isxdigit(c) ?
*isxdigit(c) = TRUE" : “isxdigit(c) = FALSE");
printf(isdigit(c) ?

isdigit(c) = TRUE : “"isdigit(c) = FALSE");
printf(isspace(c) ?

"isspace(c) = TRUE* : "isspace(c) = FALSE");
printf(iscntri(c) ?

iscntri(c) = TRUE : "iscntri(c) = FALSE");

printf(isprint(c) ?

"{sprint(c) = TRUE* : "isprint(c) = FALSE");
printf(ispunct(c) ?

ispunct(c) = TRUE : “"ispunct(c) = FALSE*);

}
}

Notes:

o Most libraries implement these functions as macros which access
an array of character classes. See CTYPE.H and related
documentation. The array method has a fixed overhead and
porta?ility going for it at the expense of code size (in some
cases).

o A1l functions above are honest functions and not macros. There
are no side effects, even for the ctype functions.

o If you use only isspace(), then including CTYPE.H will cost you

dearly in code size. For a few istype functions it is more
economical to use the standard functions in CLIB.REL.

Library Page 151

itoa

The {toa Function

Purpase:

Converts an integer into a null-terminated string of decimal
digits, with leading minus sign as appropriate.

Fanction Header:

char *itoa(x,s)

int x; Integer to be converted.

char *s; Buffer for string of decimal digits.
Returns:

s Base address of the conversion string.

Exanple: Convert a data item to a string of digits and print.

#include <stdfo.h>
main()

char s[20];

#define NUMBER 10133
itoa(NUMBER,s);
puts(s);

Notes:

0 Unsigned integers greater than 32767 will be treated as long
integer data by the compiler, unless a suitable cast is imposed
on the number.

o The internal storage of an integer is two bytes (16 bits),

stored in the usual 8080 reverse format. Integers typed at the
terminal are in ascii decimal format, using the character set

'0',...,"9".

0 No check is made to see if the storage area is large enough to
accept the string . This is left to the programmer.

o0 Do not confuse this function with 1toa(), which converts a long
signed integer to ASCII. The latter uses a 32-bit first argument.

0 Numbers larger than 32767 are assumed to be long integers by the

compiler. If you want to convert an unsigned integer to ASCII,
then use the function sprintf() instead.

Library Page 152

keystat

The keystat Function

==== =============== ==

Purpose:

Test the console buffer and the keyboard for a character available.
Function Header:

int keystat()

Returns:
0 No character is available.
nonzero Character is available.

Example: Expunge the console buffer,
main(argc,argv) int argc; char **argv;

char s[129];
puts(*Press any key to start*);
getbyte();
conflush();
puts(“\nEnter a 1ine of text");
gets(s);

} puts(s);

conflush()

{
} while(keystat()) getbyte();

Motes:

o Function keys can create havoc with character mode input. Use
keystat() to tell whether or not a character is available.

o This keystat() 1is not the same as bdos(11,0). In addition, it
checks the console type-ahead buffer at Cbuf,

o Scanf() can cause problems too. We suggest that you flush the

console input buffer as in the example each time that scanf()
fails to return the required number of arguments.

Library Page 153

labs

The labs Function

Purpose:
Compute the absolute value of a signed long integer quantity.
Function Header:

long labs(value) Long Integer Absolute value
long value; Long argument, 32 bits
Returns:

The absolute long integer value of the argument.

Example: Print the long integer absolute value of a number entered at
the console. .

#define pfLONG 1
#include <stdio.h>
main()

char s[129];
long a,labs();

printf(“Enter long integer a: ¥);
gets(s); a = atol(s);
: printf(*labs(21d) = %1d\n",a,labs(a));
Notes:
o Not a macro. It often is a macro in other libraries.
o There are no side effects. Labs() s an honest function.

o The cast must appear explicitly in your program, For example,
if you use labs(), then include a declaration of the form

Tong labs();
0 A common error is to write In = abs(n) where In,n are signed

long integers. This has undefined results, but there is no
compile-time error reporting.

Library Page 154

Tdexp

The 1dexp Function

Purpose:

Computes x*(radix**n) where n is an integer and the value of x is
typically 0.5 <= x < 1.0.

Faunction Header:

float ldexp(x,n)

float x; Float value in range 0.5 to 1.0

int n; Integer exponent. Range -38 to +38 expected.
Returns:

x*(2**n) Mantissa times power-two exponent.
Example:

#define pfFLOAT 1

#include <math.h>

#include <stdio.h>

main(argc,argv) int argc; char **argv;

char s[129];

int n;

float x;

extern int errno;

float atof();

float ldexp();
errno = 0;
printf(*Enter a float x: “); gets(s); x = atof(s);
printf(“*Enter an integer n: *); gets(s); n = atoils);

} printf(*1dexp(%f,2d) = %f, errno = %d\n",x,n,1dexp(x,n),errno);

Notes

o The float exponent in this library is r = ((int)255 &
(int)x.c[3]) - (int)128.

o A portable version of ldexp() that can be used to check an
implementation appears below. The version in this library
plugs the exponent in the float with a new value.

float 1dexp(x,n) float x; int n;
{

int i; float f;
{=n; f=x;
if(i < 0) while(i++ < 0) f = £/2.0;
else while(i-- > 0) f += f;
return f;

Library Page 155

e,

Tog and 1n

The natural log Function

Purpose:
Compute the logarithm base e of real float value x.
Function Header:

#include <amath.h>

float In(x) Log base e. Defined in MATH.H as log().
float log(x) Log base e, or Naperian Logarithm.
float x; Positive float argument.
Returns:
number x in range
INF x too large positive
-INF x=0o0rx <0

errno = EDOM returned to flag error
Exanple:

#define pfFLOAT 1
#include <math.h>
#include <stdio.h>
main(argc,argv) int argc; char **argv;

char s[129];

float x;

extern int errno;

float atof();

float log();
errno = 0;
printf(“Enter positive float x: *); gets(s); x = atof(s);
printf("log(%f) = %f, errno = %d\n",x,log(x),errno);

Notes:
o Method used is In(x) = logl0(x)/logl0(e) = logl0(x)*1n(10).

0 Hot very well done. Errors must filter back through the logl0()
function.

Library Page 156

loglo

The logl0 Function

Purpose:
Compute the base 10 logarithm of real float value x.

Function Header:

float 1og10(x) Log base 10, same as log(x) on most

calculators.

float x; Positive float argument.
Returns:

number x in range

INF x too large positive

-INF x=0o0rx<0

errno = EDOM returned to flag error

Example:

#define pfFLOAT 1

#include <math.h>

#include <stdio.h>

main(argc,argv) int argc; char **argv;

{

char s[129];

float x;

extern int errno;

float atof();

float logl0(};
errno = 0;
printf("Enter positive float x: *); gets(s); x = atof(s);
printf(*1ogl0(%f) = %f, errno = %d\n",x,10g10(x) ,errno);

Notes:

o Method used is Rational approximation. See C&H 6.3.28. Constants
from table 2325.

Library Page 157

logged

The logged Function

Purpose:
Reports the currently logged disk.
Function Header:
int logged();
Returns:
n n =0 to 15 for drives A: to P:
Example: Find out which disk drive is the default disk.

#include <stdio.h>
main()
{
int c;
c = 'A'+logged();
printf(“Default drive is %c:\n",c);
Notes:

o Logged() is not a standard function. It is useful for writing
interactive CP/M software.

o To simulate logged() on other systems, use the bdos() function
or the ccBDOS() function.

#include <unix.h>
#include <stdfo.h>
logged()
{

return bdos(25,0);
#include <stdio.h>
logged()
{

return ccBD0S(25);

Library Page 158

1search

The 1search Function

Linear search and update of an arbitrary table of info. Requires a
special compare function to match the internal table structure.

Fanction Header:

char *1search(key,base,n,w,cmp)

char *key; Key for table search.

char *base; Base address of sorted table.

int *n; Pointer to table size.

int w; Width of each table element.

int (*cmp)(); Compare function cmp(key,tbl)

int cmp(key,tbl) User-supplied compare routine.

char *key; key = address of the key

char *tbl; tbl = address of table entry;
Returns:

(char *) Location of table match

(char *)0 Not found
Example: Search and update a 1ist of strings.

#include <stdio.h>
static char *tb1[] = {
"ABC*,"AB" ,*EFG*,"HJK" ,"M" ,"abc" ,"abd","bcf*,
}; » » i} 1] » ’ ’ » ” ’ » » » » »

cmp(p,q) char *p,*q;
{

return stremp(p,peekw(q));
main()

char key[129],%*p,*q;
int n,m,r; char *Isearch();
m=n-=8;
while(n < 24) {
printf("Enter a string: *); gets(key);
p = l1search(key,tbl,8n,2,cmp);
if(nom) {
pokew(p,q=core(strlen(key)+1));
strcpy(q,key); m = n;

r = ({unsigned)p - (unsigned)tb1)/sizeof(char *);
: printf(“%d items, tb1[2d] = %s\n",n,r,tb1[r]);

Library Page 161

R RS NPT

1
!
§
4
i
*
1
1
i
{
h

Isearch

Notes:

o The table width is 2 = sizeof(char *). The strings are not all of

the same width. The table tbi[] is a table of pointers, which
causes the unusual addressing modes seen in the example, Extra
null pointers were used for table expansion. The code must test
availability of expansion space.

This is a UNIX function. See also bsearch(), binary(), sbinary(),
ssort2(), ssort3(), numsort(), dsort(), dsort16(), shells(),
gsort(), quick(), heap().

The example shows how to make permanent entries into
an updated table. Sometimes this is not necessary,
especially for numerical tables.

The addressing modes required for string handling are unnatural.
See the example above to get it right.

The complete source follows. The most common application error
involves the integer pointer n.

char *1search(key,base,n,w,cmp)
char *key;

char *base;

int *n;

int w;

:nt (*cmp) ()5

static
int m,j;
#define TARGET base
#define SOURCE &key
#define LENGTH W
m = *n;
while(m-- > 0) {
1f((§ = (*cmp) (key,base)) == 0)
return base;
base += w;

*n = (*n)+1;

moveMEM(TARGET, SOURCE , LENGTH) ;
return TARGET;

Library Page 162

loginy

The loginv Function

Purpose:

Fetches the logged-disk vector, a 16-bit flag vector.
Fanction Header:

unsigned loginv()
Returns:

n A 16-bit word, where bit 1 is set when drive 1
is logged. Drives 0 to 15 correspond to A: to P:.

Exanple: Find out which disk drives are currently logged in.

#include <stdio.h>
main()

int i;
unsigned n;
n = loginv();
for(i=0;i<16;++1) {
if(n&1) printf(*Drive %c: is logged in\n*,i+'A');
n=(n>1);

}
Notes:

o Loginv() is not a standard function. It is important for writing
interactive CP/M software.

o To simulate loginv() on other systems, use the ccBDOS() function:

#include <stdio.h>
t{msigned loginv()

unsigned ccBDOS();
return ccBDOS(24);

Library Page 159

© et g g e e 4 ey <

Towmenm

The lowmem Function

Purpose:

Computes the lowest memory address that is assignable by sbrk().
The answer returned is sbrk(0).

Fanction Header:
char *1owmen()
Returns:

The break address for the program, last assigned by sbrk(), or
fixed at compile time by the program text and data, plus the
run-time file buffers.

Example: Check a file open to see if it called sbrk().

#define nfiles 0
#include <stdio.h>
main()

char *1owmem();
char *p;
FILE *fp,*fopen();
p = lownem();
if(fp = fopen(*TMP","w")) {
if(p == lowmem()) printf("No change in sbrk()\n");
else printf("sbrk() was called during fopen()\n");
fclose(fp);
unlink(“TMP");

}
Notes:

o This function is left around as an artifact. To produce portable
code, use sbrk(0) or core(0) instead.

Library Page 160

Ttoa

The 1toa Function

]

Purpose:

Converts a 32-bit signed long integer into a null-terminated string
of decimal digits, with leading minus sign as appropriate.

Function Header:

char *1toa(x,s)

Tong x; Long integer to be converted.

char *s; Buffer for string of decimal digits.
Returns:

H Base address of the conversion string.

Example: Convert a data item to a string of digits and print.

#include <stdio.h>
main()

char *1toa();

char s[20];

#define NUMBER (long)1010133

#define UNUIMB (Tong)100
puts(1toa(NUMBER,s));
puts{1toa(UNWMB,s));

Notes:

o Unsigned integers greater than 32767 will be treated as long
integer data by the compiler, unless a suitable cast is imposed
on the number.

o Signed integers from -32767 to 32767 will require a cast of

(long) 1in order to be used as an argument to ltoa(). See the
example.

o Long integers are 32 bits (4 bytes). Storage of a long integer is
such that you may address its lower order 16 bits as an integer,
without error. However, this is highly non-portable (68000 CPU,
for example).

o The cast of 1toa() is (char *), which must be declared prior to
usage as in the example above.

Library Page 163

makeFCB

The makeFCB Function

Purpose:

Makes a CP/M file control block of 36 bytes as per interface
standards. Expands * and ? wildcards.

Fenction Header:
VOID makeFCB(fcb,filename)

char fcb[36]; File control block buffer.
char *filename; Name of file, null-terminated.
Returns:

Nothing useful. Fills the file control block with nulls, expands
any wildcards * or ? in the file name to all question marks.

Exanple: Make a file control block from a wildcard file name.

#include <stdio.h>
main()

char fcb[36];

char *decodfF();
makeFCB(fcb,*A:*.TXT");
printf("string = %s\n","A:* . TXT");
printf("fcb = %s\n" ,decodF(fcb));

Notes:

o Decodf(fcb) decodes a file control block into a printable ASCII
file name in the usual CP/M format.

o Unspecified areas in the filename and extension are blank-filled.
Areas beyond the file name are filled with nulls as per CP/M
interface standards. A 36-byte file control block is assumed.

o Classic mistakes in using makeFCB() include reversal of the

arguments and the disaster of using a file control block shorter
than the required 36 bytes.

Library Page 164

malloc

The malloc Function

Purpose:

Malloc() allocates contiguous memory located between the end of the
program and the stack. Free() releases memory assigned by malloc().

Fanction Header:

char *malloc(m)
unsigned m; Unsigned integer, amount of memory
that is requested, in bytes.
Returns:

The base address of the area, on success, 0 if the request fails.

Example: Get 2048 bytes from malloc(), then free it.

#include <unix.h>
#include <stdio.h>
%etnen()

char *p;

p = malloc(2048);
if(p == (char *)0) puts(“Request failed");
else

: free(p);

Structure used by malloc(): The following 4-byte header appears just
before the base address returned by malloc(). It is used by both
malloc() and free(), so be careful not to corrupt it.

struct block {
struct block
*nxtblk;
unsigned
siz;

Library Page 165

malloc

Notes:
o Uses sbrk() to get raw system memory.
o You can't ask for more than 65531 bytes.
o Use free() to release a block.

o Code below derived from K&R(1978), pp 174-177. A few mods were
made to compact the code under C/80.

0 Two successive calls to malloc() will not in general result in a
single block of continuous memory.

o Calls to malloc() cause a header to be written at the beginning
of the block. Malloc() uses the header in an essential way -
don't write over it!

o Sfree() doesn't know about malloc(). Look out!

o Brk() doesn't know about malloc(). Look out!

o Memory obtained from sbrk() comes in hunks of size HEAPSIZE:

#define SIZBLOCK sizeof(struct block)
#define HEAPSIZE 256*S17BLOCK

This implies that malloc() can fail even though sbrk() can assign
more memory .

Library Page 166

max

The max Function

Purpose:
Computes the maximum value of two integer arguments,
Function Header:

int max(x,y)
int x,y; Integers to compare.

Returns:

|
]
—

The larger of x and y as signed integers, i.e., max(-1,-2) =
and max(1000,2000) = 2000.

Exanple: Print the maximum value of two numbers a,b entered at the
console.

#include <stdio.h>
main()

char s[129];
int a,b;

printf(“Enter number a: *);

gets(s); a = atoi(s);

printf("Enter number b: ");

gets(s); b = atoi(s);

printf("max(%d,2d) = %d\n",a,b,max(a,b));
}

Notes:

o The max() function used here is an honest function that works
only on integers. It fails on long integers and floats.

o For long integers, usemax = (a>b?a :b).

o For floats, usemax = (a> b ?a : b).

o Most 1ibraries assume the max() function is a macro defined in
the STDIO.H header file or in MATH.H. Such functions definitely

have side effects. Beware when you port the code. Engineer
against side effects when you write it for the first time.

Library Page 167

-

mems ize

The memsize Function

Purpose:

Computes the amount of free memory in the heap that is assignable
by the next call to sbrk().

Fenction Header:

unsigned mems ize()

Returns:

i
H
'

Unsigned integer in the range 0 to 65635, which represents the

! number of bytes free in the heap between the program end (as set by
; brk() or sbrk()) and the top of the user stack: memsize() =
highmem()-Towmen().

Exanple: Find the size of the biggest possible text buffer and use it to
; load a file into memory with raw read. :

#define nfiles 1

#define fd fp /* fd = fileno(fp), see fileno() */
#include <stdio.h>
main()

unsigned amt;
char *core();
FILE *fp,*fopen();
amt = memsize();
p = core(amt);
H printf("Internal buffer size %u\n",amt);
P if(fp = fopen("TMP","w")) {
amt = read(fd,p,amt);
i printf("Read %u bytes into the internal buffer\n",amt);

A et At i+

}
Notes:

o This function is left around as an artifact. It helps to build a
portable interface that allows code to be transported easily.
Note that memsize() can be written for another system to return a
fixed amount 1ike 110000,

Library Page 168

midstr

The midstr Function

Purpose:

Finds the position (1
Function Header:

int midstr(strl,str2)

char *strl;
char *str2;

...32767) at which str2 matches strl.

Source string.
String to match.

Returns:
k>0 If str2 matches strl starting at offset k-1.
0 No match.

Example: Test program for properties of midstr(). Reports timing
differences between midstr() and instr().

#include <stdio.h>
main()

{
int 1,3;

’j.
char str1{100],str2[100];

for(;;) (
fputs(“Enter strl: *
gets(strl);
fputs("Enter str2: *
gets(str2);
timer(0);

for(j=0; j<200;++j)

,stderr);

,stderr);

i = midstr(strl,str2);

timer(1);

printf("midstr = Zd\n",i);

timer(0);
for(j=0; j<200;++J)

i = instr(1,strl,str2);

timer(1);

grintf(“instr = %d\n",1);

Library Page 169

midstr

Notes:

o The first use for midstr() is to replicate the two-argument
INSTR(A$,B$) found in Microsoft's MBASIC programming language.

o This function is two to six times faster than instr(). Use it
where speed counts, 1ike in editor searches.

o A portable version of midstr() appears below, in case you need to
port the code to a different target. The portability causes the
speed to be lost, but it is useful for bringing up a program for
the first time. Fast implementations should not call strien() or
strnemp(). Assembler is mandatory even on a 10mhz 68000 CPU.

int midstr(s,t)
char *s *t;

int 1,j;

i = strien(t);

J=0;

while(*s) {
+i;
1fi*s == *t & strncmp(s,t,i) == 0) return j;
TS,

}

return 0;

Library Page 170

min

The min Function

Purpose: - -
Computes the minimum value of two integer arguments,

Faunction Header:

int min(x,y)
int x,y; Integers to compare.

