CP/M-68K™
Operating System
Programmer’s Guide

Copyright CD.Ianuary 1983

Digital Research
P.0. Box 579
160 Central Avenue
Pacific Grove, CA 93950
(408) 649-3896
TWX 910 360 5001

All Rights Resetved

COPYRIGHT

Copyright © 1983 by Digital Research. All rights
reserved. No part of this publication may be
reproduced, transmitted, transcribed, stored in a
retrieval system, or translated into any language or
computer language, in any form or by any means,
electronic, mechanical, magnetic, optical, chemical,
manual or otherwise, without the prior written
permission of Digital Research, Post Office Box 579,
Pacific Grove, California, 93950.

This documentation is, however, tutorial in nature.
Thus, the reader is granted permission to include
the example programs, either in whole or in part, in
his own programs.

DISCLAIMER

Digital Research makes no representations or
warranties with respect to the contents hereof and
specifically disclaims any implied warranties of
merchantability or fitness for any particular
purpose. Further, Digital Research reserves the
right to revise this publication and to make changes
from time to time in the content hereof without
obligation of Digital Research to notify any person
of such revision or changes.

TRADEMARKS

CP/M, CP/M-86, and CP/NET are registered trademarks
of Digital Research. Concurrent Ccp/M-86, CP/M-68K,
Cp/M-80, CP/M-86, DDT-68K, MP/M-80, and MP/M-86 are
trademarks of Digital Research. Motorola is a
registered trademark of Motorola Inc. Unix is a
registered trademark of Bell Laboratories. IBM
Personal Computer is a tradename of International
Business Machines.

The CP/M-68K Operating System Programmer 's Guide was
prepared using the Digital Research TEX Text
Formatter and printed in the United States of
America.

P Y 2 222222222222 22 2 22 2 2 2 2 2 A 2 24

* Pirst Edition: January 1983 *
**********t*t*****f*t*******t*****

Foreword

CP/M-68K™is a single-user operating system designed for the
MOTOROLA® MC68000 or a compatible 68000 microprocessor. CP/M-68K
requires a minimum of 64K bytes of random access memory (RAM) to run
its base-level system, which contains the CP/M® commands and the
utilities listed below.

e CP/M Built-in Commands:

DIR
DIRS
ERA
REN
SUBMIT
TYPE
USER

e Standard CP/M Utilities:

DDT-68K™
ED '
PIP

STAT

e Programming Utilities:

Archive (AR68)
DUMP

Relocation (RELOC)
SIZE68

SENDC68

e Programming Tools
Assembler (AS68)
Linker (LO68)
C Compiler*

C Preprocessor*

* Described in the C Programming Guide for CP/M-68K.

CP/M-68K requires a minimum of 128K bytes of RAM to run the
programming tools distributed with CP/M-68K.

The CP/M-68K file system is based on and is upwardly compatible
with the CP/M-80™ Version 2.2 and CP/M-86® Version l.1 file
systems. However, CP/M-68K supports a much larger file size with a
maximum of 32 megabytes per file.

iii

CP/M-68K supports a maximum of 16 disk drives, with 512
megabytes per drive. CP/M-68K supports other peripheral devices
that the Basic I/0 System (BIOS) assigns to one of the four logical
devices: LIST, CONSOLE, AUXILIARY INPUT, or AUXILIARY OUTPUT.

This guide describes the programming interface to CP/M-68K.
The first few sections in this guide discuss the CP/M-68K
architecture, memory models, executable programs, and file system
access functions. Latter sections of this guide describe
programming tools and utilities distributed with your CP/M-68K
system.

This guide assumes you are an experienced programmer familiar
with the basic programming concepts of assembly language. If you
are not familiar with the Motorola 68000 assembly language, refer to
Motorola manuals listed below.

e 16-BIT Microprocessor User's Manual, third edition
MC68000UM (AD3)

e M68000 Resident Structured Assembler Reference Manual
M68KMASM (D4)

Before you can use the facilities in this guide, your CP/M-68K
system must be configured for your hardware environment. Normally,
your system is configured for you by the manufacturer of your
computer or the software distributor. However, if you have an
unusual hardware environment, this may not be the case. Refer to
the CP/M-68K Operating System System Guide for details on how to
configure your system for a custom hardware environment.

New Functions and Implementation Changes

CP/M-68K has six new Basic .Disk Operating System (BDOS)
functions and additional implementation changes in the BDOS
functions and data structures that differ from other CP/M systems.
The new BDOS functions and implementation changes are listed in

Appendix F.
Table F-4 in Appendix F contains functions and commands

supported by other CP/M systems, but that are not supported by CP/M-
68K.

iv

Table of Contents

Introduction to CP/M-68K

1.1 CP/M-68K System Architecture
1.2 Transient Programs . « « « « o o o o o o
1.3 File System ACCESS « « « « o o o o o o o =
1.4 Programming Tools and Commands . . . « .« .
1.5 CP/M-68K File Specification . « . « « . .« &«
1.6 Wildcards « « « o o o o o o o o o o o o o

1.7 CP/M-68K Terminology . « « « ¢ o o o o o =

The CCP and Transient Programs
2.1 CCP Built-In and Transient Commands . . . ;
2.2 Loading A Program In Memory . . « « « « « .

2.2.1 Base Page Initialization By The CCP
2.2.2 Loading Multiple Programs . . .« « .

2.2.3 Base Page Initialization

2.3 Exiting Transient Programs . . « « « « = =

2.4 Transient Program Execution Model

Command File Format

3.1 The Header and Program Segments .
3 L] 2 The symbol Table L] Ll L3 L] e Ll L] L] ® L J L] L] L]
3.2.1 Printing The Symbol Table

3.3 Relocation Information . « « ¢ ¢« o o o o -«

3.3.1 The Format of A Relocation Word . .

Basic Disk Operating System Functions
4.1 BDOS Functions and Parameters . « « « o« «

4.1.1 Invoking BDOS Functions . . . « . . -
4.1.2 Organization Of BDOS Functions . . .

[SN ST S

10
10
10
11

11l
12

15
17
19
19
20

24

24
25

Table of Contents
(continued)

4.2 File ACCQSS Functions L3 . L] . L] . [

4.3

4.4

A File Control Block (FCB)
File Processing Errors . .
Open File Function -
Close File Function
Search For First Function .
Search For Next Function . .