Returns:

The smaller of x and y as signed integers, i.e., min(-1,-2) = -2
and min(1000,2000) = 1000.)

Exanple: Print the minimum value of two numbers a,b entered at the
console.

#include <stdio.h>
main()

{
char s[129];
int a,b;

printf(“Enter number a: “);
gets(s); a = atoi(s);
printf(“Enter number b: *);
gets(s); b = atoi(s);
l printf(“min(%d,%d) = %d\n",a,b,min(a,b));

Notes:

o The min() function used here is an honest function that works
only on integers. It fails on long integers and floats.

o For long integers, use min = (a <b ?a : b).
o For floats, usemin = (a <b ?a :b).
o Most libraries assume the min() function is a macro. Look in

the STDIO.H header file or in MATH.H. Such functions definitely
have side effects.

Library Page 171

B S

mktemp

The mktemp Function

Purpose:

Create new contents for the last 6 characters of a null-delimited
string. The string can be used as a filename (up to 8 chars, no
extension).

Faunction Header:

char *mktemp(tmp)

char *tmp; Address of the template string to be altered,
The argument should be a NULL-terminated string
which ends in the six special characters
XXXXXX.

Returns:

Its argument, the string base address. Generally, the return value
is not useful.

Example: Open a temporary file, write one byte, close it and delete the
file from the directory.

VOID testtmp()
{

FILE *fopen();
FILE *fp;

char *p,*mktemp();
char name[20];

strcpy (name, "@EXXXXXX");

mktemp (name) ;

strcat(name,".TMP*);

if(fp = fopen(name,"r*)) {
puts("M™P file already in use");
exit();

}
if(fp = fopen(name,"w")) {

putc('X',fp);
fclose(fp);

Notes:
o It is up to the caller to supply a string as requested.
o The filename is derived by writing ascii digits over the XXXXXX

portion of the string. Two leading characters are optional. An
extension can be added using strcat().

Library Page 172

modf

The modf Function

=3==

Purpose:

Splits float x = f + n, where n is an integer and float f satisfies
fabs(f) < 1.0.

Fanction Header:
float modf(x,nptr)

float x; Float to split.

int *nptr; Where to put the exponent.
Returns:

f The fraction, a float remainder.

n . via *nptr = n;
Exanple:

#define pfFLOAT 1
#include <math.h>
#include <stdio.h>
?ain(argc,argv) int argc; char **argv;

char s[129];

float x,f;

int n;

float atof();

float modf();
printf(®Enter float x: *); gets(s); x = atof(s);
f = modf(x,&n);
printf(®modf(%f,nptr) = %f, *nptr = %d\n*,x,f,n);

Notes:
o No error codes returned. No need to code for errno.
o No overflow check.

o No auto conversion to FLOAT.

Library Page 173

B

moveMEMN

The moveMEM Functfon

Purpose:
Copies one region of memory to another without ripple.
Function Header:

char *moveMEM(dest,source,n)

char *dest; Destination address.

char *source; Source address.

unsigned n; Number of bytes to fill,
Returns:

dest+n Next location after move.

Example: Copy a buffer to another location.

#include <stdio.h>
main()

{

char s[100];

char t[100];
fillchr(s,'A*,100);
moveMEM(t,s,100);

Notes:

o Usage of this function differs among 1ibraries. Often called
movmem() with arguments in a different order.

o The order of moveMEM arguments is the same as strncpy() and
strncat(), which is in turn the same order as fillchr(). This
consistency evidently escaped the authors of other 1ibraries.

o No ripple means that the buffers being moved may be overlapping.
There is no danger in using this function, whereas strncpy()
may have problems.

o In this library, auto-switching to a Z80 block move is made on

capable CPU's. If the 780 CPU test fails, then a standard 8080
block move is done,

Library Page 174

movmenm

The movmem Function

Purpose:
Non-ripple memory move. BDS-C, CI-86, WIZARD and LATTICE standard.
Fanction Header:

VOID movmem(source,dest,n)

char *source; Source address.

char *dest; Destination address.

int n; Number of bytes to move.
Returns:

Nothing.

Example: Copy a file control block and print it.

#include <unix.h>
#include <stdio.h>

main()

{

char .fcb[36];

extern char *I10fcb(];
int fd,i;

FILE *fp,*fopen();

fp = fopen(“TMP*,"w");
if(fp) (
fd = fileno(fp);
movmem(10fcb[fd],fcb,36);
fclose(fp); unlink("TMP*);
for(i=0;i<36;++i) printf(*fcb[%d] = %u\n",i,fcblil);

Library Page 175

movmem

Notes:

o This function calls the main 1ibrary function called moveMEM.
; The argument order of moveMEM() is the same as strncpy().
: The argument order of movmem() has the destination and source
: reversed from strncpy() and strncat().

o A portable version of movmem exists, but it is slow:

movmen(s,d,n)

char *s,*d; int n;

{

int m;

if(d<s) {

: while(n--) *d++ = *g++;
f else {
: d +=n; s +=n;
while(n--) *--d = *--g;

}

o The above source is the same as moveMEM(d,s,n). Both functions
are generally optimized. On an 8088/8086 machine, the string
primitives of the CPU are used. On a 280 machine, the CPU
block memory moves are used.

Library Page 176

numsort

The numsort Function

Purpose:

Distribution sort for numbers in High-Speed Assembler. Implements
Donald Knuth's MathSort algorithm for 16-bit numbers.

Function Header:
int numsort(n,table,scrap)
int n;
int table(];

int scrap(];

Returns:
0 Success.
Example: Sort a 1ist of integers.

#include <stdio.h>
main()

int i;
static
int datal] = {

9324,2352,3243,6556,5554,

| 4445, 4544, 5421, 42214343
auto int scrap[10+2561;

if(numsort(10,data,scrap) == 0)

Number of integers to sort.
Array of integer data. Minimum
size of the table is 2n bytes.
Array, scratch space, 2n+512
bytes minimum.

- for{(i=0;i<10;++i) printf(“%u\n" datali]);

Sample output:

2352
3243
4221
4343
4445
4544
5421
5554
6556
9324

Library Page 177

numsort

Notes:

o The order of the arguments is essential. Actually, the integer
n can be unsigned, as far as the assembler code is concerned,

But the address space of an 8080 machine will not allow more
than 32767 integers.

0 Sorts 12000 numbers in 3 seconds at 4mhz on a Z80 machine using
Digital Research CP/M 2.2.

o This réutine can only be used on 16-bit data.

o The source code is written in 8080 assembler, but full C source
appears in the source code comments. See the source archives:

o The use of an auto array can cause trouble. The total byte
count for all auto arrays in a function cannot exceed 32767.
If in doubt, then use sbrk() (or malloc()) followed by sfree()
(or free()).

o The scrap array is used by numsort() but it does not return
anything useful. The sorted data is returned in table[].

Library Page 178

T

open, opena

The open, opena Functions

Purpose:
Ascii File open() by file descriptor.

Fanction Header:

#include <unix.h>
int open(name,access)

char *name; An ascii NULL-terminated filename string
int access; Access, an integer 0,1,2. ASCII text mode
' only, as follows:
0 Read-only
1 Write-only
2 Update (read & wite)
Returns:
-1 Open failed - not the same as fopen! ;
fd Open worked, fd=file descriptor ;

WARNING:= In UNIX.H the following definition is made:
#define open opena

Note that opena(), openb() are real functions and not macro
definitions.

Ex??ple: Open a disk file by descriptor and write 128 bytes from a
uffer.

#include <unix.h>
#include <stdio.h>
pump (buffer,file)
char *buffer,*file;

int fd;
fd = open(file,1); /* open for output */
if(fd == -1) {
puts(“Bad open"); return;
write(fd buffer,128); ;
: close(fd); ¢

Library Page 179

open, opena

Notes:

0 Use of this function avoids seekend() and its corresponding
overhead. Append access is not an option.

o The CP/M devices “CON:", "RDR:", “LST:", "PUN:" can be opened by
using this function. They are unbuffered files. Console input has
a type-ahead buffer, which makes it a hybrid unbuffered file.

0 Binary mode is supported through openb().

0 Beware of the lack of portability of binary mode. When

implemented, many libraries try to do so by extended coding of
the access. The latter is the worst of choices since it
transports invisible program bugs.

Library Page 180

openb

The openb Function

Purpose:

Binary File open() by file descriptor.
Function Header:

int openb(name,access)

char *name; An ascii MULL-terminated filename string
int access; Access, an integer 0,1,2. BINARY text mode
only, as follows:
0 Read-only
1 Write-only
2 Update (read & write)
Returns:
-1 Open failed - not the same as fopen!
fd Open worked, fd=file descriptor

WARNING: In UNIX.H the following definition is made:
#define open opena

Note that opena(), openb() are real functions and not macro
definitions.

S SV

Exanple: Open a disk file by descriptor and write 128 bytes from a
buffer. The write will not translate CR/LF pairs.

#include <unix.h>
#include <stdio.h>
pump (buffer,file)
char *buffer *file;

int fd;
fd = open(file,1); /* open for output */
if(fd == -1) {
puts("Bad open"); return; .
write(fd buffer,128); :
close(fd); :
} :

Library Page 181

Use of this function avoids seekend() and 1ts corresponding
overhead. Append access is not an option.

The CP/M devices "CON:*, “RDR:", “LST:*, "PUN:" can be opened by
using this function. They are unbuffered files. Console input has
a type-ahead buffer, which makes it a hybrid unbuffered file.

Binary support for the devices does not really exist. The console
can be put into binary mode by using the function CHmode(). This
is a CP/M kludge and not a portable feature.

Beware of the lack of portability of binary access. When
implemented, many 1ibraries try to do so by extended coding of
the access. The latter is the worst of choices since it
transports invisible program bugs.

Library Page 182

outport

The outport Function

Purpose:
Sends a value out a given CPU port.

Faunction Header:

int outport(port,value)

int port; Port number.
int value; Value to transmit.
Returns:

Nothing useful. Assumes the port is ready to receive a character.
See the application notes and the following example.

Exanple: Send characters out the modem port.

#def ine MODEM 0330 /* Z90A computer, 280 CPU, 255 ports */
#define OFFSET 0005 /* 8250 UART, line status register */
#define ISEMPTY 0040 /* test transmitter register empty */
#include <stdio.h>

main()

fprintf(stderr,”Enter characters, end with ctri1-Z\n*);
while((x = getchar()) 1= EOF) {
/* get char, wait for status, ship the byte */
while((inport(MODEM+OFFSET)&ISEMPTY) == 0) ;
outport(MODEM,x) ;

Notes:

0 On most machines the status of the port must be interrogated in
order to write to the data port. This is true regardless of the
port buffering.

o Disk I/0 ports are often interrupt driven, so writing to the port
will require set-up of the interrupt vector for return.

o Clock and timer chips 1ike the 8253 Intel make for good examples
of port usage in C programs. See also Analog-to-Digital boards
and parallel port interfaces. These appear on music boards and
game interfaces. The signals are joysticks, mice, light pens,
plotters, graphics tablets and the 1like.

o Port operations are inherently machine-dependent. Most systems

people don't care, however, because the problem being solved by
port operations is usually special and one-time.

Library Page 183

Peekb, Peekl, Peekw

The Peekb, Peekw and Peekl Functions

?urpose:

Fetch a value from main memory, either 8, 16 or 32 bits.

Function Header:
char peekb(addr);
char *addr; Byte address.
uns igned peekw(addr);
char *addr; Int address.
long peekl(addr);
char *addr; Long integer address.
Returns:
(char)peekb() Byte at address
(int)peekw() Word at address
(long) peek1() Long integer at address

Example: Access a long integer in three ways.

#define pfLONG 1
#include <stdio.h>
main()

char *addr;

Tong x;

char peekb(); unsigned peekw(); Tong peek1();
X = 238823492;
printf(“x = 238823492\n");
printf("byte=%c\n" ,peekb(&x));

printf(*word=%u\n" ,peekw(&x));
printf("long=%1d\n" ,peek1(8x));

Motes:
o These functions are used when it is clumsy to use pointers.

0 Pointers sometimes hide ideas. These functions can help to
document otherwise obscure code.

o Beware of using peek1() without its proper declaration.

Library Page 184

perror

The perror Function

Purpose:

Writes a short message on the system console, describing the last
system error, as detected by the variable errno. The message is derived
from the string table sys errlist[].

Faunction Header:

#include <errno.h>
char *sys errlist[]; Error strings. See below.

int sys nerr; Number of error strings.

int perror(s)

char *s; Prefix string to print prior to message.
Returns: V

The value of errno before the call.
Exanple: Print the current error from variable errno.

#include <unix.h>
#include <math.h>
#define pfFLOAT 1
#include <stdio.h>
main()

{

float sin();

extern int errno;
errno = 0;
printf(“sin(%f) = %f\n",5600.01,s1n(5600.01));
if(errno) perror(*sin function error: ");

Library Page 185

perror

Notes:

o Not much of the library currently uses the errno variable. Mostly

for the transcendental functions.

o Fixes to the library should go through this routine during

debugging to insure that the proper messages get printed.

o The currently supported error message appear below:

char *sys errlist[] = {
"Errno 0 detected”,
"Permission denied",
"File not found",

- /* No such process */
" /* Systen call interrupted by signal */
*1/0 error”

“No such I/O device",

" /* Too many arguments to exec */

- /* Wrong format for executable file */
"Bad file descriptor®,

"~ /* No children */

" /* Cannot fork */
“Too 1ittle memory available®,
", /* File access conflict with user rights */
", /* Bad memory address supplied */
- /* Wrong sort of device */
" /* Device already in use */
“The file already exists",
" /* You cannot link across devices */
" /* Silly access to this device */
" /* Directory name expected */

/* Directory name not expected */

/* Invalid argument */

/* System out of file table space */
/* Request for too many file descriptors */
/* Not a teletype device */

/* File currently in use */

/* File became too large for system */
'D1sk system out of space”,

", /* Seek attempted on pipe */

, /* Read-only file system */

", /* Too many links to a file */

e /* Write attempt on broken pipe */
“Out of function domain”,

"Result out of range”

.
»

v ® e v w v e w

int sys nerr = sizeof(sys errlist)/sizeof(sys err1ist(0]);

Library Page 186

Pokeb, Pokew, Pokel

Purpose:
Store a value to main memory, either 8, 16 or 32 bits.
Function Header:
pokeb(addr,x);
char *addr; Address to store the byte
char x; 8-bit data to be stored
pokew(addr,x) ;
char *addr; Address to store the word
unsigned x; 16-bit data to be stored
pokel(addr,x) ;
char *addr; Address to store the long integer
long x; 32-bit data to be stored
Returns:

Nothing useful
Example: Union manipulktion using the poke functions.

#define pfLONG 1
#include <stdio.h>
main()

unfon { char c; int i; long x; } xx;

printf("Answers should be: 65, 65000, 6500000\n");
pokeb(&xx.c,(char)65);
printf(“character xx.c=%u\n",xx.c);
pokew(&xx. 1, (uns igned)65000) ;
printf(“integer xx.i=%u\n",xx.i);
pokel1({&xx.x,(10ong)6500000);

) printf(*long xx.x=%1d\n* ,xx.x);

Notes:
o These functions are used when it is clumsy to use pointers.

o Pointers sometimes hide ideas. These functions can help to
document otherwise obscure code.

o A typical application in systems is pokew(peekw(1)-16). While
it can be done with pointers, the above is easier to debug.

Library Page 187

pow

The pow Function

Purpose:

Compute the power of real float values x,y i.e., computes x rafsed
to power y,

Fanction Header:
float pow(x,y) Standard function x’.
float x,y; Base = x, exponent =y,
Returns:
number x and y in range
1.0 X nonzero and y = 0
INF arguments give answer too large
errno = ERANGE returned to flag error
~INF x <0 and y not an integer
-INF x=0andy <=0
errno = EDOM returned to flag error
-pov(-x,y) x <0 and y = odd integer
pow(-x,y) x <0 and y = even integer
Exanple:

#define pfFLOAT 1
#include gamath.h>
#include <stdio.h>
main(argc,argv) int argc; char **argv;

char s[129];

float x,y;

extern int errno;

float atof();

float pow();
errno = 0;
printf("Enter float base x: *); gets(s); x = atof(s);
printf("Enter float exponent y: *); gets(s); y = atof(s);
printf("pow(%f,%f) = %f, errno = %d\n",x,y,pow(x,y) ,errno);

Notes:
o Table lookup. See C&H 6.2,34. Tables from C&H 1403.
o This function tends to be a bit slow.

o pow() uses the power of 10 function powl0(), which does
limited error checking.

Library Page 188

powlo

The powl0 Function

Purpose:

Compute power base 10 of real float value y i.e., computes 10
raised to power y.

Faunction Header:

float powl0(y) Standard function 10%.

float y; Base = 10, exponent = y.
Returns:

number Assume y in range.
Exanple:

#define pfFLOAT 1
#include <math.h>
#include <stdio.h>
main(argc,argv) int argc; char **argv;

{

char s[129];

float y;

extern int errno;

float atof();

float powl0();
errno = 0;
printf("Enter float exponent y: "); gets(s); y = atof(s);
printf(*powl0(%f) = %f, errno = %d\n*,y,powl0(y) ,errno);

Notes:

o This function does almost no error checking because the true
front end is the pow() function. This part of the code is slow
already, and any additional error checking seems not to be
needed in a float-only library.

Library Page 189

primtf

The printf Function
Purpose:

Performs output formatting for the standard output stream stdout.
Uses a control string followed by appropriate arguments.

Fanction Header:

int printf(control,argl,arg2,...)
char *control; Control string, see below.
argl,arg2,... Appropriate arguments, see below.

The control string contains:

White space Tabs, spaces, return, formfeed, vertical
tab, newline, backspace

Escapes Octal values prefixed by \, e.g., \007

Characters Ordinary printing characters other than %

%% Prints as %

3 Conversion flag

Following a conversion flag %, there will be an optional FLAG
CHARACTER:

1. minus sign, signifies left-justification rather than right.
2. zero, means pad with zero rather than spaces.

Harbison & Steele recommend other modifiers, which are not
supported:

3. plus sign, means always output + or - with numbers.
4. space, means always produce - or space fill,
5. #, means use a variant of the main conversion operation.

Following the flag character:

6. Field width, a sequence of decimal digits. Conversions are
padded to this width, unless the field width is exceeded,
in which case the whole field is printed and padding is
ignored.

Following the field width:

7. An optional period and string of decimal digits, whose
value is used to control the number of floating-point
digits to the right of the decimal point. This called the
Precision Field.

)

Library Page 190

printf

Following the precision field:

8. An optional LONG specifier, expressed as lowercase 1, which
is used where such a prefix makes sense. This is called the
Long Prefix Field.

Following the long prefix field:

9. A conversion operation, expressed as a single character
taken from the lowercase letters:

character

string

signed decimal base 10

unsigned decimal base 10

octal base 8

hexadecimal base 16

binary base 2

scientific format float, exponents
float format without exponents

smaller of e and f formats, strip zeros

QP OXOCQwO

The conversions E, G, X are not supported. The possible long
conversions are:

1d long signed decimal base 10
lo long octal base 8

Tx long hexadecimal base 16

b long binary base 2

Tu long unsigned decimal base 10

Hexadecimal conversions use capital letters only. Binary conversion
is provided as a debugging convenience. Do not expect it to be a
portable feature of printf. A11 scientific exponents use lower case
e rather than E.

Returns:
EOF Error occurred for output
? No standard exists for return otherwise.

Probably should be the number of characters printed.

Under C/80, extra parentheses are required to capture the return
value of printf, e.g., (printf(...)). But CP/M cannot tolerate 1/0
on a full disk, so the library gracefully warm boots, long before
you could capture an EOF indication.

Library Page 191

Bt

printf

Exanple: Control of field width.

#define mathlib 1

#include <stdio.h>

#undef printf

#defz?e printf prnt 1(),prnt 2 /* select portable printf */
main - -

static char *s = "Hello World";

static char ¢ = 'A';
printf("%10s :%¥10s:\n",":%10s:",s);
printf(*%10s :%-10s:\n",":%-10s:",s);
printf("%10s :%20s:\n",":%20s:",s);
printf("¥10s :%-20s:\n",":%-20s:",s);
printf("%10s :%20.10s:\n*,":%20.10s:"*,s);
printf(*%10s :%-20.10s:\n",":%-20.10s:",s);
printf(*¥10s :%.10s:\n",":%.10s:",s);
printf("%10s :%c:\n*,":%c:",c);
printf(*¥10s :%10c:\n",":%10c:",c);
printf("%10s :%-10c:\n",":%-10c:",c);
printf(*¥10s :3010c:\n",":%010c:*,c);
printf("%10s :%-010c:\n",":%-010c:",c);
printf("%10s :%20s:\n",*:%20s:",*");

:%10s: :Hello World:

:%-10s: :Hello World:
:%20s: : Hello World:
:%4-20s: :Hello World :
:%20.10s: : Hello World:
:%-20.10s: :Hello Worl :

:%.10s: :Hello Worl:

:%Cc: :A:
:%10c: : A:
:%-10c: :A :

:%010c: :000000000A:
:%-010c: :A000000000:
:%20s: :

In this library, precision is the string length of the conversion

regardless of the selected precision. As stated in K&R, precision takes
effect only for float numbers and strings.

Library Page 192

printf

Example: Control of decimal padding character (0 or space).

#define mathlib 1
#include <stdio.h>
#undef printf
ldefz?e printf prat 1(),prat 2 /* select portable printf */
main - -

{
static int x = 1001;

}

printf("%10s
printf(“%10s
printf("%10s
printf(*%10s
printf("%10s
printf(“%10s

:%10d:\n",":%10d:" ,x);
:%-10d:\n",":%-10d:",x);
:%010d:\n" ,":%010d:" ,x);
$%10x:\n",": %10x:" ,x);
:%-10x:\n",":%-10x:" ,x);
$%010x:\n",":%010x:",x);

Output of the program:
:310d: : 100

1:

:%-10d:
:%010d:
(¥10x:
:%-10x:
:%010x:

:1001 :
:0000001001:

3E9:

: 369 :
:00000003E9:

Example: Control of floating point precision.

#define pfFLOAT 1
#include <stdio.h>
main()

{
static float f = 45,3483;

printf(*%10s
printf(*%410s
printf(*%10s
printf("%10s
printf("%10s
printf("%10s
printf(“%10s
printf(*%¥10s
printf("210s
printf("%10s
printf(*%10s
printf("%10s
printf(¥%10s
printf(“%10s
printf(*%10s
printf("£10s
printf(*%10s
printf("%10s

:%8.6f:\n",*:%8.6f:",f);
:%-8.6f:\n" ":%-8.6f:",f);
:%08.6f:\n",":%08.6f:",f);
:%20.10f:\n" ,*:%20.10f:" ,f);
:%-20.10f:\n",":%-20.10f:" ,f);
:%020.10f:\n"*,":%020.10f:" ,f);
:%8.6e:\n",":18.6e:",f);
:%-8.6e:\n",":%-8.6e:",f);
:%08.6e:\n",":%08.6e:",f);
:%20.10e:\n",":%20.10e:",f);
:%-20.10e:\n","*:%-20.10e:",f);
:3020.10e:\n",":%020.10e:",f);
:%8.6g:\n",":%8.6q:",f);
:%-8.6g:\n" ,":%-8.6g:",f);
:%08.6g:\n",*:%208.6q:",f);
:420.10g:\n*,":%20.10g:",f);
:%-20.10g:\n",*:%-20.10g:",f);
:%020.10g:\n",*:2020.10g:",f);

Library Page 193

printf

Output of the program:

:%8.6f: :45,348300:
:%-8.6f: :45,348300:
:%08.6f: :45.348300:

:%20.10f: 45,3483000000:
:%-20.10f: :45.3483000000 :
:2020.10f: :000000045. 3483000000:

1%8.6e: :4.534830e+01:
:%2-8.6e: :4.534830e+01:
1%08.6e: :4.534830e+01:

:%20.10e: : 4,5348300000e+01:
:%-20.10e: :4,5348300000e+01 :
:%020.10e: :00004.5348300000e+01:

:%8.6g: : 45.3483:
:%-8.69: :45.3483 :
1%08.6g: :045.3483:

:%20.10q: : 45,3483:
:2-20.10g: :45.3483 :
:%020.10g: :000000000000045. 3483:

Notes:

o Printf is not recursive. This means that you cannot have the
result of a printf, fprintf or sprintf function call in the
argument 1ist for printf.

0 The recursion loss is in the #define kludge for multiple
arguments. The stack location is stored in a static variable
and not on the stack, so repeated calls over-write the stack
location,

0 The small printf in the main library does have long or float
support and does not pretend to be K&R standard, although it
comes very close. Its advantage is speed, and to some extent,
recursion,

0 Binary conversion %b 1s not supported by very many 1ibraries,
however it is an invaluable debugging tool, especially in view
of the lack of bit fields in C/80, Try to restrain yourself and
use it only in debug code.

o The fat for printf comes largely from support code for Tong

and float data types. See the examples above for switching
code to turn on just what you need in your application,

Library Page 194

putc

The putc Function

Purpose:
Writes a character to an open stream.
Function Header:

int putc(x,fp)

int x; Character to output
FILE *fp; Open stream pointer
Returns:
-1 If end of media was reached. We define EOF to be -1.

End of file on output is either an error or end of

media (out of disk space).

c Character to be written (x), on success.

Example: The following writes characters to a file entered on the
command 1ine until ctr1-Z is entered. The explicit use of fclose() is
required to enter the file information into the disk directory and flush

any orphan record to disk.

#include <stdio.h>
main(argc,argv)
int argc;

char **argv;

int x;
FILE *fp,*fopen();
if(arge <= 1) exit(0);

if((fp = fopen(argv[1],*w")) == (FILE *)0) {

puts(“Open failure"); exit(0);

while((x = getchar()) !'= EOF) {
putc(x,fp);

fclose(fp);

Library Page 195

putc

Notes:

o This function is not a macro in the present library. Expect it
to be a macro in most C libraries. It has no side effects.

o Under CP/M, the BIOS will complain on a disk write error, which
is the only possibility besides end of file. In this case, the
system will ki1l the running program unless you fnsist upon
continuing with the error.

o A return of -1 under C/80 means that end of media was
encountered. Otherwise, expect the character to be returned.
Output to devices PUN: and LST: are expected to be subject to
CR/LF translation unless done in binary mode. See putcbinary()
and writeb().

o Beware of mixing file descriptors and stream pointers. While C/80
will buy it, other systems won't. The connection is fd =
fileno(fp), where fd is an integer and fp is a stream pointer,

0 C/80 will not allow an output to a full disk. Generally, putc()

fails because of no disk space, and you will be bounced out to
the system,

Library Page 196

putcbinary

Purpose:

Writes a character to an open stream in binary mode. Not a K&R
function. Recognizes CON:, LST:, PUN: devices.

Function Header:
int putcbinary(x,fp)

int x; Character to output
FILE *fp; Open stream pointer
Returns:
-1 If end of file was reached. We define EOF to be -1,
For output, EOF means end of media.
c Character to be written (x), on success.

Exanple: The following writes characters to stream stdout until the user
types ctrl-Z. A11 characters are written in binary mode.

#include <stdio.h>
main(argc,argv)
int argc;

char **argv;

int x;

while((x = getchar()) != EOF) {
putcbinary(x,stdout);

Library Page 197

putcbinary

Notes:

0 A return of -1 under C/80 means that end of media was
encountered. Otherwise, expect the character to be returned.
Output to devices CON:, PUN: and LST: are expected to be subject
to CR/LF translation.

o This function is a 1ibrary internal, documented for your
convenience. Do not expect it to be present on other systems.

0 Since ROR: is a read-only device, putcbinary() will come back
with an error for that stream. Use PUN:, also called AX0:.

o It is more portable to use putcbinary() than to constantly use
the non-portable bios() features. Most target machines will
support a function 1ike putcbinary(), but the details of how
to access binary output mode will vary across machines.

Library Page 198

putchar

Purpose:

Writes a character to the standard output stream stdout.
Function Header:

int putchar()

Returns:
c Character output to stream stdout, on success.
-1 If an output error occurred, such as no disk space.

Exanple: The following writes characters to the console until ctril-Z
is encountered.

#include <stdio.h>

main()
int x;
while((x = getchar()) != EOF) {
putchar(x);
}
Notes:

o Expect putchar to be a macro in most C libraries. It has no side
effects. In the present library it is an honest function.

o Under CP/M, the BIOS will complain on a disk write error, which
is the only possibility.

o A return of -1 under C/80 means that an error was encountered.

o putchar() writes to stream stdout, which may in fact be a file
due to re-direction.

o If stream stdout is the console CON: or the punch PUN: (modem),
then CR/LF translation is assumed. To disable this feature, use
writeb() or putcbinary(). Under Bell Labs Unix systems, a newline
character is used instead of the CP/M CR/LF pair, hence the need
to convert will not exist on such systems.

Library Page 199

putl

The putl Function

Purpose:

Writes a 32-bit long integer to the stream, in Intel Reverse
Format.

Fanction Header:

long put1(x,fp)

long x; 32-bit integer to output to file

FILE *fp; Stream pointer, open stream
Returns:

X 32-bit word, on success
-1 Error or end of file

Example: Write out long integers to a file.
YOID dumplongs(fp,fi,n)

FILE *fp; Open output stream
FILE *fi; Open input stream
}nt n; Number of elements

long x,putl(),getl(); .
while(n) {
if((x = get1(fi)) == EOF) {
if(feof(fi) == EOF) break;

}
if(puti(x,fp) == EOF) {
if(x != EOF) break;

--n;

o To detect end of media, check putl(x,fp) != x && x I= -1,

o Beware of this function on other machines. It hides the byte sex
problem. See for example CP/M-68K on the Motorola 68000
processor. Other libraries may use putc() to write puti(),
thereby allowing translation of characters data corruption.

o Files opened for ASCII text mode usually cannot output a long
integer using putc() or fputc() due to the danger of CR/LF
translation. The latter is turned off during calls to put1() by
using a special library function putcbinary().

Library Page 200

puts

The puts Function
Purpose:

Writes characters to open stream stdout and appends a newline,

Function Header:

int puts(s)

char *s; Base address of the string to be output.
Returns:
EOF Error occurred.
c Success, last character ¢ which was
output.

Exanple: A version of ECHO.C.

#include <stdio.h>
main()

{
char *gets();
char s[129]; '
while(TRUE) { %
if(stdin == (FILE *)0)
fprintf(stderr "Enter a string or ctrl-Z to exit: *);
if(gets(s) == (char *)0) break;
puts(s);

}
Notes:

o An error for puts() is usually a disk space error, therefore
the library will dump the user to the system. CP/M will not
tolerate 1/0 to a full disk.

o puts() differs from fputs() in that it appends a newline
after the string is output. This newline is in addition to
any newline that might be in the string.

Library Page 201

putw

The putw Function
Purpose:

Writes a 16-bit word to the stream, in Intel Reverse Format.

Function Header:

unsigned putw(n,fp)
unsigned n; 16-bit unsigned integer to output
FILE *fp; Stream pointer for the output file

Returns:

n 16-bit word, on success.
-1 Error (write-protected) or end of media.

Exanple: Write words to a file and check for end of media.

pumpword(fp,x)
FILE *fp;
unsigned x;

if(putw(x,fp) == EOF) {
if(x != EOF) return -1;

return 0;

Notes:

0 Beware of this function on other machines. It hides the byte sex
problem. See for example CP/M-68K on the Motorola 68000
processor. It may be possible that another target machine uses
putc() to write putw(), in which case character translation can
occur during output,

o Files opened for ASCII text mode usually cannot output an integer
using putc() or fputc() due to the danger of CR/LF translation.
The latter is turned off during calls to putw() because of the
explicit use of the special library function putcbinary().

Library Page 202

qsort

The gsort Function

Quicksort with center pivot, stack control, and easy-to-change
comparison method.

This version sorts fixed-length data items. It is ideal for
integers, longs, floats and packed string data without delimiters.

Fenction Header:

int gsort(base,n,s,CMP)

char *base; Base address of the raw string data
int n; Number of blocks to sort

int s; Number of bytes in each block

int (*cMP)(); Compare routine for two block pointers

p.q that returns an integer with the
same rules used by Unix strcmp(p,q):

=0 Blocks p,q are equal
<0 p<q
>0 p>q

Beware of using ordinary strcmp() - it requires a NULL at the end
of each string.

Returns:

0 Always

Example: Sort an array of integers.

#include <unix.h>

#include <stdio.h>

int m (p,q) int *p,*q; { return (*p - *q);}
int q 13? 12,1,3,-2,16,7,9,34,-90,10};

int p[10] = {12,1,3,-2,16,7,9 34,-90,10};
main()

sl

{
int {;
qsort(p,10,2,mycmp) ;
for(i=0; i<10; s++i) printf("%d %d, %d\n",i,pl11,q[1]);

Library Page 203

qsort

Output from the above sample program

0.

0

-90, 12

.2, 1

1, 3

3, -2
7, 16
9,7
10, 9
12, 34
16, -90
34, 10

Qsort() can sort raw integers, longs, floats or
strings. However, the string sort is not efficient.

Use quick() to sort string pointer arrays.

Use cmpi(), cmpl(), cmpf(), cmps() to compare integers,
Tongs, floats and strings, respectively.

References:

BYTE Oct-84, p 369 The Unix Book, p 200
By William M. Raike by Banahan & Rutter
B*Y*T*E J*A*P*A*N John Wiley & Sons, NY (1983)

Library Page 204

quick

The quicksort Function

Quicksort with center pivot, stack control, and easy-to-change
comparison method,

Fanction Header:
quick(1o,hi,base,CMP)

int 1lo; First array subscript

int hi; Last array subscript

char *base(]; Base address of pointer array

int (*cMP)(); Compare routine for two strings p,q

that returns an integer with the
same rules used by Unix strcmp(p,q):

=0 strings p,q are equal
<0 p<q
>0 pP>q
Returns:
0 Always

Example: Sort an array of strings.

Char *p[IO] = {uau’ucn.udu’nou,ugu‘nzu'uln'u:;u’ngu'usu};
Char *q[lol = {nau'ucu,udu’non‘ngn'nzn'ulu’u3u.u8u’n5n];
int strcmp();

#include <unix.h>

#include <stdio.h>

main()

int 1;
quick(0,9,p,strcmp);
| for(i=0;1<10;++i) printf(*%d. %s, %s\n",i,p{1],q(11);

Results from the above program

0. 0, a Numerals are less than letters
1.1, C in the ASCII standard

2. 2,d

3. 3,0

4. 5,9

5.8, 2

6.9, 1

7. ¢, 3 UPPERCASE is less than lowercase
8. a, 8 in the ASCII standard

9.d, 5

Library Page 205

o

quick

Notes:
o You can most often use strcmp() as the argument for cmp().

o It is necessary to declare the function cmp() before the call to
quick(). The required ASM code for the call is LXI H,cmp | PUSH
H. Look out for the incorrect LHLD cmp | PUSH H.

o To make a compare for mixed upper and lower case string data,
write a function called mycmp() and use it instead of strcmp() in
the example below.

o This source file is very portable. Use it on any system with
minimal C compiler.

Reference:
BYTE Oct-84, p 369

By William M. Raike
BYY*TAE J*A*P*A*N

Library Page 206

rad

The rad Function

Changes float x degrees to radians.

Function Header:

float rad(x) Radian value of argument x.
float x; Float value in degrees.
Returns:

angle in radians (a FLOAT)
Exanple:

#define pfFLOAT 1
#include <math.h>
#include <stdio.h>
main(argc,argv) int argc; char **argv;

char s[129];

float x;

extern int errno;

float atof();

float sin(),rad();
printft“Enter float degrees x: "); gets(s); x = atof(s);
printf("sin(rad(%f)) = %f, rad(%f) = %f, errno = %d\n",

x,sin{rad(x)),x,rad(x),errno);

}
Notes:
o Method used is angle = (P1/180.0)*x.
o No error codes returned. No need to code for errno.
o No overflow check.

o No auto conversion to FLOAT.

Library Page 207

rand and srand

The rand and srand Functions

Purpose:

Rand() generates pseudo-random numbers. Default seed is 2168. To
get other seeds you must call srand().

Fenction Header:

unsigned rand() Returns next random number in sequence.

VOID srand(seed) Seeds the random number generator.

int seed; Seed must be a 16-bit integer.
Returns:

Unsigned integer in the range 0 to 65535.

Exanple: Seed the random number generator from the 2100 2ms clock, then
print 10 random numbers.

#include <unix.h>
#include <stdio.h>
main(argc,argv) int argc; char **argv;

int 1,peekw(),rand();

srand(peekw(11));
for(i=0;1<10;++1) printf("fu\n”",rand());

Notes:

: o Srand(seed) initializes the pseudorandom number generator
, with the value of seed. The same seed produces the same
» series of numbers from function rand().

o The default value of 2168 is used in case you fail to seed
the generator. This makes for rapid testing of programs. The
seeding method is left unresolved until it becomes important.

o Older versions of the 1ibrary included a function called randl().
It still exists, for those cases when you want to have a large
number of random number generators running simultaneously. See
the source archives.