N

Delete File Function . . .
Read Sequential Function .
Write Sequential Function
Make File Function =«
Rename File Function . . .

ISFCESENE SENN SN SR SN SR SN
0 & o 0

HFHEHERHEREEO®OSOW

e o & o 5 3 8 6 & 9 ¢ o

Set File Attributes Function
Read Random Function . . . =«
Write Random Function . . .
Compute File Size Function .
Set Random Record Function .
Write Random With Zero Fill Fun

oUW O

[] . . [] L] []

P O O O N N N N W N ol ol

[SE SIS SH SN S

e o & o o o

Func tions L] L] . L] . - [L] . L]

o
2]
[
<
(1]

Reset Disk System Function .
Select Disk Function . . .
Return Login Vector Function
Return Current Disk Function
Write Protect Disk Function
.Get Read-Only Vector Function
Get Disk Parameters Function
Reset Drive Function
Get Disk Free Space Function

. L] L]

WwWwwwwwww
e o o 0 0 0
Voo W+

QG O N ol
P

Character I/0 Functions . . « « « =«

4.4.1 Console 1/0 Functions . . .
Console Input Function . . .
Console Output Function . .
Direct Console I/0 Function
Print String Function . . .
Read Console Buffer Function
Get Console Status Function

Auxiliary Input Function . .
Auxiliary Output Function .
List Output Function

vi

Set Direct Memory Access (DMA)

.
L]
un

L]
.
.
.
]

(o]

Additional Serial I/O Functions

. L] . L L] . L]

[* . []

3]

e o o o o (Do o

o]

. [. L] [L]

L[] . L] L]

25

26
28
31
32

34
35
36
37
39

41
42
44
46
48
49
51

52

53

55
56
57
58

59
62

62

64
64
65
66
68
69
71

72
72

74

Moo

4.5

4.6

AS68
5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8

L068
6.1
6.2
6.3
6.4

Table of Contents

(continued)

4.4.3 1I/0 Byte Functions . . .
Get I/0 Byte Function .

Set I/O Byte Function .

System/Program Control Functions

Exception Functions

4.6.1 Set Exception Vector Function

4.6.2 Set Supervisor State . .
4.6.3 Get/Set TPA Limits . . .
Assembler

Assembler‘Operation « o e o o
Initializing AS68 . . « « « . &
Invoking the Assembler (AS68) .
Assembly Language Directives .
Sample Commands Invoking AS68 .
Assembly Language Differences .
Assembly Language Extensions .

Error Messages . « « « o o o o

Linker

Linker Operation . . « « « « &«
Invoking the Linker (L068) . .
Sample Commands Invoking LO068 .

L068 Error Messages . « « « « o

vii

.

L3

4.5.1 System Reset Function . .

4.5.2 Return Version Number Functlon
4.5.3 Set/Get User Code . . . o .
4.5.4 Chain To Program Function . .
4.5.5 Flush Buffers Function . o e
4.5.6 Direct BIOS Call Function . .
4.5.7 Program Load Function . . .

L] L] L] . . L] .

o o e o o o o

L] . . . L] L] L]

. L] L[] L] L] L[] L]

L] L] L]] L]

74
76
77

77
78
79
81
83
84
85
87
88

91
92

95
95
95
98
104
104
106
107

109
109
112
112

Table of Contents

(continued)

7 Programming pgtilities

7.1

7.3

Archive Utility

7.1.1
7.1.2
7.1.3
7.1.4

AR68 Syntax . -
AR68 Operation .

Errors « « « o o
DUMP Utility . « « « -«
7.2.1 1Invoking DUMP .
7.2.2 DUOMP Output . .
7.2.3 DUMP Examples .
Relocation Utility . .

7.3.1
7.3.2

Invoking RELOC .
RELOC Examples

‘ SIZE68 Utility . « .« -«

7.4.1
7.4.2
7.4.3

Invoking SIZE68
SIZE68 Output .
SIZE68 Examples

SENDC68 Utility « . - -

7.5.1 Invoking SENDC68
7.5.2 SENDC68 Example

DDT-68K

8.1

DDT-68K Operation . . .

3 L]

L) L3

68K

viii

AR68 Commands and Optxons

.

8.1.1

8.1.2

8.1.3 Spec1fy1ng Address . o« « o o
8.1.4 Terminating DDT-

8.1.5

IDVOk lng DDT-68K - . ° ° . .
DDT-68K Command Conventions

DDT-68K Operation with Interr

u

pts

L] L] L .

[] L[] L] .

() L] . [

L] L] L] L[]

. . . . []

L] . L . L]

113

113
115
115
120
120
120
121
122
122

122
123

124
124

124

125
126

126
127

129

129
129
130
130
130

Table of Contents
(continued)

8 - 2 DDT-6 BK comands e o @ @ e © ° © o o o o

The
The
The
The
The
The
The
The
The
The
The
The
The
The
The

©0 C0 00 GO 00 GO GO GO C0 0O O G0 GO O O
® % o 6 o 0 o 8 ¢ s 6 0 e @
ISESE SN SY SN SN SY SENY VY SY NN VY XY ¥
® o o o 4 6 8 6 0 6 6 8 s @

HHEMHHROONOULIE WM

bW O

NE<SCHLOIICHEDOWEOD

" (Set) Command

(Display) Command

(Load for Execution) Command
(Fill) Command . . « « « o« .
(Go) Command . . « «
(Hexadecimal Math) Command .
(Input Command Tail) Command
(List) Command
(Move) Command
(Read) Command

(Trace) Command .
(Untrace) Command
(Value) Command .

(Weite) Command .
(Examine CPU State) Comma

L] L] (] L] [] [] L]

[] L] [L] [] L]
L] L] [L] [] L[] (]
L] [] L[] [[] . L]

He o e 0 ¢ o

d

.
e
.
]
.
3
[
e
[
.
.
.
L3
L]
L]

L] L] L] L] . L[] . L] . L] . . L] - L]

8.3 Assembly Language Syntax for A and L Commands

ix

L[] . L] L] [} L[] . L] L] L] L] L[] L] L) L]

L[] L] L] L] L[] L[] L[] L] L] L] L] . L] L] L)

L[] L] [] L] . (] . [] . e o L[] L[] . (]

131

131
132
132
133
133
133
134
134
135
135
136
136
137
137
137

139

Appendixes

Summary of BIOS Punctions « « « ¢« . . .« .

Transient Prograﬁ Iovad Example ¢« ¢« « « « .

Base Page Format . . . ¢« ¢ ¢ ¢ ¢ ¢ o ¢ o o o o o &

Instruction Set SUEMBALY . . « ¢ ¢ o o o o o o o

Error Hessages L] . L] ° [L3 . @ L] . . L] L] . ® ° ° °

E.l

E.3
E.4

E.5

E.7

E.8

AR68 Error MesSsSagesS « « « « o o o o o o o o o

E.l.1 PFatal Diagnostic Error Messages . . .
E.l.2 AR68 Internal Logic Error Messages . .

AS68 Error MessagesS . « « « « = o o o o o o o
E.2.1 AS68 Diagnostic Error Messages
E.2.2 User-recoverable Fatal Error Messages
E.2.3 AS68 Internal Logic Error Messages . .
BDOS Error MeSsagesS . . « « « ¢ s o ¢ o o o @
BIOS Error MeSsSageS « « « o o o o o o o o o o

CCP Error MeSSageS .« « « s o o o o o o o o o

E.5.1 Diagnostic Error Messages . . o o «
E.5.2 CCP Internal Logic Error Messages . .

DDT-GBK Errot Messages e o o o o s . e e o o

E.6.1 Diagnostic Error Messages
E.6.2 DDT-68K Internal Logic Error Messages

DUMP Error MeSSagesS ¢ « o« « o o o o o o o o o
LO68 Error MeSSagesS . « « « ¢ o o o o o o o o

E.8.1 Fatal Diagnostic Error Messages . . .
E.8.2 LO68 Internal Logic Error Messages . .

NM68 Error MesSsSagesS . « « ¢ o o o o o o o o o

141
143
151
153

157
157
157
160
l6l
161
167
171
171
175
176

176
179

180

180
186

187
187

187
191

191

(

)

Appendixes
(continued)

E.10 RELOC Error MesSSage@S . . « « o« o o o o o o

E.1l SENDC68 Error MesSsages . . . « « o« o o o o

E.l1l.1 Diagnostic Error Messages
E.1l.2 SENDC68 Internal Logic Error Messages

E.12 SIZE68 Error MeSSagesS . . « « o o o o o o o

New Functions and Implementation Changes
F.l BDOS Function and Data Structure Changes . .

F.2 BDOS Functions Not Supported By CP/M-68K . .

xi

192
195

196
197

197

199
199
200

Tables

1-1.

1-5.

Tables, Figures, and Listings

Program Modules in the CPM.SYS File . .
CP/M-68K Programmer's Guide Conventions
CP/M-68K Commands (Programmer's Guide)

CP/M-68K Commands (Users Guide)

Delimiter Charactrs . « o o o o o o =
CP/M'-GSK TerminOlOgY ° o

CP/M-68K Commands (C Language Reference ﬁa

Values for Symbol Types
Relocation Word Values (bits 0 through 2)

CP/M-68K BDOS Functions . . « « « « .
BDOS Parameter Summary =« « « o o o .
File Access Functions . « « « « « & .
Read-Write Error Response Options . .
Disk File Error Response Options . .
Unsuccessful Write Operation Return Code
File Attributes . « « ¢« « « ¢ o o =« .
Read Random Function Return Codes .
Write Random Function Return Codes
Current Position Definitions .« o
Drive Functions . . e o o
Fields in the DPB and CDPB .
Character I/0 Functions
Direct Console I/0 Function Values
Line Editing Controls . . « « « =« =«
I/0 Byte Field Definitions
System and Program Control Functions
Version Numbers . « ¢« « o« o o o o =«
Program Load Function Return Codes
Load Parameter Block Optlons « o o
Valid Vectors and Exceptions . . .

TPAB Parameter Field Values, Bits 0 an

L] L2

.
*
L)
.
.
Cc
.
e
3
.
3
.
.
3
L]
L 2

e o o o
’—llootooocotoncoomoooon

d

Assembler Option . « ¢ « ¢« o« o o
Assembly Language Directives . . .

DDT-68K Command SUMMALY « « o o o o o o o
Summary of BIOS Functions . . « « . « . &
Base Page Format: Offsets and Contents .

Instruction Set SUMMALY « « « o o o o o o
Variations of Instruction Types

AR68 Fatal Diagnostic Error Messages . .
AS68 Diagnostic Error Messages . . o «
User-recoverable Fatal Error Messages

xii

. e o e o o

L] L] L] L] L]] L] L] L[]

[] L[] ° L[] L[] o L] [[] L] L[] [L]

e o e o o o

e 8 9o o ¢ o

L] [L] [] L] [] L[] e o L] [] L[] [] o o . . . [] [e ® L)

[

L[] L] L] . . .]

157
16l
167

TN

an

Tables, Figures, and Listings
(continued)

_ Tables

E-4. BDOS Error MessSages . . « « « .
E-5. BIOS Error Messages
E-6. CCP Diagnostic Error Messages . .
E-7. DDT-68K Diagnostic Error Messages
E-8. DUMP Error Messages . . . « « . .
E-9. LO68 Fatal Diagnostic Error Messages

L]] . [] [

¢ o o o m e & o o o
L] L[] L] . . L] . L] L[] L]
L] L] L[] L] . L] L[] L[] L[] .
e o o ¢ o ¢ o s o o
L] L d L] L] L] . L] L] . L]
L] L] L] L] L] . L] [] L] []

E-10. NM68 Error Messages
E-1l. RELOC Error Messages
E-12. SENDC68 Diagnostic Error Messages .
E-13. SIZE68 Error Messages

F-l. New BDOS Functions e o o o @
F-2. BDOS Function Implementatxon Changes o« o
P-3. BDOS Data Structure Implementation Changes
F-4. BDOS Functions Not Supported by CP/M-68K .