Library Page 208

rdDISK

The rdDISK Function

Direct-disk read function for CP/M 2.2.
Function Header:

rdDISK (track ,record,drive,buffer)

int track; Physical track to read, 0 = first.
int record; Record to read fram track, 1 = first.
int drive; Drive number. Use 0 for A:, 1 for B:, etc.
char buffer(128]; Location to copy disk data.
Returns:

Buffer filled on success.
Error code for a disk read is returned. Should be 0 for success.

Example: Read track 0 sector 1, the Zenith label sector.

#include <stdio.h>
?ain()

int i; char buf[128];

#define TRK 0

#define SEC 1

#define DSK 0
printf("rdDISK() = %d\n*, 1 = rdDISK (TRK, SEC,DSK,buf) };
for(i=0;1<128;++1) printf(”%OZx\n',buf[ij&ZSS);

Notes:

o This was used to code the CROSS-CHECK source for the 790. See
Dr.Dobbs Journal, September, 1983. It is also useful for writing
your own disk patcher or disk scanner.

o Note that rdDISK() is coded in assembly language and is highly
non-portable. The function rdDISK() can be written in terms of
the function bios(). This is recommended for portability,
especially to CP/M- 68K and Unix. Here's the portable source:

bios(12,buffer); Under CP/M-68K the second
bios(9,drive); argument of bios() has a
bios(10,track); cast of (long).
bios(11,record); Under CP/M-80 2.2, the cast
return bios(13,0); is (int).

o Use bios(13,1) to do an immediate read that gets around any
LRU buffering scheme. Note that rdDISK() uses bios{13,0).

Library Page 209

T

read - C/80 Standar d read

The reaq__Function

Purpose:

Reads a block of characters off the disk in binary mode. The block
must be a multiple of 128 bytes. Adheres to the Software Toolworks
standard for read(). Use UNIX.H to obtain the Bell Labs Unix standard.

Fenction Header:

#include <stdio.h>
unsigned read (fp,buffer,count)

FILE *fp; - Open stream pointer,
char *buffer; Buffer for the read operation.
unsigned count; Number of bytes to read.

Must be a multiple of 128.
Returns:

The number of bytes actually read.
The number 0 is returned if EOF is reached.

Example: Read 2048 bytes from a disk file,

#include <stdio.h>
get2048(fp,buf)
FILE *fp;

?har buf(2048];

unsigned x,read ();
x = read (Tp,buf,b2048);
if(x != 2048) puts("Read less than 2048");
if(x == 0) puts(“Probably EOF*);

Library Page 210

read - C/780 Standard read

Notes:

Streams with descriptors 252,253,254,255 are devices. The C/80
read () function cannot use these device descriptors. Use getc()
for safety.

Some systems return -1 on error. Your source code should always
check read () <= 0 rather than read () == 0.

A read failure is usually due to end of file. Since the
€/80 read () function operates in binary mode only, the
ctr1-Z marker at the end of an ASCII file is not considered.

The read () function under C/80 operates in quanta of 128 bytes.
You cannot read 1 character. See UNIX.H and the Unix-style
read() and fread() functions for an alternative.

This read function uses CP/M function 33 with manual advance of
the record number. The initial record number is saved in the
system variable I0sect[fp].

The symbol read is the same as read in CLIB.REL. Portable

source code should use read instead of read. 01d C/80 code
should compile without changes. Unix code should use UNIX.H.

Library Page 211

read, reada

The read, reada Functions

Transfers bytes from a non-stream file to main memory. Move n bytes
per call to a pre-assigned buffer. The transfer suffers from cr/1f
translation if the file was opened in Ascii mode (the usual case).

Fanction Header:
int reada(fd,buffer,n)

int fd; File descriptor, fd=fileno(fp) where
fp is the stream pointer.
char *buffer; Pointer to base of memory storage
large enough to accept byte transfer.
int n; Number of bytes to transfer, 0...32767.
Returns:
m The number of bytes actually transferred, an
integer quantity 0...32767.
-1 Error

WARNING= In UNIX.H appears the definition
#define read reada
Example: Read 1 byte fram the standard input.
#include <unix. h>
#include <stdio.h>
main()
int x;

read(fileno(stdin),sx,1);
fprintf(stderr,"Byte read = %d ASCII\n",x);

Notes:
o Useful for reading in Ascii data from the current file pointer.
0 Recognizes devices “CON:", "RDR:".

o The primitive read() 1is used implicitly, but all Unix re-
direction is in force, because of the explicit use of getc().

o The UNIX.H definition of read() is reada(). It does correct 1/0
but suffers a slowdown with small buffer sizes.

Library Page 212

readb

The readb Function

Purpose:

Transfers bytes from a non-stream file to main memory. Move n by tes
per call to a pre-assigned buffer. A1l byte transfers are in binary
mode- no cr/1f translation.

Function Header:

int readb(fd,buffer,n)

int fd; File descriptor, fd=fileno(fp) where
fp is the stream pointer.
char *buffer; Pointer to base of memory storage
large enough to accept byte transfer.
int n; Number of bytes to transfer, 0...32767.
Returns:
m The number of bytes actually transferred, an
integer quantity 0...32767.
-1 Error

MARNING: In UNIX.H appears the definition
#define read reada

Example: Read one byte, binary mode, from a file entered on the command
line. If it works, then print the byte.

#include <unix.h>
#include <stdio.h>
main(argc,argv)

int argc; char **argv;

FILE *fp,*fopenb();
int x;
if(argec > 1) {
fp = fopenb(argv(1],"r");
if(fp) {
read(fileno(fp),8x,1);
fprintf(stderr,“Byte read = %u\n",x};

Library Page 213

readb

Notes:

o Useful for reading in binary data. A11 1/0 is stream type. This
function uses the library primitive getcbinary().

o The UNIX.H definition of read() is reada(), which does Ascii 1/0
correctly on files and devices.

o To get no-echo input, the best procedure is to write a special
function 1ike getbyte() that will at least cause the ported

code to encapsule the problem. This feature is available on all
systems but is indeed sometimes difficult to interface.

o Text editing features, ctr1-B processing and end of file

detection other than end of record are all disabled under
readb() when using the console device.

Library Page 214

realloc

The realloc Function

Re-allocates contiguous memory located between the end of the
program and the stack, copying the contents to the new region as
required. Applies only to regions assigned by malloc().

Function Header:

char *realloc(ptr,s)

char *ptr; Pointer to area already assigned
by malloc().
unsigned s; New size of area.

The contents at ptr are preserved during the reallocation. If the
new size s is smaller than the old size, then the extra contents are
lost. Otherwise, new space is added on the end (not initialized), which
will result in a memory move operation (a bit slow sometimes) which
copies the contents.

Returns:

The base address of the area, on success.
0 if the request fails.

Exanple: Re-allocate a buffer area.

#include <unix.h>
#include <stdio.h>
main()

char *p,*malloc(),*realloc();

p = malloc(2048);
if(p == (char *)0) exit();
printf("malloc(2048) = %x\n",p);
for(i=0;i<10;++i) strcat(p,"This is a test of realloc\n");
if(p = realloc(p,260)) {
printf(*realloc base = %x\n",p);
: for(1=0;1<260;++1) putchar(*p++);

Library Page 215

realloc

Motes:

o

Uses malloc() to get raw system memory.

0 You can't ask for more than 65531 bytes under CP/M-80.

[=]

Sfree() doesn't know about realloc().

o

Brk() doesn't know about realloc().

Structure: The structure used by malloc(), which is 4 bytes in length,
precedes each block assigned by malloc(). Here is the definition:

struct block {
struct block
*nxtblk;
uns igned
siz;

Library Page 216

rename

The rename Function

Change the name of an existing disk file.
Function Header:

int rename(oldname,newname)

char *oldname; 01d file name.

char *newname; New file name.
‘Returns:

0 No error.

-1 Error, rename operation failed.

Exanple: Rename a disk file.

#include <stdio.h>
main()

int rename();
char *findFIRST();
char s[129],t[129];
printf(*File name to change: *);
gets(s);
if(findFIRST('\O',s) == (char *)-1) {
puts(“File not found"); exit();

printf("New name: “);

gets(t);

if(rename(s,t) == -1) puts(“Rename failed");
Notes:

o This function is found in most libraries but seems to be non-

standard. Amazingly enough, the argument order is consistent
among the major compilers.

o The related function unlink() which deletes a disk file is
a Bell Labs standard function.

Library Page 217

-

reset

The reset Function

Purpose:

Resets the disk system under CP/M.
Function Header:

VOID reset()
Returns:

Nothing useful. Drive A: is logged-in, then the default drive.
A1l other drives are left in an unlogged state.

Example: Let the user change disks.

#include <stdio.h>
dskreset(drive)
char *drive;

char s[129];
printf("Insert a new disk in %s and hit RETURN: *,drive);
gets(s);
reset();

Notes:

0 Reset() is not a standard function. It is handy for writing
interactive CP/M software.

o To simulate reset() on other systems, use the bdos() function
or the ccBDOS() function.

#include <unix.h>
#include <stdio.h>
reset()

return bdos(13,0);
#include <stdio.h>
reset()

return ccBD0S(13);
}

Library Page 218

reverse

The reverse Function

Purpose:

Reverses a string in place, e.g., "abcd" changed to “"dcba".

Fanction Header:

char *reverse(str)

char *str; Source string.
Returns:
str Same base address, string reversed.

Example:

Reverse a string of digits obtained by division.

#include <stdio.h>
Tain()

char s[129];
int i,n;

}
Notes:

printf(“Enter a number: *);
gets(s);
n = atoi(s);
i=0;
while(n>0) {
s[i] = '0* + (n%10);
} +1i; n = n/10;
s(i] = "\0';
printf(*Number n before reversal: %s\n",s);
reverse(s);
printf("Number n after reversal: %s\n",s);

o This function is described in K & R.

o Other uses of reverse() include swapping the string order in

order to use strcpy() to copy a string into a circular buffer
(in reverse order).

o An interesting exercise is to employ getline() to get a string,

then reverse it and use ungetc() to put it back into the console
buffer. Follow all this by getline() to see if its the same.

Library Page 219

rewind

The rewind Function

Purpose:
Positions an open stream to the beginning of the file,
Fenction Header:

#include <stdio.h> VOID and FILE defined herein.
YOID rewind(fp)
FILE *fp; Open stream pointer.

Returns:

Nothing.

Example: Rewind a file before changing the file buffer location. Access
the file with a new in-memory buffer of user design.

#def ine CPMEOF 26

#define bufszl 2048

#include <stdio.h>

Tain(argc,argv) int argc; char **argv;

char buflbufsz1];
FILE *fp,*fopen();
int 1;
if(argc <= 1) exit(0);
if((fp = fopen(argv[1],*r")) == (FILE *)0) {
puts("File not found"); exit(0);

}
if(getc(fp) == EOF) {
puts(“File empty"); exit(0);

rewind(fp);

setbuf(fp,buf);

getc(fp);

for(1=0;i<bufszl;++i) {
if(buf[i] == CPMEOF) break;
putchar(buf(]);

Library Page 220

rewind

Notes:

0

Rewind() has less overhead than fseek() or the older seek(). It
does very little other than reset data areas in the FCB. No disk
action takes place until 1/0 occurs.

Setbuf() is supposed to include a call to rewind(). The above
code is especially careful, because ported code may end up with
a call to a setbuf() that does not call rewind.

The size of a file buffer is fixed at compile time with most
compilers. This 1ibrary is unusual, in that the buffer size can
be changed on the fly. However, it should always be preceded by a
call to rewind(), to insure past data is on the disk and I/0
starts anew.

The companion function seekend() is useful to position the file
pointer to the end of the file.

while rewind is usually available on target systems, it generally
calls fseek(). Note that seekend() 1is not expected to be on other
systams. Both can easily be defined as a code macro in terms of
fseek:

#define rewind(fp) fseek(fp,0L,0)
#define seekend(fp) fseek(fp,0L,2)

Library Page 221

p—

e

rindex

The rindex Function

Purpose:

Finds the character position of a byte inside a string, starting
from the end of the string.

Fanction Header:

char *rindex(str,c)

char *str; Source string.

char c; Character to locate.
Returns:

&strli] Where ¢ == str[i], on success,

where i =strien(str) is decremented
to 0, and the first match is reported.
(char *)0 Failure,

Example: Find the optional extension in a file name and print.

#include <stdio.h>
main()

char *rindex();

char s[129],t[129],*p;
printf("Enter a file name: *);
gets(s);
cvupper(s);
if(p = rindex(s,’.")) strcpy(t,p+1);
else strcpy(t,”*);
printf(*File name extension: %s\n",t);

}
Notes:

0 Usage of this function differs among 1ibraries. The Unix V7
standard, according to Bourne, is the above.

o This function should be capable of finding the terminating null
in a C string.

o Rindex() is the same function as strrchr(). See Harbison &
Steele.

Library Page 222 -

run

The run Function

Purpose:

Runs a CP/M 2.2 command line directly from a C program. The current
program is lost and replaced by the new one. A1l CP/M command 1ine
arguments are sent to the new program.

Fanction Header:

VOID run(cmd)
char *cmd; Program name (.COM assumed) plus the
command 1line tail.

Returns:

Nothing. The routine run() returns to the caller only in case
the file is not found. Otherwise, the COM file is loaded
and the the command line is passed.

Example: Run MBASIC.COM from a C program with a given command 1line.

#include <stdio.h>
main()

run("MBASIC DUNGEON"*);
puts(“MBASIC not found“);

Notes:

o Multiple arguments may be used. The command 1ine 1imit of 128
characters must be obeyed, however. The .COM extension should not
be used - it is assumed.

o A1l characters are acceptable, however uppercase translation is
performed to simulate CP/M handling of command lines.

o The string may not contain a carriage return or linefeed.

o The string tail is decoded into the two CP/M default buffers
and in addition it is copied to the CP/M default buffer at 0x80.
The only real difference that CP/M might see is the lack of a
command tail at the CCP. This problem has no easy solution, since
the CCP is overlayed by the running program.

Library Page 223

sbinary

The sbinary Function

Purpose:
Binary search of a sorted string array to match a key string.

Function Header:

int sbinary(x,v,n)

char *x; Key string to find in the array v[].
char *v[]; Sorted string array for lookup.
int n; Dimension of the array v[1.
Returns:
-1 Failure. The test (strcmp(v[k],x)==0) failed for 0 <= k < n.
k Success. A value of TRUE was found for (stremp(v(k],x)==0).

Example: Look up a terminal in a sorted table.

static char *v[] = {
“ADDS", "H19", "QUME", *TELERAY", *TELEVIDEO*, “VISUAL200",
| "VISUAL500", "VT52", "WYSE", "129"
#include <stdio.h>
main()
{
int k;
char x[129];
printf("Enter terminal name: *);
gets(x); cvupper(x);
k = sbinary(x,v,10);
if(k == -1) puts("Not found");
else
: printf(*Found at index %d: %s\n",k,v[k]);

Notes:

o0 The assumption that the array v[] is SORTED is essential.
It will probably hang the machine if the array is not sorted.

o A normal application uses sorted data entered in the program by
hand as initializers for array v[].

o To obtain a sorted array on the fly use quick() or shell().

Library Page 224

sbrk

The sbrk Function

i

Obtains contiguous memory from the system and sets the upper bound
of the programt+data area.

Function Header:

char *sbrk(n)
int n; Amount of manory requested. The maximum value
of n is 32767. See notes below.

Returns:
addr on success, addr = base address of the
contiguous area of memory n bytes in length,
(char *)-1 on failure

Exanple: Get a buffer of 16k for special 1/0.

#include <stdio.h>
main()

char *buf,*sbrk();
if((buf sbrk(l6*1024)) == (char *)-1) {
puts("Out of memory*); exit();

puts(“It worked");

Example: Get all available memory for a buffer.

#include <stdio.h>
main()

char *buf,*sbrk();
uns igned mensize()
if((buf = sbrk(memsize())) == (char *)-1)
puts("Out of memory"*); exit();

puts(*It worked");

Library Page 225

M

sbrk

Notes:

[=]

For UNIX compatibility, restrain n to 32767 and call sbrk() more
than once to get the desired amount of memory. This function will

work with n an unsigned integer, at the expense of non-portable
code.

sbrk() checks for text, data and stack over-write. It also looks
for attempts to write over file buffers and FCB areas.

The return of -1 for failure is normal, but some libraries
return 0. Beware as you attempt to port code to new machines.

The return of sbrk(0) is the current program break. It does not
change pointers - treat it as a report with no action.

The symbols end, etext, edata have these meanings:

end The next usable address after program load.

etext The physical end of the program text before
the file buffers and FCB buffers begin.

edata Same as etext for C/80 because code and data
are in the same place.

The externals end, etext, edata are defined in the assembly
module ETEXT.C as follows:

end: DW SEND##+TOT SZ##
edata: DN $END##
etext: DW $END##

The double-# marks a symbol as external for M80, e.g, $SEND## is
equivalent to EXTRN $END.

The object code uses addresses 100h to $END, that is, the length
of the compiled program is (etext-0x100).

TOT SZ 1is the total size of the file buffer and file control
block (FCB) area that immediately follows the object code. See
STDIO.H. The base address of the area is end (= $END). The area
uses TOT SZ bytes with last address (etext - 1).

Reference: For end, edata, etext, see Banahan & Rutter, The Unix

Book, Wiley Press (1984), p 198, For a description of brk() and
sbrk(), see Banahan p 205,

Library Page 226

scan

f

The scanf Function

Purpose:

Parses formatted input text from the stream stdin using a control
string to guide the conversion and storage of data items.

Function Header:

#include <stdio.h>

int scanf(control,&argl, sarg2,...)

char *control; Control string

%argl ,&argz,... Conversion storage locations.

Pointers do not use the & prefix.

The control string is a template for the expected form of the input

stream.

The function of scanf() is to perform a simple match between the

input stream and the control string. Contents of the control will be
interpreted during processing as follows:

1.

WHITE SPACE. Any white space in the control string causes an
indeterminant amount of white space to be skipped in the input.
The actual characters skipped will be: SPACE, TAB, CR, LF.

NOH-CONVERSIONS. Characters other than white space must be
matched by the input stream, except for %. The latter will match
% if entered in the control string as %%. Otherwise, the % sign
begins a block of conversion specifications, and the matching
requirement is suspended until the conversion is processed.

. CONVERSIONS. The allowed conversions parallel printf() usage.