. 2-1. Format of the Command Tail in the DMA Buffer .
~ 2-2. CP/M=-68K Default Memory Model
2-3. CP/M-68K Memory Model with Inaccessible Memory

3-1. Header for Contiguous Program Segments
3-2. Header for Noncontiguous Program Segments . . .
3-30 EntIY in SymbOl Table e © e e o e o o e e o o o

4-1. FCB PFormat for Rename Function
4-2. DPB and CDBP e o ® e e e e o . . . e o
4-3. I/OByte « .
4-4. Command Line Format in the DMA Buffer .
4-5. BIOS Parameter Block (BPB)
4-6. Format of the Load Parameter Block (L PB
4-7. Exception Parameter Block (EPB)
4-8. Transient Program Parameter Block
4-9. Parameter Field in TPAB . . v v ¢ ¢ o« « &

L] [. [] .
L] . L] [] L[] L) L[] [L]
L] L[] L] . . . L] L[] L]
L L] . . .] [[] L]

N B-l. Transient Program Load Example 1
B-2. Transient Program Load Example 2

xiii

® o o o

172
175
176
180
187
188
192
193
196
197

199
199
200
200

143
146

Section 1
Introduction to CP/M-68K

CP/M-68K contains most of the facilities of other CP/M systems
with additional features required to address up to sixteen megabytes
of main memory available on the 68000 microprocessor. The CP/M-68K
file system is upwardly compatible with CP/M-80 Version 2.2 and
CP/M-86 Version 1l.l. The CP/M-68BK file structure supports a
maximum of sixteen drives with up to 512 megabytes on each drive and
a maximum file size of 32 megabytes.

l.1 CP/M-68K Architecture

The CP/M-68K operating system resides in the file CPM.SYS on
the system disk. A cold start loader resides on the first two
tracks of the system disk and loads the CPM.SYS file into memory
during a cold start. The CPM.SYS file contains the three program
modules described in Table 1-1.

Table 1-1. Program Modules in the CPM.SYS FPile

Module Mnemonic Description

Console Command Processor CCP User interface that
parses the user
command line.

Basic Disk Operating System BDOS Provides functions
that access the
file system.

Basic I/O System BIOS Provides functions
that interface
peripheral device
drivers for 1I/0
processing.

The sizes of the CCP and BDOS modules are fixed for a given
release of CP/M-68K. The BIOS custom module, normally supplied by
the computer manufacturer or software distributor depends on the
system configuration, which varies with the implementation.
Thererore, the size of the BIOS also varies with the implementation.

The CP/M-68K operating system can be loaded to execute in any
portion of memory above the locations reserved in the 68000
architecture for the exception vectors (0000H through 03FFH). All
CP/M-68K modules remain resident in memory. The CCP cannot be used
as a data area subsequent to transient program load.

All Infcrmacion Presented dere 1is

CP/M-68K Programmer's Guide 1.2 Transient Programs

1.2 Transient Programs

After CP/M-68K is loaded in memory, the remaining contiguous
address space that is not occupied by the CP/M-68K operating system
is called the Transient Program Area (TPA). CP/M-68K loads

executable files, called command files, from disk to the TPA. These/)
command files are also called transient commands or transient _

programs because they temporar:.ly reside in memory, rather than
being permanently resident in memory and conflgured in CP/M-68K.
The format of a command file is described in Section 3.

1l.3 PFile System Access

Programs do not specify absolute locations or default variables
when accessing CP/M-68K. Instead, programs invoke BDOS and BIOS
functions. Section 4 describes the BDOS functions in detail.
Appendix A lists the BIOS calls. Refer to the CP/M-68K Operating
System System Guide for detailed descriptions of the BIOS tunctions.
In addition to these functions, CP/M-68K decreases dependence on
absolute addresses by maintaining a base page in the TPA for each
transient program in memory. The base page contains initial values
for the File Control Block (FCB) and the Direct Memory Access (DMA)
buffer. For details on the base page and loading transient
programs, refer to Section 2.

1.4 Programming Tools and Commands Q

CP/M-68K contains a full set of programming tools that include
an assembler (AS68), linker, (LO68), Archive Utility (AR68),
Relocation Utility (RELOC), DUMP Utility, SIZE68, and SENDC68. Each
of these tools is discussed in the latter part of this guide. Table
1-3 lists the commands that invoke these tools. Table 1-2 describes
command conventions used in this manual. Tables 1-4 and 1-5 list
other commands supported by CP/M-68K and the manual in which they
are documented.

Table 1-2. CP/M-68K Programmer's Guide Conventions

Convention) Meaning

[] . Square brackets in a command line
enclose optional parameters.

nH " The capital letter H follows numeric
values that are represented in
hexadecimal notation. .

numer ic values Unless otherwise stated, numeric values
are represented in decimal notation.

(n) BDOS function numbers are enclosed in
parentheses when they appear in text.

L

All Information Presented Here is Proprietary to Digital Researc

CP/M-68K Programmer's Guide 1.4 Programming Tools and Commands

Table 1-2. (continued)

Convention Meaning
. Or ...
. A vertical or horizontal elipsis

indicates missing elements in a series
unless noted otherwise.

RETURN The word RETURN refers to the RETURN
' key on the keyboard of your console.
Unless otherwise noted, to invoke a
command, you must press RETURN after
you enter a command line from your
console.

CTRL-X The mnemonic CTRL-X instructs you to
press the key labeled CTRL while you
press another key indicated by the
variable X. For example, CTRL-C
instructs you to press the CTRL Kkey
while you simultaneously press the key
lettered C. .