Each must start with %, optionally followed by decimal digits
which control the maximum width of the conversion, then one, two
or three conversion characters:

Character, white space too.
String, white space delimited, null appended.
String, [...] defines acceptable characters.
Decimal base 10, signed.
Decimal base 10, unsigned.
Octal base 8, unsigned.
Hexadecimal base 16, unsigned.
Binary base 2, unsigned.
,E Floating point, signed.
Same as e.
,6 Same as e.
Match percent sign.
Convert item but do not store result.
1d Long decimal base 10, signed.
Tu Long decimal base 10, unsigned.
lo Long octal base 8, unsigned.
Ix Long hexadecimal base 16, unsigned.
1b Long binary base 2, unsigned.

*ROQ -HODOT X OCSCAQAMUVO

Library Page 227

scanf

For example, "%12*1d" means to process at most 12 decimal digits
for storage in a long integer location, but skip the storage. The effect
is to read over incoming data.

In contrast, "X121d" does the exact same conversion, but stores the
answer at one of the pointers given in the argument 1ist.

The conversion “%[A-Z,a-z]" reads in a string of characters unti}
the character class [A-Z,a-z] is violated. The string is null-delimited
after processing stops. Similarly, *%[°A-Z1" negates the character class
[A-1], and causes the read to continue until a character belongs to the
class [A-Z]. The most common usage is “[“\r\n]", which is equivalent to
the function gets() or LINE INPUT in BASIC.

A1l floating-point conversions are in single precision, since this
library does not have double precision variables.

Long integer conversions are the same as short integer conversions,
save the actual size of the final storage locatfon. Short integers are
16 bits and long integers are 32 bits. It is up to the programmer to
insure that the control string specifications match the storage size
requirements of the argument 1i{st.

Returns:

(scanf(...)) is the return value, NOT scanf(). The extra
parentheses are required to capture the scanf() return value.

The returned value is EOF if no items were read and EOF was
encountered on input.

The returned value is the number of successfully processed items in
all other cases. This count should match the number of arguments
following the control string.

Exanple: Read in floating-point numbers from the console.

#define pfFLOAT 1
#define sfFLOAT 1
#include <stdio.h>
main()
{ char s[129]; float f;
do {
printf("Enter a float: ");
i = (scanf("%f* &f));
if(1)
printf(*%10.8f\n",f);
else {
printf(“Bad input.\nPress RETURN: “);
gets(s);

}
} while(d);

Library Page 228

scanf

Example: Read in a string of characters and decode as hexadecimal.

#include <stdio.h>
main()

{
char s[129];
int x,i;
do {
puts(“Enter hex digits"):
i = (scanf("%["\r\n]",s));
if((sscanf(s,"%x",&x)) > 0)
printf(“Hex value = %010x, Dec value = %d\n",x,x);
else
puts("Bad hex digits");
} while(d);

Example: Read in three long integers per line, with comma delimiters.

#define pfLONG 1
#define sfLONG 1
#include <stdio.h>
main()

{

char s[129];
int 1,j;
Tong x,y,2;

do {
puts("Enter 3 integers separated by commas on one line");
i = (scanf(*%["\r\n]",s));
J = (sscanf(s,*%1d, %1d, %1d",8x,4y,%2));

if(j == 3)
printf("x = 21d, y = %1d, z = %1d\n",x,y,z);
else
puts(“Bad input - need 3 integers and 2 commas");
} while(i);

Library Page 229

scanf

o Scanf() calls ungetc(x,fp) to put back the last character, when
necessary. You can depend on scanf() to eat white space, in
particular newlines.

o To use long and float features of scanf, write your code as
follows:

#define sfFLOAT 1 /* include scanf float */
#define sfLONG 1 /* include scanf long */
#include <stdio.h>

Since the header file processes the sfFLOAT and sfLONG defines,
the order is important. The default is to leave off the long and
float code for an object code size savings of several kilobytes.

o The extra parentheses are required under C/80 because of the
multiple argument kiudge. Failure to include the parentheses will
result in a stack address return rather than the number of items
processed.

o

It is often safer to use gets() or fgets() to input a line of
text and then apply sscanf() to decode the string. The use of
ungetc() and full stream 1/0 sometimes gets in your way,

presenting surprises for bad input or end of file conditions.

o Scanf() often uses basic subroutines that gobble up character
classes from the input. Generally, you have to write your own t
get it right. Here's an example of how to advance past decimal
digits in a string buffer:

char *digitpurge(s)
char *s;

int x;
while((x = *s) 1= EQS) {
if(isspace(x) || isdigit(x)) ++s;
else break;

return s;

Library Page 230

seek

The seek Function

Purpose:
Positkons the file pointer for an open stream.
Function Header:

int seek(fp,offset,type)

FILE *fp; Open stream pointer.
int offset; 0ffset from target position,
. positive, negative or zero.
int type; Flag 0,1,2,3,4,5 determines
the target position and units:

type Action taken for value ‘offset’ Units

0 point to beginning + offset bytes

1 point to current + offset bytes

2 point to end + offset bytes

3 point to beginning + offset sectors

L) point to current + offset sectors

5 point to end + offset sectors

Returns:

0 seek worked, file pointer reset as per request.
-1 Seek failed.

Exanple: Seek to the end of an existing file and append a message.

#include <stdio.h>
main()

{
FILE *fp,*fopen();
if(arge <= 1) exit();
fp = fopen(argv[1],"u");
if(fp == (FILE *)0) {
puts(*Bad open®); exit();

}
if(seek(fp,0,2) == -1) {
puts(*Bad seek"); exit();

}
fprintf(fp,"Appended message\n*);
fclose(fp);

Library Page 231

seek

This set of primitives is used to build the Unix-style fseek()
in CLIBU.REL, Use that function to generate code that ports
easily to Bell Labs Unix V7.

A seek of type 2 requires a file size computation, which
under CP/M 2.203 is invalid unless the file control block is on
disk. To insure the validity of the FCB, seek() writes the FCB

back on the disk for a type 2 seek on a file opened for update
or write,

Binary files use sector fill of NULL (00 hex) while others
use sector fill of CTRL-Z (1A hex). Carriage return and 1inefeed
translation occur in files not opened in binary mode.

Seeks on Ascii text files are not dependable (and the code
is not portable). For example, moving forward one character may

actgally move two, because the first was a carriage return (0D
hex).

A rewind or seek to end of file is dependable and portable for
ASCII or BINARY files. Likewise, a move by whole sector is Ok,
but offsets into a sector can be off by the number of CR/LF pairs
in that sector.

DO NOT USE the SEEK on the C/80 distribution disk. It won't
link (use that SEEK with Walt Bilofsky's CLIBRARY.REL).

Library Page 232

seekend

The seekend Function

Seeks to the end of an open file given by descriptor fd. The C/80
file buffer pointer is positioned to the next byte to be written. This
js a special €/80 function needed to make the Unix library perform as
expected. Not intended to be portable.

Function Header:

seekend(fd) .
int fd; File descriptor

Returns:

Nothing. It either works or CP/M will bounce you to the system,
Example: Seek to the end of a file in a ROM application.

#include <stdio.h>

myopen(file)
char *file;

{
int fd;
fd = fopen (file,"r"); /* use C/80 fopen() */
if(fd 1= -T) seekend(fd); /* and unix seekend */
return fd;
}
Notes:

o If the file was opened in binary mode, then the seek is to a
record boundary.

o If the file was opened in Ascii text mode, then the buffer is
filled from the last disk record and the file is positioned
to the ctr1-Z at the end of the file or the next new record.

o This version is used in the Unix fopen() source to reduce the
seek() overhead. It saves about 700 bytes in code size.

o The following externs from IOTABLE.CC are used:
extern int
IOind[],IOsect[],lOfcb[],IOend[],IOsize[],IUbuf[];
extern char
10bin[];

o File descriptors are integer offsets into the above arrays.
Here, stream pointers and file descriptors are identical.

Library Page 233

seldsk

The seldsk Function

Purpose:
Selects a disk drive under CP/M.
Function Header:

VOID seldsk(x)
int x; Drive number 0...15 for drives A: to P:

Retwrns:

Nothing useful. The action taken is to mount the disk, read the
file allocation bitmap to main memory and mark the disk as $R/W.
A1l other drives are left untouched.

Example: Let the user change disks in drive C:.

#include <stdio.h>
main()

log("C:");

log(drive)
char *drive;

char s[129];
printf("Insert a new disk in %s and hit RETURN: " drive);
gets(s);
reset();
seldsk(toupper(drive[0])-'A"');

Notes:

o Seldsk() is not a standard function. It is handy for writing
interactive CP/M software.

o To simulate seldsk() on other systems, use the bdos() function
or the ccBDOS() function.

#include <unix.h>

#include <stdio.h> #include <stdio.h>
seldsk(x) int x; seldsk(x) int x;

{ {

} return bdos(14,x); } return ccBDOS(x,14);

Library Page 234

setatt

The setatt Function

Purpose:
Set the CP/M file attributes, which are:

Read-only $R/0 or $R/W
System $SYS or $DIR
Archive Used by some backup programs, but not by

CP/M at present,
Function Header:

int setatt(name,code)

char *name; File to update, null-terminated string
int code; Coded attribute word, 0 <= n <= 7:
code&l = Read-only attribute
coded2 = System attribute
code&4 = Archive attribute
Returns:
0 Attributes set as requested
-1 File not found or set failed due to write-protect tab or

disk directory write error.
Example: Set the attributes of a file entered on the command 1ine,
#include <unix.h>
#include <stdio.h>
main(argc,argv) int argc; char **argv;

int n;
if(argc <= 2) { puts(“Usage: A>main filename code”); exit(); }

n=atoi(argy[2]);
if(n <0 ilan >7) {
_puts(*Bad code, range is 0 to 7"); exit();

if(setatt(argv[1],n))
puts("File not found or disk write-protected”); exit();

printf(*File %s set to %s,%s,%s\n*, argv[1],
(n&1 7 "$R/0*:"$R/W*), (n&2 ? “$SYS*:“$DIR"),
: (n&4 ? "Archive":"Non-Archive®));
Notes:
o The name is a normal C string with NULL delimiter.

o The coded word uses only bits 0,1,2.

Library Page 235

setbuf

The setbuf Function

Purpose:

Changes the location of the current file buffer to the given
address.

Faunction Header:

int setbuf(fp,buffer)

FILE *fp; Stream pointer, open stream

char *buffer; Base address of the data area
to be used for a file buffer

Exanple: Change buffer size to 4096 and change buffer to a new
location for further 1/0.

#include <stdio.h>
setbsize(n,fd)

int n,fd;

{

extern int 10size(];

extern MAXCHN[];
if(1 <= fd && fd < MAXCHN) I0size[fd] = n;
else exit();

main()

extern int 10size[];
int x;

FILE *fp,*fopen();
char buf[4096];

if(fp = fopen(*TEST","r")) {
setbsize(4096,fp);
setbuf(buf,fp);
while((x=getc(fp)) != EOF) putchar(x);

Notes:

o Stream files always have buffers set up by a call to sbrk(), You
can run out of memory by using large file buffers that are not
de-allocatted after use.

o The buffer size s fixed to the value in I0size[fp]. You may
change it in C/80, but note that this creates non-Unix source
code. .

o Change the file buffer location to where the current data buffer
is located.

Library Page 236

setjmp and longjmp

The setjmp and longjmp Functions

Provides a non-local GOTO which allows a graceful and certain exit
from deeply nested procedures. Used primarily for backing out out a
sequence of function calls during which a fatal error was encountered.

Function Header:

#include <setjmp.h>

int setjmp(env)

jmp buf env(1]; Environment save area. Definitions are
- in SETJMP.H header file.

VOID longjmp(env,v)

jmp buf env[1l]; Environment save area. Definitions are
- in SETIMP.H header file.
int v; Value for longjmp() to return.
Returns:
setjmp: O Normal return,
longjmp: v Restores registers from env[], loads CPU

register with value v. Processor jumps to
last instruction in SETJMP (a RET).

Explanation of the example: The program below is an infinite loop that
accepts keyboard characters.

Pressing certain keys causes an invisible GOTO to parts of main().
In this sense, setjmp() makes an invisible program LABEL and longjmp()
is a GOTO LABEL.

The difference between this method and using actual labels is that
the GOTO may act from within deeply nested functions with target label
in another module.

Library Page 237

setjmp and longjmp

Example: Test program to observe effect of setjmp(), longjmp().

#include <stdio.h>
#include <setjmp.h>
jmp buf envi[1];
Jmp buf env2[1];

f(fp)

FILE *fp;

{ int x;
putchar(':');
x = getcbinary(fp); putchar('\n');
switch(x) {
case 'I'-'@': longjmp(envl,10);
case '\n' : longjmp(envl,20);
case 'C'-'8': longjmp(envl,30);
$ase 'A'-'8': longjmp(env2,l);

}

main() {
puts(“Setup for envl®);
switch(setjmp(envl)) {
case 0: break;
case 10: puts("EOF encountered on input");
case 20: puts("Linefeed in input"); break;
case 30: puts("Ctr1-C normal exit"); exit();
} default: puts("Undefined error®);
puts(“Setup for env2");
switch(setjmp(env2)) {
case 0: break;
case 1: puts(“ctr1-A struck"); break;
default: puts("Undefined error”);

puts("Special characters are ctrl-A, ctr1-C, ctri-J, ctri-z");
while(TRUE) f(stdin);

Library Page 238

setjmp and longjmp

Notes:

(=]

Note that jmp buf varies among systems as does the storage
class of the array. A1l this info is hidden in the SETJMP.H
header file, whose exact contents varies between systems,

The definition of jmp buf below is made in SETIMP.H in order
to present a portable interface across compilers. The size of
the structure is set at 4 to protect the STACK POINTER and
RETURN ADDRESS that were in force when setjmp() was called to
load the environment array. Note that PSW, BC, DE, HL are all
clobbered by setjmp(). Longjmp() loads register HL with value v
and sets the stack pointer to its old state.

struct jmpbuffer [char *STACKP; char *RETADR;};
#define jmp buf struct jmpbuffer

Here is a common error:
WRONG WAY RIGHT WAY
jmp buf env; jmp buf env(1];
setjmp(env) ; setjmp(env);

The compiler will complain about the error, so there is not
much chance of it sneaking by the programmer.

Portability of the C/80 code is not changed by adding the [1].
On a system using typedef, the result is

struct jmpbuffer env(11[1];
instead of
struct jmpbuffer env(1];

These statements generate exactly the same addressing mode and
storage requirements.

Library Page 239

sfree

The sfree Function

Purpose:

Frees memory that has been obtained by calls to core() or sbrk().
Function Header:

unsigned sfree(n)
unsigned n; Amount of memory to free. The maximum
) value of n is 65535. See notes below.

Returns:

The amount freed, which is n if it worked as planned, 0 if it
failed completely, or some unsigned integer in between, which represents
the function's attempt to please the caller within the restraints placed
by the location of file buffers and file control blocks.

Example: Free up all the space assigned by sbrk() and core() after the
the program is finished, so that a re-start will not run out of memory .,

#include <stdio.h>

Tain()

char *p,*core();
p = core(32767);
fillchr(p,'A',32767);
sfree(-1);

: puts(*It worked");

Notes:

o File buffers and file control block areas will not be freed
by sfree().

o The dynamic building of file buffers and file control blocks
may leave large areas of memory unusable by sbrk() or sfree().
Avoid this problem by allocating enough built-in file buffers
for the program to run without having to call sbrk() for more
space.

o This function will remove orphan buffers from the heap if
followed by a call to sfree:

unbuff(fd) int fd;

{

extern char I0ch(]; extern int 10fcb(],10buf[];
if(10ch[fd] == -1) 10fcb(fd] = I0buf[fd] = 0;

Library Page 240

shells

The shellsort Function

Purpose:

Shellsort for an array of character strings with easy-to-change
comparison method. Changes pointers but not actual data in the string.

Function Header:

shells{p,n,CMP)
char *p[]; Base address of pointer array
int n; Number of array elements to sort
int (*eMP)(); Compare routine for two strings p,q
that returns an integer with the
same rules used by Unix strcmp(p,q):
=0 strings p,q are equal
<0 p<gq
>0 p>q
Returns:

Nothing of value

Example: Sort an array of strings.

char *p(10] = {*
char *q[10] = {
int stremp();
#include <unix.h>
#include <stdio.h>
main()
{
int i;
shells(p,10,strcmp);
for(1=0;1<10;++i) printf(*%d. %s, %s\n",i,p(i],qli]);

a” ’ncu ’udu'uou’ugn’uzn'nlu’u3n'usu,usu};
nau ’ucu ’udu’uon’ugn'nzn,uln'u3n'n8u,usu}.‘

}

Results from the above program

Numerals are less than letters
in the ASCII standard

v v @

)

-

QO OWONWN = O
.
RwW~=NnDYOoOO O

-

UPPERCASE 1is less than lowercase
in the ASCII standard

.
-

.
-

focow.oa\bww—-o

Library Page 241

shells

Notes:

0 You can most often use strcmp() as the argument for cmp().

o It is necessary to declare the function cmp() before the call to
shells(). The required ASM code for the call is LXI H,cmp ! PUSH
H. Look out for the incorrect LHLD cmp ! PUSH H.

o To make a compare for mixed upper and lower case string data,

write a function called mycmp() and use it instead of strcmp() in
the example above.

0 This source file 1s very portable. Use it on any system with
minimal C compiler,

Reference:
The C Programming Language, p 116,

by Kernighan & Ritchie
Prentice-Hall, Englewood Cliffs (1978)

Library Page 242

signal

The signal Function

Purpose:

Connects a C function with CPU interrupt processing. Currently a
CP/M error return that allows code using Signal() to compile with no
errors.

Fanction Header:

int (*signal (sig,f))()

int sig; Exception number to trigger signal().

int (*f)(); C function to call when exception
number sig is encountered by the
interrupt system.

Returns:
0 No error
-1 Argument sig not in range (present default).

Library routines preserve registers and condition codes. Function
f() exits to the interrupted C process and normal program execution
resumes.

Notes:

o Double translation of the number sig is required in order for
signal() to set up an interrupt.

o At present, no implementation of signal() has been made. It is
an error return to allow Unix source code to compile without
errors, even though it will probably not run.

o Signal is a stub function 1ike the other Unix System III
compatibility functions. See UNIXIO for a complete 1ist and
Banahan & Rutter, The Unix Book, Wiley Press(1983) for function.

Library Page 243

sin

The sin Function

Purpose:

Compute the sine of real float value x. The value x is assumed in
radians (not degrees).

Fenction Header:

float sin(x) Sine.

float x; Float value for computation.
Returns:

number Answer between -1 and 1

No error checking for large x
Exanple:

#define pfFLOAT 1
#include <math.h>
#include <stdio.h>
r;\ain(argc,argv) int argc; char **argv;

char s[129];

float x;

extern int errno;

float atof();

float sin();
errno = 0;
printf(“Enter a float x: *); gets(s); x = atof(s);
printf("sin(¥f) = %f, errno = %d\n*,x,sin(x),errno);

Notes:
o Use deg() and rad() for conversions.

0 Method used is Rational approximation from Cheney & Hart.
Coefficients fram #3370, C&H.

o Cody & Waite p 137 had too many errors with the current
float package. Went back to Cheney & Hart to get it right.

0 The switch case below uses more code but runs about
32% faster than other methods. Use ASM to optimize.

o No error checks for large x. The max size of x is about 1440
degrees, which is 4 wraps of the unit circle (25.13 radians).

0 No assembler optimization.

Library Page 244

TR

sinh

The sinh Function

Purpose:
Compute the hyperbolic sine of real float value x.

Faunction Header:

float sinh(x) Hyperbolic sine (e* - e 1.
float x; Positive, negative or zero argument.
Returns:
number x in range
INF x too large positive (see notes).
-INF x too large negative (see notes).

errno = ERANGE returned to flag error.
Example:

#define pfFLOAT 1
#include <math.h>
#include <stdio.h>
main(argc,argv) int argc; char **argv;

{
char s[129];
float x;
extern int errno;
float atof();
float sinh();
errno = 0;
printf(“Enter a float x: *); gets(s); x = atof(s);
printf(“sinh(%f) = %f, errno = %d\n" ,x,sinh(x) ,errno);
}

Notes:

0 Method used is sinh(x) = (exp(x) - exp(-x))/2.0.

o The value of EXPLARGE was found by solving the equation exp(x) =

1.0e39.

Library Page 245

sob

The sob Function

Purpose:
Skips over leading white space. Stands for Skip Over Blanks.

Fenction Header:

char *sob(s)
char *s; String, null-terminated.

Returns:

The address of the null terminator in the string, or the address
of the first non-blank character. Blanks are defined by isspace().

Example: Find and print the first word in a line of text.

#include <stdio.h>
main()

char buf[129];
char *s, *sob();
printf("Enter a line of text: “);
gets(buf);
s = sob(buf);
while(*s) {
if(isspace(*s)) break;
putchar(*s++);

putchar('\n');

o This function is almost always used in conjunction with fnb(),
in order to isolate tokens in a line of text.

o High-overhead functions 1ike scanf() can often be avoided in
a portable way by using sob() and fnb().

Both sob() and fnb() return the address of the null delimiter
of the string in case the character class checking runs off the
end of the string.

=]

o The source code for sob() is:
char *sob(s) char *s;

while(isspace(*s)) ++s; return s;

Library Page 246

sprintf

The sprintf Function

Outputs formatted data to a string in memory using a control string
and an appropriate argument 1ist of variable length.

Function Header:
sprintf(s,control,argl,arg2,...);
char *s; String in memory.
char *control; control string, see below
argl,arg2,... appropriate arguments,

8, 16 or 32-bit data, see below

The control string requirements are the same as for printf. See
the printf() rules.

Returns:
Nothing.
Example: Print a number in Decimal, Octal, Hex, Binary to a string.

#include <stdio.h>
main()

char s[200];
int 1;
for(i=0;1<128;++{)
sprintf(s,"%-3d %030 %02x %016b\n",i,1,1,1);

Example: Use the denser sprintf in the preceding example,

#define 1ibl CLIBM

#include <stdio.h>

#undef sprintf

#define sprintf prnt 1(),prnt 3
main() - -

{
char s[200]; int i;
for(1=0;1<128;++1)
sprintf(s,"%-3d %030 %02x %016b\n",i,i,i,1);

Notes:
o In this library, sprintf() is supplied in two versions. The
fast version lacks some of the features found in the denser

version for longs and floats. Both versions support multiple
arguments. Neither version is fully recursive.

Library Page 247

sqrt

The sqrt Functfon

Purpose:

Compute the square root of real float value x

Fanction Header:

float sqrt(x)

float x; Positive or zero argument for the square root.
Returns:

number x >= 0 returns the square root of x.

0.0 x <0 error

errno = EDOM returned to flag error.

Example:

#define pfFLOAT 1

#include <math.h>

#include <stdio.h>

main(argc,argv) int argc; char **argv;

char s[129];

float x;

extern int errno;

float atof();

float sqrt();
errno = 0;
printf(“Enter a float x: *); gets(s); x = atof(s);
printf(“sqrt(%f) = %f, errno = %d\n" x,sqrt(x) ,errno);

Notes:
o Newton's method as here, or use sqrt(x) = pow(x,.5);

o Method from C&H, 6.1.3, 6.1.7. Startup from table 0231, C&H.

Library Page 248

sscanf

The sscanf Function

Purpose:

Parses formatted input text from a string in memory and stores the
answers into given memory locations.

Fanction Header:

#include <stdio.h>
int sscanf(s,control,8argl,8argz,...)

char *s; String to be parsed.
char *control; Control string, see below
8argl,darg2,... Appropriate arguments

See below for rules.
Returns:

The number of successfully parsed arguments. An error occurred

if the number returned does not match the number of arguments
following the control string. C/80 requires that sscanf() be
enclosed in parentheses in order to check the return value, i.e.,

i

]

(sscanf(s,"%2d",8x)); RIGHT WAY
rather than
i

sscanf(fp,"2d",8x); WRONG WAY

Example: The following reads numbers from the console until either a
data file error occurs or end of file is reached. Only one number per
line is allowed.

#include <stdio.h>
main(argc,argv)
int argc;

char **argv;

char *gets();

char s[129];

int x;

while(gets(s) '= (char *)0) {
if({sscanf(s,"%d" ,&x))>0) printf(*2d\n*,x);
else break;

}

Library Page 249

sscanf

o The scanf family of functions accepts addresses only for its
argument list. To error-check coding, verify that each argument
has the address operator & as a prefix, or else the argument is a
pointer (hence already an address).

o The converted values are stored at the given addresses in order
left to right. Skips in the control string do not have an
argument so the argument count may not match the conversion
count.

o Short counts may hang the run-time package. Overly abundant
counts will leave variables unfilled at run time.

o Always check the return of sscanf() to see if matches the
expected value. It is easy to program infinite loops using
sscanf().

0 C/80 and its multiple-argument kludge cause users to write
parentheses around sscanf() in order to recover the returned
value, For example

if((sscanf(s,"%d",&x)) > 0)
will not work under C/80 with the extra parentheses removed.

o To turn on float or long libraries for use with sscanf(), use the
appropriate switches:

#define sfLONG 1 /* turn on long sscanf */
#define sfFLOAT 1 /* turn on float sscanf */

The compiled code will change in size according to how much of
the float and long libraries are actually used.

Library Page 250

ssort?2

The ssort2 Function

Shell-Metzner sort in assembler for strings of fixed length which
reside in an array of string pointers.

Function Header:

VOID ssort2(size,table,reclen)

int size; Humber of pointers to sort.

char *table[]; Table of string pointers.

unsigned reclen; Length of each string;
Returns:

Nothing. Pointers are altered to reflect the new sorted order.
The actual data in memory is unchanged.

Exanple: Sort a 1ist of names of fixed length.

#include <stdio.h>
main()

int i;
static
char *names[] = {
"DAN RATHER *,
"E.G.MARSHALL",
"JIMMY CARTER",
"DONALD KNUTH"
}
ssort2(4,names,12);
| for(i=0;i<4;++1) puts(names[il);
Notes:
o The order of the arguments is essential.

o A fixed record length is required. For variable-length records
see shel1() and quick() in CLIBU.REL or ssort3() below.

Library Page 251

e

ssort3

The ssort3 Function

Purpose:

Shell-Metzner sort in assembler for strings of variable length

which reside in memory. Access is by a specfal structure that simulates
the string storage in Microsoft MBASIC.

Fanction Header:

struct mstr {
char length; char *string;

VOID ssort3(size,&table)

int size; Number of pointers to sort.
struct mstr table[]; Table of string pointers.
Returns:

Nothing. Pointers are altered to reflect the new sorted order.
The actual data in memory is unchanged.

Example: Sort a 1ist of names of variable length stored as MBASIC
strings.

#include <stdio.h>
main()

int 1;
struct mstr {
char length; char *string;

static

struct mstr names[] = {
{10,"DAN RATHER* },
{12,"E.G.MARSHALL"},
{12,*ammy CARTER"},
{12,"DONALD KNUTH*},
{ 9,"TOM JONES" },
{ 8,007 BoND" }

|-

ssort3(6,&names);

: for(i=0;1<4;++i) puts(names[1].string);

Notes:
0 The order of the arguments is essential.
o The algorithm is Shell-Metzner's sort, with the strings left in

place in memory. The table is re-organized to sorted order on
return.

Library Page 252

stdin, stdout, stderr

The stdin, stdout, stderr Streams

Defines the file pointer for standard input, standard output and
standard error messages. Full re-direction capabilities are supported.
No pipes or filters.

Function Header:
The definitions appear in STDIO.H, by C convention,

#define stdin (FILE *)fin ()
#define stdout (FILE *)fout ()
tdefine stderr (FILE *)252 —

Returns:

The stream pointer for the indicated stream, allowing for re-
direction. No re-direction is possible for the standard error stream. It
is always the console.

Example: Check the standard input stream to see if indirection is in
force.

#include <stdio.h>
main()

if(stdin == (FILE *)0)
fprintf(stderr,”Stdin = console\n");
else
fprintf(stderr,*Stdin is file descriptor %d\n",stdin);

Rotes:

o This implementation of stdin, stdout and stderr is at the macro
preprocessor level, therefore it generates no object code in the
Co file. Linkage, in case of actual use, causes module
FINFOUT.REL to be linked, which adds 8 bytes to the object code.
The routines fin () and fout () simply return the stream
descriptors fin and fout.

o The stream stderr is hard-wired to the console. You can change it
by re-assembly of the C program, but not by command 1ine options.

o The descriptors fin and fout are set to zero at the start of a
program. Re-direction alters these descriptors. Note that fin or
fout can be closed by the user. After doing so, the user should
set fin = fout = 0.

Library Page 253

strcat

The strcat Function

Purpose:

Appends a null-terminated string str2 to the null-terminated string
strl.

Fanction Header:

char *strcat(strl,str2)

char *strl, *str2; Source strings, null-terminated.
Returns:

strl The base address of the destination string.

Example: Fix a CP/M file name.

#include <stdio.h>
main(argc,argv) int argc; char **argv;
{

char s[256];
char *index();
if(argc <= 1) exit();
strepy(s,argv(1]);
if(index(s,'.") == (char *)0) strcat(s,"*.COM")
printf(*s = %s\n",s);

}
Notes:

o Strcat() is dangerous. The classic error is to append a string
to a character pointer that is not null-teminated.

0 Storage over-run 1is possible. There is no run-time check for
writing beyond the limits of storage.

0 See also strcpy, strncpy(), strncat() and moveMEM().
0 Here is the standard strcat() code:

char *strcat(sl,s2) char *sl,*s2;

char *p;

p=sl;
while(*s1) ++s1; while(*sl++ = *s2++) ; return p;

Library Page 254

strchr

The strchr Function

Purpose:
Searches for character c¢ inside string s.
Faunction Header:

char *strchr(s,c)

char *s,c; Source string s and character ¢ to find.
Returns:

(char *)0 no match

&s[1] address of first match to s[i] == ¢

&sn] n=strlen(s), if ¢ = '\0'

Exanple: Find the end of a C string.

#include <stdio.h>
?ain(argc,argv) int argc; char **argv;

static

char *s = "This is a Test";

char *p;

char *strchr();
p = strchr(s,'\0');
printf("Search for null at end of a string s.\n");
printf(*s = %u, p = %u, strlen(s) = %u\n*,s,p,strlen(s));

Notes:
o strchr() is the same as index().
o Here is the standard strchr code:
char *strchr(s,c) char *s,c;
do {
if(*s == c) return s;

} while(*s++);
return (char *)0;

Library Page 255

strcmp

The strcmp Function

Purpose: .

Compares two null-terminated strings for equality, less than or
greater than,

Fanction Header:

int stromp(strl,str2)

char *strl,*str2; Source strings, null-terminated.
Returns:
<0 for strl < str2
=0 for strl = str2 (same length and characters)
>0 for strl > str2

Example: Test a string for a match to one on the four CP/M devices.

#include <stdio.h>
main()

int 1,j; char s[129];
static char *device[] = { “CON:","LST:","ROR:*,*PUN:" };
printf(*Enter a device name: *);
gets(s); cvupper(s);
for(i=0;i<4;++i) {
if(stremp(device[1],5)==0) {
printf("Device match is: %s\n* device[i]);
printf(“Mismatches:\n");
for(j=0;j<4;++j) {
if(j = 1) puts(device(j]);

return;
}
}
: puts("No match");
Hotes:
o Stremp() does what is expected when one or both of the strings
are null strings. Other cases of interest: “abc® > "ABC",
"abc" < "abcd".
o Standard strcmp() source code:

int stramp(sl,s2) char *s1,*s2;
{

while(*sl == *s2) { {f(*sl == '\0') return 0; ++sl; ++s2; }
return (*sl - *s2);

Library Page 256

A

strcpy

The strcpy Function

Copies a null-terminated string str2 to the storage area given by
the string strl. The destination string is also null-terminated.

Function Header:

char *strcpy(strl,str2)

char *strl; Destination string.

char *str2; Source string, null-terminated.
Returns:

strl The base address of the destination string.

Example: Copy a command line argument to safety.

#include <stdio.h>
main(argc,argv) int argc; char **argv;

{

char s[2561;
if(argc <= 1) exit(); strcpy(s,argvl1]);
printf(*argv(1] = %s\n",s);

Exanple: Copy lines of a file into an array.

#include <stdio.h>
main(argc,argv) int argc; char **argv;

int i,n;
FILE *fp,*fopen();
char buf(129],*s[256];
char *core(),*fgets();
iflargc <= 1) {
puts(“Usage: A>load filename"); exit();

}
if((fp = fopen(argv[1],"r")) == (FILE *)0) {
puts(”Bad open”); exit();

}

i=0;

while(1<256 && fgets(buf,128,fp) != (char *)0) { -
s[i]l = core(1+str1en(buf)g; :
strepy(s[i],buf); :
+Hi; ;

} !

fclose(fp);

n=i;

puts(“"The saved lines:*);
for(1=0;i<n;++1) printf("s[%d]: %s\n",i,s[1]);

Library Page 257

strcpy

Notes:

Strcpy() 1is dangerous because there is no check for buffer
1imits.

Bes ides storage over-run caused by insufficient estimate of the
requirements, there is the problem on uninitialized data:

char *s;
strepy(s,t);

The problem here is that s is initialized to 0, the base of the
operating system. The strcpy() code above writes string t to
address 0. This may cause a CP/M system to crash. To fix the
problem, use core() to get storage for s, or use an auto array:

char *s; char *s;

char buf[256]; char *core();
s = buf; s = core(256);
strepy(s,t); strepy(s,t);

See also strncpy() and moveMEM().
Standard strcpy source code:
char *strcpy(sl,s2) char *sl,*s2;

char *p;
p = sl; while(*sl+ = *s2+) ; return p;

Library Page 258

strcspn

The strcspn Function

Purpose:

Searches a null-terminated string s for the first match to any
character in the null-terminated string called set.

Fenction Header:

int strcspn(s,set)

char *s; Target string s to be searched.
char *set; Possible characters to match.
Returns:
strien(s) No match occurred.
i The first index i where s[i] matches a character

of string set.

Set Theory: Let B = {set[j] : 0 <= j < strlen(set)}. If no character of
s is in B, then return strlen(s), otherwise return the first index n for
which s[n] is in B.

Example: Find the first digit in a string.

#include <stdio.h>
main(argc,argv) int argc; char **argv;

static char *set = "0123456789"; int i;
if(argc > 1) {

if((1 = strcspn(argv(1],set)) < strlen(argv[1]))
printf("Matched at offset %d\n",i);

Notes:
o Standard strcspn source code:
int strcspn(s,set) char *s,*set;
int n; char *p;
n=0;
whitels[n)
p = set;
while(*p) {
if(*p++ == s[n]) return n;
++n;

}

return n;

Library Page 259

JR—

/ M

strlen

The strlen Function

Purpose:
Computes the integer length of a null-terminated string.

Function Header:

int strlen(str)

char *str; Source string, null-terminated.
Returns:
0 String has no characters (empty string **).

n

String has n characters.

Example: Find the length of a user-entered token.

#include <stdio.h>
main(argc,argv) int argc; char **argv;

Notes:

if(argc <= 1) exit();
printf(*argv[1] = %s, strlen(argv[1]) = %d\n",
argv(1], strien(argv(1]));

strien() returns an unsigned integer. If you get a negative

value for strlen(), then suspect a program bug. It is quite
unusual to have a C string in excess of 32767 bytes.

Strlen() 1is often used to find the null position in a C string.
If p is a string pointer, then p += strlen(p) computes a pointer
to the null temminator of the string.

Standard strlen source code:

int strlen(s)

char *s;
{
int n;

n=0;
while(s[n]) ++n;
return n;

Library Page 260

strncat

The strncat Function

Purpose:

Appends a null-terminated string str2 to the storage area given by
the string strl. At most n bytes are transferred. The destination string
is ALWAYS null-terminated.

Fanction Header:
char *strncat(strl,str2,n)
char *strl, *str2; Source strings, null-terminated.
int n; Number of bytes to transfer.
Returns:
strl The base address of the destination string.

Example: Fix a CP/M file name,

#include <stdio.h>
Tain(argc,argv) int argc; char **argv;

char s[25]; char *index();
if(argc <= 1) exit();
if(p = index(s,':')) s[0] = '\0';
else strcpy(s,"A:");
: strncat(s argv[l] 20) printf("s = %s\n*,s);

Notes:

o Strncat() is dangerous. The classic error is to append a string
to a character pointer that is not null-terminated.

o The following problem can occur with strncat:

char *s;
strncat(s,t,1+strlen(t));

The problem here is that s is initialized to 0, so strncat() will
look for the end of the string that starts at the operating
system base 0. Surely it will be found, then strncat appends
str2. The end result is a very unpredictable system crash.

o Standard strncat() source code:

char *strncat(sl,s2,n) char *sl,*s2; int n;

{ char *p;
p = sl; while(*sl) ++sl;
while({n > 0) && ((*s1++ = *s2++) 1= '\0')) --n;
*s1 = '\0'; return p;

}

Library Page 261

strncmp

The strnamp Function

Purpose:

Compares two null-terminated strings for equality, less than or
greater than. During comparison, at most n characters are considered.

Fenction Header:
int strncmp(strl,str2,n)

char *strl,*str2; Source strings, null-terminated.
int n; Maximum comparison count.
Returns:
<0 for strl < str2
=0 for strl = str2 (same length and characters)
>0 for strl > str2

Exanple: Test a string for a match to one on the four CP/M devices.