Table 1-3 describes commands used in the CP/M-68K Operating
System Programmer's Guide. :] .

Table 1-3. CP/M-68K Commands (Programmer's Guide)

Command Description

“

AR68 Invokes the Archive Utility (AR68). AR68
creates a library and/or deletes, adds,
or extracts object modules from an
existing library, such as the C Run-time

Library.
AS68 Invokes the Assembler (AS68).
DDT Invokes DDT-68K, the CP/M-68K debugger.
DUMP Invokes the DUMP Utility that prints the

contents of a file in hexadecimal and
ASCII notation.

LO68 Invokes the Linker.

NM68 Invokes the NM68 Utility that prints the
symbol table of an object or command
file.

All Informaction Presen=esd T2re 13 Srcogriszacgy o TiIlial Res=arca

W& /MTO0ON DiUVYiuuusis o JvuiLuc do ¥ ELUYLQUUILLIUY 4UVWVLD AlU CvuuuGlIuD

Table 1-3. (continued)

Command Description

RELOC Invokes the Relocation Utility that
relocates a command file containing
relocation information- to an absolute -
address.)

SENDC68 Invokes the SENDC68 Utility that converts
a command file to the MOTOROLA S-record
format.

SIZEé68 Invokes the SIZE68 Utility that prints

the total size of a command file and the
size of each program segment in the
file.

Table 1-4 describes commands used in the CP/M-68K Operating
System User's Guigde.

Table 1-4. CP/M-68K Commands (User's Guide)

Command Description
DIR* Displays the directory of files on a
specified disk.
DIRS* Displays the directory of system files
on a specified disk.
ED Invokes the CP/M-68K text editor.
ERA* Erases one or more specified files.
PIP Copies, combines, and transfers
specified files between peripheral
devices.
REN* - Renames an existing file to the new name
specified in the command line.
SUBMIT* Executes a file of CP/M commands.
TYPE* Displays the contents of an ASCII file
on the console. ’
USER* Displays or changes the current user

number.

* CP/M-68K built-in commands

- vy

D
ALl LOITITETLION

CP/M-68K Programmer's Guide 1.4 Programming Tools and Commands

Table 1-5 describes commands used in the C Programming Guide
for CP/M-68K.

Table 1-5. CP/M-68K Commands (C Manual)

Command Description

c Invokes a submit file that invokes the C
compiler for compiling CP/M-68K C
source files.

CP68 Invokes the C preprocessor for
' processing macros when you compile
CP/M-68K C source files. ,

co68 Invokes the C parser when you compile
CP/M-68K C source files.

Clé68 Invokes the assembly language code
generator for the CP/M-68K C compiler
when you compile C source files.

1.5 CP/M-68K File Specification

The CP/M-68K file specification is compatible with other CP/M
systems. The format contains three fields: a l-character drive
select code (d), a 1- through 8-character filename (f...f), and a 1-
through 3-character filetype (ttt) field as shown below.

Format d:fEfE£EL££EF. tLL
Example B:MYRAH.DAT

The drive select code and filetype fields are optional. A
colon (:) delimits the drive select field. A period (.) delimits
the filetype field. These delimiters are required only when the
fields they delimit are specified. '

Values for the drive select code range from A through P when
the BIOS implementation supports 16 drives, the maximum number
allowed. The range for the drive code is dependent on the BIOS
implementation. Drives are labeled A through P to correspond to the
1 through 16 drives supported by CP/M-68K. However, not all BIOS
implementations support the full range.

The characters in the filename and filetype fields cannot
contain delimiters (the colon and period) and must be upper-case for
the CCP to parse the file specification. The CCP cannot access a
file that contains delimiters or lower-case characters. A command
line and its file specifications, if any, that are entered at the
CCP level are automatically put in upper-case internally before the
CCP parses them. '

PR - R . - "Tav Dm Demmm i ymmoaecr . i e =t oSSR S
Al Iafarmation Presencad Fer2 L3 2IT9Tlafar > ILZLI3L s@searcao

CP/M—-6b8BK Programmer s Guliae l.5 File Specitication

However, not all commands and file specifications are entered
at the CCP level. CP/M-68K does not prevent you from including
delimiters or lower-case characters in file specifications that are
created or referenced by functions that bypass the CCP. For
example, the BDOS Make File Function (22) allows you to create a
file specification that includes delimiters and lower-case
characters, although the CCP cannot parse and access such a file.

In addition to the delimiter characters already mentioned, you
should avoid using the delimiter characters in Table 1-6 in the file
specification of a file you create. Several CP/M-68K built-in
commands and utilities have special uses for these characters.

Table 1-6. Delimiter Characters

Character Description

{1 square brackets
() parentheses

<> angle brackets
equals sign
asterisk

amper sand

comma
exclamation point
bar

question mark
slash

dollar sign
period

colon

semicolon

plus sign

minus sign

I 4~ 00 N WW—== B %]

1.6 Wildcards

CP/M-68K supports two wildcards, the question mark (?) and the
asterisk (*). Several utilities and BDOS functions allow you to
specify wildcards in a file specification to perform the operation
or function on one or more files. However, BDOS functions support
only the ? wildcard.

The ? wildcard matches any character in the character position
occupied by this wildcard. For example, the file specification
M?RAH.DAT indicates the second letter of the filename can be any
alphanumeric character if the remainder of file specification
matches. Thus, the ? wildcard matches exactly one character

position.

.1 Informacicn Presented Here 1S5 Proprietary to Digital Researcn

‘Y

‘r
«

C2/M=-68K Pruogrammer's Guide 1.6 Wildcards

The * wildcard matches one or more characters in the field or
remainder of a field that this wildcard occupies. CP/M~-68K
internally pads the field or remaining portion of the field occupied
by the * wildcard with ? wildcards before searching for a match.
For example, CP/M-68K converts the file B*.,DAT to B??2?2?2227?.DAT
before searching for a matching file specification. Thus, any file
that starts with the letter B and has a filetype of DAT matches this
file specification.