#include <stdio.h>
main()

int 1,j; char s[129];
static
char *device[] = { "CON:","LST:","RDR:","PUN:" };
printf("Enter a device name: ");
gets(s); cvupper(s);
for(i=0;i<4;++i) {
if(strncmp(s,device[1],4)==0) {
printf("Device match is: %s\n" ,device[i]);
printf("Mismatches:\n");
for(j=0;j<a;++j) {
if(j t= 1) puts(device(jl);

return;

}

}
: puts("No match");

Notes:
o Strncmp() s strcmp() with a restraint. Standard source code:
int strncmp(sl,s2,n) char *s1,*s2; int n;
{

while((n-- > 0) && (*s1 == *s2)) {
if(*s1 == '\o' || n == 0) return 0; ++sl; ++s2;

return (*sl - *s2);

Library Page 262

strncpy

The strncpy Function

Purpose:

Copies a null-terminated string str2 to the storage area given by
the string strl. Exactly n bytes will be transferred, with null fill
used if str2 is less than n bytes in length.

Function Header:

char *strncpy(strl,str2,n)

char *strl, *str2; Source strings, null-terminated.

int n; Number of bytes to transfer.
Returns:

strl The base address of the destination string.

Exanple: Copy a command 1ine argument to safety.

#include <stdio.h>
main(argc,argv) int argc; char **argv;

char s[11];
if(argc > 1 8& strien(argv[1]) > 10) {
printf(*Bad token length*); exit();

strncpy(s,argv[1],1+strien(argvi1]));
printf(*argv[1] = %s\n",s);

Notes:

o Strncpy() is dangerous. An error can be made in its usage which
allows the destination string to be non-terminated (no null at
the end). Strncpy() will not write a null terminator unless
strien(str2)<n.

o The following code will over-write the operating system because
the initial value in s is 0:

char *s;
strocpy(s,t,1+strien(t));

o Conversion of random file routines from Microsoft's MBASIC can
use strncpy() to write a field in a random record with 0 fill.

o Standard strncpy() source code:
char *strncpy(sl 52 ,n) char *sl,*s2; int n;
{ char *p; p =

] while(n-- > 0) { *sl++ = ((*s2) ? *s2+ : '\0'); } return p;

Library Page 263

strpbrk

The strpbrk Function
Purpose:

Searches a null-terminated string s for the first match to any
character in the null-terminated string called set.

Fanction Header:
char *strpbrk(s,set)
char *s; Target string s to be searched.
char *set; Possible characters to match.
Returns:
(char *)0 Ho match occurred.
&s[i] Address of the the first match.

Set Theory: Let B = {set[j] : 0 <= § < strlen(set)}. If no character of
s is in B, then return NULL, otherwise return the first pointer &s(n]
for which s[n] s in B.

Example: Find the first digit in a string.

#include <stdio.h>
main(argc,argv) int argc; char **argv;
{
static char *set = "0123456789";
char *p,*strpbrk();
if(arge > 1) {

if(p = strpbrk(argv[1],set))
printf("argv(13 = %u, match at %u\n",argv[1],p);

}
Notes:
o Standard strpbrk source code:

char *strpbrk(s,set)

char *s *set;

char *p;

while(*s) {
p = set;
while(*p) {
if(*p++ == *5) return s;

++s;

return (char *)o;

Library Page 264

strpos

The strpos Function

Purpose:
Scan null-terminated string s for a match to character c.
Function Header:

int strpos(s,c)

char *s; Target string s to be searched.
char c; Character ¢ to locate.
Returns:
-1 failure
strien(s) if ¢ == '\0'
n n is the first index with sln] == ¢

Example: Find the first letter ‘A’ in a string.

#include <stdio.h>
main(argc,argv) int argc; char **argv;

int 1;
if(argec > 1) {
if((i = strpos(argv[1],'A*)) 1= -1)
printf(*argv(1] == 'A' at offset %u\n",i);

}

Notes:
o This is the integer offset version of the function index().
o Standard strpos source code:

int strpos(s,c)
?har *s,C;

int n;
n=0;
do {

if(sln] == c) return n;
} while(s[n++] 1= '\0');
return -1;

Library Page 265

strrchr

The strrchr Function

Purpose:
Search null-terminated string s for the last match to character c.
Fanction Header:

char *strrchr(s,c)

char *s; Target string s to be searched.
char c; Character c¢ to locate.
Returns:
(char *)o No character of s matches c.
&s[i] i is the largest index for which s[i] == ¢

Example: Find the last occurrence of letter 'A' in a string.

#include <stdio.h>
main(argc,argv) int argc; char **argv;

char *p,*strrchr();
1f(argc > 1) {
1f((p = strrchr(argv(1],'A")) t= (char *)0)
printf("Last argv(1] == 'A’ at address %u\n",p);

}

Notes:
o This is the same function as rindex().
o Standard strrchr source code:

char *strrchr(s,c)
char *s,c;

int n;
n=0;
while(s[n]) ++n;
do {
if(sln) == ¢) return (&s[n]);
} while(n--);
return (char *)0;
}

Library Page 266

strrpbrk

The strrpbrk Function

;;rposei

Search null-terminated string s for the last match to any character
in the null-terminated string called set.

Function Header:

char *strrpbrk(s,set)

char *s; Target string s to be searched.

char *set; String of possible matching characters,
Returns:

(char *)0 no match occurred, otherwise

&s1] address of the LAST match

Set Theory: Let B = {set[j] : 0 <= j < strlen(set)}. If no character of
s is in B, then return NULL, otherwise return the last pointer &s[n] for
which s(n] is in B.

Example: Find the last occurrence of a digit in a string.

#include <stdio.h>
main(argc,argv) int argc; char **argv;

static char *set = "0123456789";
char *p,*strrpbrk();
if(argc > 1) {
if({p = strrpbrk(argv[1],set)) != (char *)0)
printf("Last digit of argv[1] = %u at %u\n",argv[1],p);

Notes:
o Standard strrpbrk source code:

char *strrpbrk(s,set)
char *s,*set;

char *p;
int n;
n = 0;
while(s(n]) ++n;
do {
p = set;
while(*p) { if(*p++ == s[n]) return (&s[n]); }
} while(n--);
return (char *)0;

Library Page 267

g

Wawe . . .

strrpos

The strrpos Function

Purpose:

Reverse scan null-terminated string s for a match to character c.
Fenction Header: :

int strrpos(s,c)

char *s; Target string s to be searched.

char c; Character c to match.
Returns:

-1 Failure.

n n is the largest index with s[n] == c.

strien(s) If ¢ = '\0'.

Example: Find the last occurrence of character 'A' in a string.

#include <stdio.h>
main(argc,argv) int argc; char **argv;

int i;
if(argc > 1) {
if((i = strrpos(argv[1],'A')) 1= -1)
printf(“"Last argv[l] == 'A' at offset %d\n",i);

o Standard strrpos source code:

int strrpos(s,c)
char *s,c;

int n;
n=0;
while(s[n]) +4n;
do {
if(s(n] == ¢) return n;
} while(n--);
return -1;

Library Page 268

strspn

The strspn Function

Search null-terminated string s for the first character that is not
in the string called set.

Function Header:

int strspn(s,set)

char *s; Target string for testing.

char *set; String of characters to skip over.
Returns:

strien(s) A1l chars in s are also in set.

n n is the first index with s[n] not in set.

0 String set is a null string.

Set Theory: Let B = {set[j] : 0 <= j < strlen(set}}. If all characters
of s are in B, then return strlen(s), otherwise return the smallest
index n for which s[n] is not in B. (B is empty if set = "\0")

Example: Find the first non-digit in a string.

#include <stdio.h>
main(argc,argv) int argc; char **argyv;

static char *set = "0123456789"; int i;
if(arge > 1) {
if((1 = strspn(argv[1],set)) != 0 & i < strlen(argv[1]))
printf(*First non-digit of argv[1] is at offset %d\n",i);

Notes:
o Standard strspn source code:
int strspn(s,set) char *s *set;

char *p; int n;
n=0;
if(*set == '\0') return 0;
while(s[nl) {
p = set;
while(*p) {
if(*p++ == s[n]) break; if(*p == *\0*) return n;

++n;
1

return n;

Library Page 269

swab

The swab Function

Purpose:

Copies one area of memory to another, reversing pairs of bytes. The
number to copy must be even.

Fanction Header:

int swab(s,d,n)

char *s; Char pointer to source data area

char *d; Char pointer to destination data area

int n; Integer number of bytes to copy
Returns:

0 Always.

Example: Sample program to swap halves of words in an array.

#include <unix.h>
#include <stdio.h>
char *p = "ab®;
char *q = "ccceceeceeeeceeeeeceeceeeccececeecceeeeeeeceee”;

main(argc,argv)

int argc;

fhar *argv[];

int i;
i = strien(p);
puts(p);
puts(q);
swab(p,q,1);

, puts(q);

Output from the above main program:

A>main
ab
€CCCCCCCCCCeeeceeeeeeccccccccecceccccccececee

ba
A>

Notes:
o Copies data from a reverse byte-sex machine., For example, 68000

CPU integer data is reversed from the Intel Reverse Format found
on all 280, 8080, 8088, 8086, 80186, 80286 processors.

Library Page 270

system

The system Function

Pass a command string to the console command processor.
Function Header:
int system(s)

char *s; CP/M command 1ines to run, string is
null-terminated. See example below.

Returns:
Never On success, exits to system
0 On failure

Exanple: To do the CP/M commands:

CC TEST
M80 =TEST
L80 TEST,TEST/N/E
ERA TEST.MAC
Place this this code in your C program:
system("CC TEST\nM80 =TEST\nL80 TEST,TEST/N/E\nERA TEST.MAC");

Internals: This program creates a $$$.5UB file on drive A:, erasing
any existing $$3.SUB file. The lines present in the command string are
copied to the $$$.5U8 file, for execution in the typed order.

Notes:

o The command processor (CCP) is to be loaded automatically by CP/M
on exit.

o To return to the calling program, the string passed to the CCP
must contain a re-load for the current program.

o CP/M is not concurrent. There is no efficient way to save the
current process for a restart.

Other ways to do the same thing:

o Use run(). It accepts a CP/M command 1ine to load and run a COM
file. Only one line.

o See also chain().

Library Page 271

tan

The tan Function

Purpose:

Compute the tangent of real float value x. The value x is assumed
in radians (not degrees).

Fenction Header:

float tan(x)

float x; Float value in range -8*PI to +8*PI,
PI = 3,14159,

; Returns:
: number Answer between -INF and +INF, errno = 0.
INF x approx (2n+1)P1/2 error, errno = ERANGE.
LERO Argument too large negative or positive
(greater than 8*P1), errno = EDOM.
Example:

#define pfFLOAT 1
#include <math.h>
#include <stdio.h>
Tain(argc,argv) int argc; char **argv;

char s[129];

float x;

extern int errno;

float atof();

float tan();
errno = 0;
printf(“Tan(x) accepts x from -25.13 to +25.13 radians\n");
printf(“Enter a float x: "); gets(s); x = atof(s);
printf(“"tan(%f) = %f, errno = %d\n",x,tan(x),errno);

Library Page 272

tan

Notes:

Use deg() and rad() for conversions.

The method used is sin(x)/cos(x) in range, or rational
approximation, Cheney & Hart, in the critical range:

tan(x) = sin(x)/cos(x) for x not within .01 of
a multiple of PI/2
tan(x) = new approx otherwise

Current problems:

First, if fabs(x) > 25.13, then we probably can't
compute it at all, The number 25.13 comes from

8*PI = 25.13274123 (12-digits)

8*3.14159 = 25.13272 (6-digits)

error = -2.12288e-05

So to maintain 6-digit accuracy restrains
computation to -8PI < x < &I.

Let us assume 0 <= x <= pi/2. Let u = pi/2 - x. If
u is too close to zero, then computation fails:

sin(x)/cos(pi/2-u)
sin(x)/sin(u)
cos(u)/sin(u)
1./u approximately

sin(x) /cos(x)

LI I T R 1}

This is cured by using a different rational function
near pi/2, namely a Taylor expansion:

tan x = (1/0) (1 - u272 + ud28)71 - w26 + u*120)

At u = .009999, tan x = 100.006668, but 1/u = 100.010001.
For 0 <= x < BADTAN, sin(x)/cos(x) is a good approximation.
It looks like we need the above rational, but perhaps a
better choice of BADTAN would allow use of 1/u.

We define BADTAN = 1.560796327, which is pi/2 - .01 or
89.427 degrees. This rather arbitrary value comes from
comparison with other tangent functions on micros and
mainframes.

Library Page 273

tanh

The tanh Function

Purpose:
Compute the hyperbolic tangent of real float value x.
Function Header:

float tanh(x) Hyperbolic tangent (e* - e /(e +e™%),
float x; Positive, negative or zero argument.
Returns:
number X in range
INF x too large positive (see notes).
-INF x too large negative (see notes).

errno = ERANGE returned to flag error.
Example:

#define pfFLOAT 1

#include <math.h>

#include <stdio.h>

main(argc,argv) int argc; char **argv;

char s[129];

float x;

extern int errno;

float atof();

float tanh();
errno = 0;
printf(“Enter a float x: "); gets(s); x = atof(s);
printf("tanh(%f) = %f, errno = ¥d\n",x,tanh(x),errno):

Notes:
o Method used is tanh(x) = (exp(2x) - 1)/(exp(2x) + 1).

o The value of EXPLARGE was found by solving the equation exp(x) =
1.0e39.

Library Page 274

timer for the 289/2100

The timer Function

Purpose:

Time an event under CP/M with 2ms clock at address 11, Works under
CP/M 2.203 H89 or CP/M-85 1100. Adaptable to most systems.
Function Header:

VOID timer{n)
int n; 0 to start timer
1 to print out the elapsed time
Returns:
Nothing of interest
Example: Time an internal loop and report the elapsed time.

#include <stdio.h>
main()

int 1;
timer(0);

for(i=0;1<30000;++1) {
/* an empty loop. The Sieve Benchmark would be interesting */
}

: timer(1);

The timer routine prints the elapsed time using integer arithmetic
and printf. It is accurate to 1/10 of a second.

Notes:

o Uses a fixed CLOCK word at address 11. The expected 2ms clock is
present only on the H89 under CP/M and the 2100 under CP/M-85.

o See the source in TIMER.C for other ideas.

Library Page 275

toascit

The toascii Function

Purpose:

Converts an integer into the ASCII range 0 to 127 by stripping the
parity bit.

Fanction Header:

int toascif(x)
int x; Integer to convert to ASCII range.

Returns:

The converted value, in the range 0 to 127 decimal.
Logically equivalent to (x & 127).

Example: Read a word processor file such as produced by MicroPro's
Wordstar, strip the file to ASCII range, and print on the printer.

#include <stdio.h>
main(argc,argv) int argc; char **argv;

int x;
FILE *fp,*fo,*fopen();

if(argc <= 1) {
puts(*Usage: A>strip inputfile"); exit();

if((fp = fopen(argv(1],"r")) == (FILE *)0) {
puts("Bad open of input file"); exit();

if((fo = fopen("LST:","w")) == (FILE *)0) {
puts(*Printer fatlure*); exit();

while((x = getc(fp)) != EOF) {
putc(toascii(x),fo);

fclose(fo); fclose(fp);

Notes:

o With IBM data using the EBCDIC standard character set, the ASCII
standard toascii() is totally useless.

o Toascii() s an honest function and not a macro. There are no
side effects.

Library Page 276

toint

The toint Function

Purpose:

Converts a hex digit into a integer in the range 0 to 15. For
example, toint('A') = 10, toint('f') = 15, toint('0') = 0.

Function Header:
int toint(x)

char x; Character to convert
Returns:
n In range 0...15 for a valid upper or lower case

hexadecimal digit from the character set
0123456789ABCDEFabcdef

-1 Error, an invalid hex digit.
Exanple: Read and convert hex digits from stdin.

#include <unix.h>
#include <stdio.h>
main(argc,argv) int argc; char **argv;

int x,y; FILE *fp,*fopenb();
if(argc > 1) {
if(fp = fopenb(argv(1],"w*)) {
while((x = getchar()) != EOF) {
if(isspace(x)) continue;
if((y = getchar()) != EOF)
putc(toint(x)*16+toint(y),fp);

}
fclose(fp);

Notes:

o Implementations of C that use code macros often put the
function toint() into the CTYPE.H file. Here is the standard
toint() code:

int toint(x) char x;
if(isdigit(x)) return (x - '0');

x = toupper(x) - 'A* + 10;
return (10 <= x && x <= 15) ? x : -1;

Library Page 277

e

tokens

The tokens Function

Purpose:

Decodes a CP/M command 1ine into token strings. Processes re-
direction files < and >. Handles strings with imbedded white space with
single or double quote delimiters.

Fanction Header:

int tokens(table,cmdtail)

char *table[]; Pointer table to be filled.

char *cmdtail; Special buffer area, The first byte is
the length of the string. Following are

The token table is altered by the function call as follows:

table[0]: address of '<' redirection file name

table[1]: address of *>' redirection file name

table[2]: address of the first token

iable[n]: address of the last token

tableln#1]: always set to -1, as a marker
Returns:

The number of tokens actually processed.
Example: Do our own token decoding in lowercase.

#include <stdio.h>
decodtokens(table)
char *table[];

{

int n,i;
char s[129];
printf("Enter a Tine: ");
gets(&s(1]);
s[0] = strien(&s(1]);
table[0] = table[1] = "NO DATA";
n = tokens(table,s);
printf("table[0] = Re-direction <: %s\n",table[0]);
printf("table[1] = Re-direction >: %s\n",table[1]);
for(i=2;i<2+n;++{) printf("table[%d] = %s\n", table[i]);

Library Page 278

tokens

Notes:

The character pointer source points to a buffer area in
memory which contains the command line tail. This area is
disected into tokens, which are delimited by nulls, and
the addresses are consecutively stored in the table.

Any redirection commands cause the entries table[8] and

table[1] to be updated, otherwise these memory locations are
left in entry state. Programs which use tokens() must initialize
table(0] and table[1] (to a null string).

Decoding recognizes both double and single quotes as

commands to stop white space searching (until the quote is
repeated). Therefore, tokens may be passed which contain white
space.

Both upper and lower case characters are recognized by

tokens(). However, the CCP will convert lowercase to uppercase.
Programs which require lower case input can therefore invoke
tokens() inside the program, and service command line strings as
usual, See also insert(), chain(), run().

The redirection file names are obtained from pointers table[0]
and table[1]. This feature allows internal redirection changes,
by closing streams stdin and stdout, then re-opening these
streams with the supplied file names. Implement this by writing
your own Copen () and Cexit (). See also UNIX.H and the
function freopén(). -

Library Page 279

tolower

The tolower Function

Purpose:
Converts a character in the range A-Z to lower case.
Fenction Header:

int tolower(x)
int x; Character to convert.

Returns:

The character x, if no conversion was required.
The lowercase equivalent of x, if 'A' <= x <= 'I',

Example: Convert an input line to all lowercase.

#include <stdio.h>
main()

char s[129];
int i;

printf("Enter a line of text: ");

gets(s);

for(i=0;1i<strlen(s);++1) s[i] = tolower(s[il);
printf(“Lowercase 1ine:\n%s\n",s);

Notes:

0 On some machines this function is a macro. Beware of side effects
when porting code. If you write it, then try to do so without
introducing possible side effects (1ike tolower(*p++)).

o

side effects.

Tolower() 1s an honest function, it is not a macro, and it has no

o Some macro implementations do not bother testing to see if the
integer x to be converted is in the range A-I. The net result is
an invisible bug. Look in STDIO.H on the target for such

nightmares.

Library Page 280

toupper

The toupper Function

Purpose:
Converts a character in the range a-z to upper case A-1.
Function Header:

int toupper(x)
int x; Character to convert.

Returns:

The character x, if no conversion was required.
The uppercase equivalent of x, if 'a' <= x <= 'z',

Exanple: Convert an input line to all uppercase.

#include <stdio.h>
main()

char s[129];
int 1;

printf("Enter a 1line of text: “);

gets(s);

for(i=0;i<strlen(s);++i) s[i] = toupper(s[i]);
printf("UPPERcase line:\n%s\n",s);

Notes:

o On some machines this function is a macro. Beware of side effects
when porting code. If you write it, then try to do so without
introducing possible side effects {1ike toupper(*p++)).

o Toupper() is an honest function, it is not a macro, and it has no
side effects.

o Some macro implementations do not bother testing to see if the
integer x to be converted is in the range a-z. The net result is
an invisible bug., Look in STDIO.H for such problems.

o See also cvupper() for a function that converts an entire line
to upper case with a single function call.

Library Page 281

-

ttyname

The ttyname Function

Purpose:
Get a device name string pointer from an open file descriptor.

Fanction Header:

char *ttyname(fd)
int fd; File descriptor for an open file, use
fd = fileno(fp) for a stream FILE *fp.

Returns:
(char *)p Pointer to static memory containing the
string for the device name.
(char *)0 Error, file not open or was not a valid

device.
Exanple: Print the name of the device attached to stream fp.

#include <unix.h>
#include <stdio.h>
whatdevice(fp)
IEILE *fp;

char *p,*ttyname();
p = ttyname(fileno(fp));
if(p == (char *)0) puts(*Not a device*);
else puts(p);

Notes:
o Valid devices are con:, rdr:, pun:, Ist:

o For Unix compatibility, assume this function returns
only the name of the controlling terminal.

o The source code switches on device numbers as follows:

switch(fd) {

case 0:

case 252: return "CON:";
case 253: return "RDR:";
case 254: return “PUN:";
case 255: return “LST:";
default: return 0;

Library Page 282

ungetc

The ungetc Function

Pushes a character back onto an open stream, ready to be used by
the next call to getc(). Only a one-character push-back is allowed.

Faunction Header:

int ungetc(x,fp)
int x; Character to be pushed back.
FILE *fp; Open stream pointer.

The value of x is ignored for a disk file, but it must be present
in the argument 1ist. For the console stream, the character x is placed
in the console buffer, if possible (it could be full). An EOF character
cannot be pushed back, and it is an error to attempt this feat.

Returns:
EOF Push-back failed
X Push-back worked (or x = EOF)

Example: Push a string back onto the console input buffer.

#include <stdio.h>
main()

{
char s[129],t[129];
int i;
printf(“Enter a string: *);
gets(s);
for(i=0;i<128;++1) {
if(s[11) ungetc(s[i],stdin); else break;

}
ungetc('\n',stdin);

gets(t);
printf(*Here's t: %s\n",t);

Library Page 283

ungetc

Example: Read an input file until % is found, then print the 1ine on
which it occurs.

#include <stdio.h>
main(argc,argv) int argc; char **argv;

char s[129];
FILE *fp,*fopen();
int i;
if(argc <= 1) exit(0):
if((fp = fopen(argv(lj,"r“)) == (FILE *)0) exit(0);
while((1 = getc(fp)) I= EOF &% i I= ')
if(1 == EOF) {
printf(“Flag %% not found\n"); exit(0);

else {
printf("Found %%\n");
ungetc(i,fp);
fgets(s,128,fp);
printf("¥s”,s);

fclose(fp);

Notes:

o Calls to fseek() or freopen() or seek() are unaffected by a
call to ungetc(), because data in the file buffer is not changed.

o Calls to ungetc() for disk files may have the effect of moving
the file pointer back to a previous buffer, in which case the
action taken is to reload the file buffer from disk.

o The console 1imit 1s 136 characters, and you may attempt to push
back an entire string to see how this works. Under re-direction
this process will fail to have the desired result because the
push-back for files does not fool with the data on disk.

o Crazy code that stuffs the file buffers with data that was not on
disk is not acceptable. It will have to be re-written. Sane code
will compile and run normally.

0 Scanf() uses ungetc(). If your code mixes fseek, ungetc, scanf,

then it may not be portable, even though it executes properly
with this library.

Library Page 284

unix system calls

Purpose:

Allow UNIX System III code to compile under C/80, Stubs are in the
file UNIXIO.H, ready to edit into your program. A copy of all stubs is
provided in CLIBU.REL, for convenience. See UNIXIO.H for more details.
Reference texts:

Basic Reference: Banahan & Rutter, The Unix Book, Wiley Press,
New York (1983).

Unix Reference: The Unix Programmers Manual.

Function Headers:

int acct(file) Return 0.

char *file;

unsigned alarm(seconds) Return 0.

unsigned second;

char *cuserid(s) Return (char *)0.
char *s;

int dup(old) Return -1 for error.
int dup2(old,new) Return -1 for error.
int fork() Return -1 for error.

#include <sys/types.h>

#include <sys/stat.h>

int fstat(fd,buf) Return -1 for error.
int fd;

struct stat *buf;

#include <sys/types.h>

#include <sys/timeb.h>

void ftime(tp) Void return,
struct timeb *tp;

int getpid() Return 0.
int getuid() Return 0.
int getgid() Return 0.

Library Page 285

unix system calls

int geteuid() Return 0,
int getegid() Return 0.
int foct1(fd,request,argp) Return -1 for error.

int fd,request;
struct sgtty *argp;

int getpgrp() Return 0.
int getppid() Return 0.
int ki11(pid,sig) Return -1 for error.

int pid,sig;

int 1ink(pathl,path2) Return -1 for error.
char *pathl,*path2;

int mknod(path,mode ,dev) Return -1 for error.
char *path;
int mode,dev;

int mount(spec,dir,rwflag) Return -1 for error.
char *spec,*dir;
int rwflag;

int nice(incr) Return 0.

int incr;

void pause() Void return,

int pclose(fp) Return -1 for error.
FILE *fp;

int pipe(fd) Return -1 for error.
int fd(2];

FILE *popen(command,type) Return 0.

char *command,*type;

void profil(buff bufsize,offset,scale) Void return.
char *buff;
int bufsize,offset,scale;

int ptrace(request,pid,addr,data) Return -1 for error.
int request,pid,addr,data;

int putpwent(p‘fp) Return -1 for error.
struct passwd *p;

FILE *fp;

int setpgrp() Return 0.

Library Page 286

unix system calls

int setgid(gid) Return -1 for error.
int gid;
int setuid(uid) Return -1 for error.
int uid;

#include <sys/types.h>
#include <sys/stat.h>

int stat(name,buf) Return -1 for error.
char *name;

struct stat *buf;

void sync() Void return,

long time(tloc) Returns (long)0

long *tloc;

#include <sys/types.h>
#include <sys/timeb.h>
long times(buffer) Return -1 for error.
struct tbuffer *buffer;

int stime(tp) Return -1 for error.
Tong *tp;

int umask(cmask) Return 0.

int cmask;

int umount(spec) Return -1 for error.
char *spec;

int uname(name) Return 0.

struct utsname *name;

char *userid(s) Return (char *)0
char *s;

int ustat(dev,buf) Return -1 for error.
int dev;

struct ustat *buf;

#include <sys/types.h>

int utime(path,times) Return -1 for error.
char *path;

struct utimbuf *times; or time t timep[2];

int wait(stat loc) Return -1 for error.
int *stat loc;

Library Page 287

unix system calls

#include <grp.h>

struct group *getgrent() Return 0.
#include <grp.h>

struct group *getgrgid(gid) Return 0.
int gid;

#include <grp.h>

struct group *getgrnam(name) Return 0.
char *name;

int setgrent() Return 0.
int endgrent() Return 0.
char *getlogin() Return (char *)0.
int getpw(uid,buf) Return -1 for error.
int uid;

char *buf;

#include <pwd.h>

struct passwd *getpwuid(uid) Return 0.
int vuid;

#include <pwd.h>

struct passwd *getpwent() Return 0.
#include <pwd.h>

struct passwd *getpwnam(name) Return 0.
char *name;

int setpwent() Return 0.
int endpwent() Return 0.

int monitor(lowpc,highpc ,buffer bufsize,nfunc) Return 0.
int (*lowpc)();

int (*highpc)();

short buffer(];

int bufsize;

int nfunc;

int sleep(seconds) Return 0.
unsigned seconds;

Library Page 288

unlink

The unlink Function

Erase a disk file from the disk directory.
Fanction Header:

int unlink(filename)

char *filename; Existing file name.
Returns:

0 No error.

-1 Error, operation failed,

Example: Delete a disk file.

#include <stdio.h>
main()

{
int unlink();
char s[129];
printf(“File name to erase: *);
gets(s);
} if(unlink(s) == -1) puts("Erase failed");

Example: Delete a 1ist of files.

#include <stdio.h>
main()

int unlink();
if(unlink ("A:*.COM") == -1) puts(“Erase failed"};
}
Notes:
o Unlink() is a Bell Labs standard function.

o The function accepts a wildcard argument. You may delete many
files at once with a single call to unlink().

Library Page 289

s

utoa

The utoa, utoax, utoao, utoab Functions

Purpose:

Convert 16-bit integer value to printable characters. String after
conversion is between 5 and 17 bytes in length. See below.

Fanction Header:

int utoa(n,s) Unsigned integer to decimal digits.

int n; Integer to convert.

char s[6]; Storage area for the string.

int utoax(n,s) Unsigned integer to hexadecimal digits.

int n; Integer to convert.

char s[5]; Storage area for the string.

int utoao(n,s) Unsigned integer to octal digits.

int n; Integer to convert.

char s[7]; Storage area for the string.

int utoab(n,s) Unsigned integer to binary digits.

int n; Integer to convert.

char s[17]; Storage area for the string.
Returns:

The number of digits converted. Equals strlen(s).
Example: Print integer conversions.

#include <stdio.h>
main()

{
int 1; char s[129];
do {
type("Enter number: *);
gets(s);
i = atoi(s);
itoa(1,s); puts(s);
utoal(i,s); puts(s);
utoax(i,s); puts(s);
utoao(1i,s); puts(s);
utoab(1i,s); puts(s);
} while(i);
}

Notes:

o A1l routines jump to the assembler interface $STRCV after
loading the accumulator. Same routine as used by printf.

Library Page 290

wait for the H89 or 2100

The waitz Function

Waits for a specified number of milliseconds.
Function Header:

VOID waitz(n)

int n; Wait for 2n milliseconds. Uses the 2
millisecond memory clock of the 790
and 2100 computers.

Returns:
Nothing. CPU is bound to a loop until timeout.
Example: Wait for time entered on the command 1ine.

#include <stdio.h>
main(argc,argv) int argc; char **argv(];

int 1,33
if(argc<=1) exit();
j = atoifargv[1]); if(j+j==0) exit();
for(i=0;i<10;++i) {
printf("Waiting for %dms..\n" j+j);
timer(0); waitz(j); timer(1);

Notes:

o If your machine does not have a memory-based timer, then look
around for an 8253 timer chip or similar timing device.

o The timer interface is used because of accuracy. You can build
a software timer that does essentially the same thing, but it
will be sensitive to CPU speed.

o Works on the H89, 290, 1100 with CP/M-85. Very little chance
on other systems. See the source code for ideas on how to
implement it on other computers.

o Attempts to test this function on machines that are not hard-
ware equipped as cited above will result in a machine hang.
The software loop is an infinite loop in case the timer does
not change (unused location 11).

Library Page 291

wrDISK

The wrDISK Function

Purpose:
Direct-disk write function for CP/M 2.2.

Fanction Header:

wrDISK (track,record,drive,buffer)

int track; Physical track to write, 0 = first,

int record; Record to write on track, 1 = first.

int drive; Drive number. Use 0 for A:, 1 for B:, etc.

char buffer[128]; Location of data to write to disk.
Returns:

Buffer written on success.
Error code for a disk write is returned. Should be 0 for success.

Example: Write track 0 sector 1, the Zenith label sector.

#define 1ibl CLIBX
#include <stdio.h>
main()

int 1i;

char buf[128];
#define TRK 0
#define SEC 1
#define DSK 0

fillchr(buf,'\0',128);
printf(*wrDISK() = %d\n", i = wrDISK(TRK,SEC,DSK,buf));
for(i=0;1<128;++1) printf(*102x\n" ,buf[1]8255);

Notes:

o Note that wrDISK() is coded in assembly language and is highly
non-portable. The function wrDISK()} can be written in terms of
the function bios(). The latter is recommended for portability,
especially to CP/M-68K and Unix. The portable source:

bios(12,buffer); Under CP/M-68K the second
bios(9,drive); argument of bios() has a
bios(10,track); cast of (long).
bios(11,record); Under CP/M-80 2.2, the cast
return bios(14,0); is (int).

o Immediate writes to disk must use bios(14,1). This problem
occurs with LRU buffering (2100, for example). Normal writes
use bios(14,0) with possibly delayed physical write.

Library Page 292

writ e - C/80 Standard write

The write Function for C/80

Purpose:

Writes a block of characters to the disk in binary mode. The amount
written must be a multiple of 128. Adheres to the Software Toolworks
standard for the write() function. Use UNIX.H to obtain the Bell Labs
Unix standard.

Fenction Header:

#include <stdio.h>
unsigned write (fp,buffer,count)

FILE *fp; Open stream pointer.
char *buffer; Buffer which contains data.
unsigned count; Number of bytes to write.
This number must be a multiple
of 128,
Returns:

The number of bytes actually written, which should equal the
number count above. It is an error if write () != count.

Example: Write 2048 bytes to a disk file.

#include <stdio.h>
put2048(fp,buf)
FILE *fp;

?har buf(2048];

unsigned x,write ();

x = write (Fp,buf,2048);
if(x 1= 2048) puts("Write failure");

Library Page 293

write - C/80 Standard write

Notes:

o

Streams with descriptors 252,253,254,255 are devices. Write ()
under C/80 cannot use these device descriptors. Use putc() For
safety.

A write failure is usually due to end of media. Since the
C/80 write () function operates in binary mode only, there is
no carriage return and linefeed translation. Nor does the
function insert ctri1-Z at the end of the file.

The write () function under C/80 operates in quanta of 128 bytes.
You cannot write 1 character. See UNIX.H and the Unix-style
write() and fwrite() functions for an alternative.

This write function uses CP/M function 34 with manual advance
of the record number. The initial record number is saved in the
system variable I0sect[fp].

The symbol write is the same label as write in CLIB.REL.
Portable source code should use write for the C/80 write().
Other systems will use read() and write() as in UNIX.H.

01d C/80 code may be compiled without changes, because write
is a global in CLIB.REL which has the correct meaning for such
source code. New source code should use write .

A file opened for update "u" may be read to the end with the
read () function followed by rewind(fp) and access by the
write () function. Mixed calls of read /write 2 /getc/putc will
probably fail.

Library Page 294

write and writea

The write and writea Functions

Transfers bytes from main memory to a non-stream file. Move n bytes
per call from a preset buffer. The transfer suffers from cr/1f
translation if the file was opened in Ascii mode (the usual case).
Function Header:

int writea(fd,buffer,n)

int fd; File descriptor, fd=fileno(fp) where
fp is the stream pointer.
char *buffer; Pointer to base of memory storage which
contains the data to be written to disk.
int n; Number of bytes to transfer, 0...32767.
Returns:
m The number of bytes actually transferred, an integer ‘
quantity 0...32767. Could be different from n. i
-1 Error :

WARNING: In UNIX.H appears the definition #define write writea.
Exanple: Write 1 byte to a file.

#include <unix.h>

#include <stdio.h>

main()

FILE *fp,*fopen();

int x;
fp = fopen(“TMP*,"w");
X = -Al;
write(fileno(fp),&x,1);
| fclose(fp);
Notes:

o Note that UNIX.H installs a new name for write(). You actually
use writea(). Beware of the name conflict with C/80 write(). The
primitive C/80 write() 1is used implicitly. A1l Unix re-direction
is in force, because of the explicit use of putc().

o Useful for writing out Ascii data from the current file pointer.
o This function differs from the C/80 primitive write() in that
quanta of 128 bytes are not required and in addition you can

write to a device. Devices CON:, PUN:, LST: are recognized, but
CR/LF translation occurs.

Library Page 295

writeb

The writeb Function

Purpose:

Transfers bytes from main memory to a file opened by descriptor.
Move n bytes per call from a preset buffer. The transfer is done in
binary mode regardless of how the file was opened.

Fenction Header:

int writeb(fd,buffer,n)

int fd; File descriptor, fd=fileno(fp) where
fp is the stream pointer.
char *buffer; Pointer to base of memory storage which
contains the data to be written to disk.
int n; Number of bytes to transfer, 0...32767.
Returns:
m The number of bytes actually transferred, an integer
quantity 0...32767. Could be different from n.
-1 Error

WARNING: In UNIX.H appears the definition
#define write writea
Exanmple: Write a 1inefeed only to an output file opened in ASCII mode.

#include <unix.h>
#include <stdio.h>

main()
{
FILE *fp,*fopen();
int x;
fp = fopen{"TMP","w");
x = '\n';
writeb(fileno(fp),sx,1);
: fclose(fp);

Library Page 296

writeb

Example: Write a linefeed only to the console.

#include <unix.h>
#include <stdio.h>
main()

int x;
x="'\n';
printf("Watch it happen");
writeb(fileno(stdout),8x,1);
printf("here");

Notes:

o The header file UNIX.H names write() as writea(), an ASCII
access. Beware of the name conflict write() creates with the /80
1ibrary.

o Useful for writing binary data from the current file pointer.

o The console device is treated specially so that a linefeed is not
converted to CR/LF. For other devices like the printer, bytes are
output just as they appear in the buffer without further
translation.

o For disk files, the mode of the file is temporarily changed to
binary and the bytes are output from the buffer to the stream
buffer. Recall that under the present library, all disk files are
strean files. However, the fill character used for the stream and
the end-of-file mark are not affected.

o This function differs from the C/80 primitive write() in that

quanta of 128 bytes are not required and in addition you can
write to a device.

Library Page 297

el o3

oy