For details on wildcard support by a specific BDOS function,
refer to the description of the function in Section 4 of this guide.
For additional details on these wildcards and support by CP/M-68K
utilities, refer to the CP/M-68K Operating System User's Guide.

1.7 CP/M-68K Terminology

Table 1-7 lists the terminology used throughout this guide to
describe CP/M-68K values and program components.

Table 1-7. CP/M-68K Terminology

Term Meaning

Nibble 4-bit value

Byte 8-bit value

Word 16-bit value

Longword - 32-bit value

Address 32-bit value that specifies a

location in storage

Offset A fixed displacement defined by
' the user to reference a location
in storage, other data source, or

destination.

Text Segment The section of a program that.
contains the progranm
instructions.

Data Segment ‘ The section of a program that
contains initialized data.

Block Storage The section of a program that

Segment (bss) contains uninitialized data.

End of Section l.

All Information Praesented Here 1s Proprietarv to Jigizal Research

7

Section 2
The CCP and Transient Programs

This section discusses the Console Command Processor (CCP),
built-in and transient commands, loading and exiting transient
programs, and CP/M-68K memory models.

2.1 CCP Built-in and Transient Commands

After an initial cold start, CP/M-68K displays a sign-on
message at the console. Drive A, containing the system disk, is
logged in automatically. The standard prompt (>), preceded by the
letter A for the drive, is displayed on the console screen. This
prompt informs the user that CP/M-68K is ready to receive a command
line from the console.

In response to the prompt, a user types the filename of a
command file and a command tail, if required. CP/M-68K supports two
types of command files, built-in commands and transient commands.
Built-in commands are configured and reside in memory with CP/M-68K.
Pransient commands are loaded in the TPA and do not reside in memory
allocated to CP/M-68K. The list below contains the seven built-in
commands that CP/M-68K supports. T :

DIR
DIRS
ERA
REN
TYPE
USER
SUBMIT

A transient command is a machine-readable executable program
file in memory. A transient command file is loaded from disk to
memory. Section 3 describes the format of transient command files.

When the user enters a command line, the CCP parses it and
tries to execute the file specified. The CCP assumes a file is a
command file when it has any filetype other than .SUB. When the
user specifies only the filename but not the filetype, the CCP
searches for and tries to execute a file with a matching filename
and a filetype of either 68K or three blanks. The CCP. searches the
current user number and user number 0 for a matching file. 1If a
command file is not found, but the CCP finds a matching file with a
filetype of SUB, the CCP executes it as a submit file.

Tl s

All Informarcion Presented Here {3 Propri2tary oo Digital Research

h /NIT VRN £ LVUYLE QRUUTL 0 VuLeuT o ® do MG LI 0§ LWYe il il AL Y

2.2 Loading A Program In Memory

Either the CCP or a transient program can load a program in
memory with the BDOS Program Load Function (59) described in Section
4.5. After the program is loaded, the TPA contains, the program
segments (text, data, and bss), a user stack, and a base page. A
base page exists for each program loaded in memory. The base page
is a 256-byte data structure that defines a program's operating
environment. Unlike other CP/M systems, the base page in CP/M-68K
does not reside at a fixed absolute address prior to being loaded.
The BDOS Program Load Function (59) determines the absolute address
of the base page when the program is loaded into memory. The BDOS
Program Load Function (59) and the CCP or the transient program
initialize the contents of the base page and the program's stack as
described below.

2.2.1 Base Page Initialization By The CCP

The CCP parses up to two filenames following the command in the
input command line. The CCP places the properly formatted FCBs in
the base page. The default DMA address is initialized at an offset
of 0080H in the base page. The default DMA buffer occupies the
second half of the base page. The CCP initializes the default DMA
buffer to contain the command tail, as shown in Figure 2-1. The CCP
invokes the BDOS Program Load Function (59) to load the transient
program before the CCP parses the command line.

Program Load, Function 59, allocates space for the base page
and initializes base page values at offsets 0000E through 0024H from
the beginning of the base page (see Appendix C). Values at offsets
0025H through 0037H are not initialized; but the space is reserved.
The CCP parses the command line and initializes values at offsets
0038H through OOFFH. Before the CCP gives control to the loaded
program, the CCP pushes the address of the transient program's base
page and a return address within the CCP on the user stack. When
the program is invoked, the top of the stack contains a return
address within the CCP, which is pointed to by the stack pointer,
register A7. The address of the program's base page is located at a
4-byte offset from the stack pointer.

2.2.2 Loading Multiple Programs)
Multiple programs can reside in memory, but the CCP can load
' only one program at a time. However, a transient program, loaded by
the CCP, can load one or more additional programs in memory. A
program loads another program in memory by invoking the BDOS Program
Load Function (59). Normally, the CCP supplies FCBs and the command
tail to this function. The transient program must provide this
information, if required, for any additional programs it loads when
the CCP is not present. C

Here ic Preprietarv toc Digital Research

-

Cp/M-68K Programmer's Guilde 2.2 Loading A Program in Memory

2.2.3 Base Page Initialization By A Transient Program

A transient program invokes the BDOS Program Load Function (59)
to load an additional program. The BDOS Program Load Function
allocates space and initializes base page values at offsets 0000H
through 0024H for the program as described in Section 2.2.1l. The
transient program must initialize the base page values that the CCP
normally supplies, such as FCBs, the DMA address, and the command
tail, if the program being loaded requires these values. The
command tail contains the command parameters but not the command.
The format of the command tail in the base page consists of a l-byte
character count, followed by the characters in the command tail, and
terminated by a null byte as shown in Figure 2-1. The command tail
cannot contain more than 126 bytes plus the character count and the
terminating null character.

Count Characters in the Command Tail 0

1 byte N bytes < 126 bytes

Figure 2-1. PFormat of the Command Tail in the DMA Buffer

Unlike the CCP, a transient program does not necessarily push.
the address of its base page and a return address on the user stack
before giving control to the program that it loads with the Program
Load Function. The transient program can be designed to push these
addresses on the user stack of the program it loads if the program
uses the base page. :

The address of the base page for the loaded program is not
pushed on the user stack by the Program Load Function (59).
Instead, it is returned in the load parameter block (LPB), which is
used by the BDOS Program Load Function. Appendix C summarizes the
offsets and contents of a base page. Appendix B contains two
examples, an assembly language program and a C language program,
which illustrate how a transient program loads another program with
the BDOS Program Load Function (59), but without the CCP.

2.3»Exiting Transient Programs

CP/M-68K supports the two ways listed below to exit a transient
program and return control to the CCP.

e Interactively, the user types CTRL-C at the console, the
default I/O device

e/ TITUON SLUYLGUUUITL O JuduC LoD LALLLIUY LlicdausieOl rFrouyrLaius

® Program a return to the CCP with either:
l) a Return From Subroutine (RTS) Instruction
. 2) the BDOS System Reset Function (0)
A user typing CTRL-C from the console returns control to the
CCP only if the program uses any of the BDOS functions listed below.

e Console Output (2)
e Print String (9)
e Read Console Buffer (10)

On input, CTRL-C must be the first character that the user types on

the line. CTRL-C terminates execution of the main program and any -

additional programs loaded beyond the CCP level. For example, a
user who types CTRL-C while debugging a program terminates execution

of the program being debugged and DDT-68K before the CCP regains

control.

Typing CTRL-C in response to the system prompt resets the
status of all disks to read-write.

To program a return to the CCP, specify a Return from
Subroutine (RTS) Instruction or the BDOS System Reset Function (0).

The RTS instruction must be the last one executed in the

program and the top of the stack must contain the system-supplied
return address for control to return to the CCP. When a transient
program begins execution, the top of the stack contains this system-
supplied return address. If the program modifies the stack, the top
of the stack must contain this system-supplied return address before
an RTS instruction is executed.

Invoking the BDOS System Reset Function (0) described in
Section 4.5 is equivalent to programming a return to the CCP. This
function performs a warm boot, which terminates the execution of a
program before it returns program control to the CCP.

2.4 Transient Program Exeéution Model

The memory model shown in Figure 2-2 illustrates the normal
configuration of the CP/M-68K operating system after the CCP loads a
transient program. CP/M-68K divides memory in two categories:
System and the Transient Program Area (TPA).

CP/M-68K System memory contains the Basic Disk Operating System
(BDOS) , the Basic I/0 System (BIOS), the Console Command Processor
(CCP) , and Exception Vectors. The bootstrap program initializes the
memory locations in which these components reside. Other than
exception vectors, which reside in memory locations 0000H through
03FFH, the remaining components can reside anywhere in memory,
provided the BDOS and CCP are contiguous.

N

2r

iy

ST T e

"y

m

o2l

0w

—nvyrc pem et e TN s e o =
TPIletaly T CLlfllas xese

1Y
"
Q
@]

S~
-k

(

12

N

CP/M—-o0d8K Programmer’'s Guldae Lol rranslientc yrogram moae.ls

The TPA consists of contiguous memory locations that are not
occupied by the CP/M-68K operating system. A user stack, a base
page, the three program segments: a text segment, an initialized
data segment, and a block storage segment (bss) exist for each
transient program loaded in the TPA. The BDOS Program Load Function
(59) loads a transient program in the TPA. If memory locations are
not specified when the transient program is linked, the program is
loaded in the TPA as shown in Figure 2-2.

High Memory

l ~—— BIOS
System CP/M-68K BDOS
‘ —— CCP
1 " USER STACK
| Transient FREE MEMORY
{ Program
f Area
{ (TPA) - BSS
H -
- DATA
' TEXT
BASE PAGE
System EXCEPTION VECTORS

Pigure 2-2. CP/M-68K Default Memory Model

Some systems can configure and load CP/M-68K in such a manner
that one or more portions of memory cannot be addressed by the Cp/M~-
68K operating system (see Figure 2-3). CP/M-68K cannot access this
memory. CP/M-68K does not know the memory exists and cannot define
or configure the memory in the BIOS because CP/M-68K requires that
the TPA is one contiguous area. However, a transient program that
knows this memory exists can access it. Also, note that CP/M-68K
does not support or require memory management. -

[4
b
]
t,
9
s
3
[¢Y]
it
t
(9]
o)
O
ty
W
n
{0
3
i1
1Y
e
{
[
W
+
{
'
v
4
]
t
{
'
{
'
{
{
P
|
‘
i
i
{

W&/ MTUUN FLeUVYLAQUMUUTL O JuLuT oo R

High Memory

dbQAQuUDLITIL TlLUYLAl NUUTLD

Not accessible to CP/M-68K

r— BIOS
System CP/M-68K BDOS
— CCP
‘ USER STACK
Transient
Program FREE MEMORY
Area
(TPA)
BSS
DATA
TEXT
BASE PAGE
System EXCEPTION VECTORS

{

Low Memory

Figure 2-3.

v - .
LnLISIrmatction

Lo e b i

End of Section 2

CP/M-68K Memory Model with Inaccessible Memory

—— e s = e

Pid

-

Section 3
Command File Format

This section describes the format of a commard file. The
linker processes one or more compiled or assembled files to produce
an executable machine-readable file called a command file. By
default, a command file has a filetype of 68K.

A command file always contains a header, two program segments
~(a text segment and an initialized data segment), and optionally
contains a symbol table and relocation information. These
components are described in the following sections.

3.1 The Header and Program Segments

The header, the first component in the file, specifies the size
and starting address of the other components in the command file,
which are listed below.

® Program segments:
“text: contains the program instructions. ﬂkww/ ‘ZQ:MA /E%Qfﬂkx
data: contains data_initialized within the command file.

block storage segment (bss):
specifies space for uninitialized data generated by the
program during execution. Although space for the bss
is specified in the source command file, the space is
not allocated until the command file is loaded in
memory. Therefore, the source command file on the disk
contains no uninitialized data.

e Symbol table: defines referenced symbols.

® Relocation information:
specifies the relative relocation of each word within
each program segment, if required.

The command file format supports two types of headers. The
size and content of each type differs. The contiquity of the
program segments determines which type of header a command file
contains. When the program segments must be contiguous, the file
contains a l4-word header in the format shown in Figure 3-1. When
the program segments can be noncontiquous, the file contains an 18-
word header in the format shown in Figure 3-2. The first word of
each header contains a hexadecxmai integer that defines which type
of header the file contains. ,

dcs=p A, o \;
Ut Tl FUULAA L D ~ Y

o
(1

, e e e - - -

{1
3
Y

- v s T e . LT
QA2 L3S IZTIL::TLC P T s S o

(&}
Y]
.

(1)
{

15

o e r————

Cp/M-68K Programmer's Guide

Byte Sample Values Size
Offset :
1 Word
0H 601AH
28 2376H 1 Longword
6H 4224 1 Longword
0AH 1806H 1 Longword
0EH 142H 1 Lonjword
12H 0000H 1 Longword
16H 5008 1 Longword
1AH 00H
1 Word
Figure 3-1. Header

To create a file that can contain
and -B linker options
The header, jdentified by 601BH

the -T, -D'
link the files.

segments, specify
Section 6 when you

denotes the size and location of each program segment.
program segments can
does not imply the segments must be noncontiguous.

this header indicates the

——— b e T T i

[#1]
Iy

3.1 Command File Format

Contents

Integer 601AH denotes text,
data, and bss are contiguous

in text segment

Number pytes

in data segment

Number bytes

in bss

Number bytes

Number bytes in symbol table

Reserved; always zero
Beginning of text segment and
of program execution

Integer flag for relocation
pits; if O, relocation
pits exist; if not 0,

no relocation bits exist.

for Contiguous Program Segnments

noncontiguous program
described in

Note that
be noncontiguous and
See Figure 3-2.

LA
(9]
"
"
7]
Y
111
"
[P
(4]
Q
(]
]

g
o
§
t

iy
o
0
fid
3
[§)

CP/M-68K Programmer's Guide 3.1 Command File Format

3yte Sample Values Size Contents
Offset
1 Word Integer 501BH denotes text, daca,
Jd 5013H and 5ss can ce noncontiguous
24 57864H 1 Longword Numpber of Dytes Ln text segmentc
5H i 146H L Longword Numper of sytes 1n data segment
0AH 2568H 1 Longword Number of bytes in bss
OEH 69H 1 Longword Number of bytes in symbol table
12H 0000H 1 Longword Reserved; always zero
16H SO0H 1 Longword Beginning of text segment
’ and of program execution
1AH 00H .

1 Word Integer flag for relocation bits;
if 0, relocation bits exist; if
not 0, no relocation bits exist.

1CH 57D64H 1 Longword Starting address of data segment
20H S8 1AAH 1 Longdord Starting address of bss

Figure 3-2. Header for Noncontiguous Program Segments

The linker computes the size of the segments in bytes. The
result is always rounded up to an even number. For example, the
linker adds a byte to a program segment that contains an odd number
of bytes. The linker does not include the size of the header when
it computes the size of the segments.

After a program is linked and loaded in memory, it contains
three program segments: text, initialized data, and uninitialized
data (bss). The BDOS Program Load Function (59) zeroces the bss when
a program is loaded. A program begins execution at the beginning of
the text segment. See Figures 3-1 and 3-2 above.

3.2 The Symbol Table
The symbol table lists all the symbols specified in a program.

Each symbol in the table consists of a 7-word entry that describes
the symbol name, type, and value. See Figure 3-3.

"W

N
}

]
A
-
(&)
0]
[a}
H
[¥]
(4]
3
O
o
I“
(3]
119
[
[1!]
w3
(1
[{Y
[¥]
(23]
W
(R
W
]
Ui

CP/M-68K Programmer's Guide 3.2 The Symbol Table

Field BYTE
/ N A
M E
Name

\\\ Null Null

Null Null
) Type — A400H
s ‘
' Value 4 A6F0H

FPigure 3-3. Entry in Symbol Table

The name field, the first four words, contains the

WORD

ASCII name

of the symbol. This field is padded with null characters when the
ASCII name is less than eight characters. The fifth word contains

the symbol type. Valid values are listed in Table 3-1.

Table 3-1. Values For Symbol Types

Type : Value
defined 8000H
equated ' 40008
global 2000H
equated register 1000H
external reference 800H

- data based relocatable 4008
text based relocatable 200H
bss based relocatable 1008

When specifying a symbol type with multiple characteristics,
the linker uses an OR instruction to combine several of the above
values. For example, to specify a defined, global, data based,
relocatable symbol, the linker combines the values of each

characteristic for a value of A400H.

-

CP/M-68K Programmer's Guide 3.2 The Symbol Table

The last field in an entry is the value field. It consists of
a longword that contains the value of the symbol. The value can be
an address, a register number, the value of an expression, or some
other value. When the value field is nonzero and the type field
contains an external symbol, the linker interprets the symbol to be
a common region in which the size of the region equals the value of
the symbol.

3.2.1 Printing The Symbol Table

Use the NM68 Utility to print the symbol table of an object or
command file. To invoke this utility, specify the NM68 command and
filename as shown below.

NM68 filename.O [>filespec]

You must enter the filename of an object file or a command.
file. You can optionally redirect the NM68 output from your console
to a file. To redirect the NM68 output to a file, specify a greater
than sign (>) followed by a file specification after the filename
and filetype of the file from which NM68 prints the symbol table.

The NM68 utility does not sort the symbols; it prints them in
the order in which they appear in the file. Each symbol name is
printed, followed by its value and one or more of the type
-descriptors listed below:

equ (equated)

global

equreg (equated register)
external

data

text

bss

abs (absolute)

3.3 Relocation Information

Relocation information is optional. The header relocation
word, the last word in the header, indicates whether relocation
information exists. When its value is zero, relocation information
exists. None exists when the its value is nonzero.

Relocation information specifies the relocation of words in
program segments. One word of relocation information, called a
relocation word, exists for each word in each of the program
segments. The assembler and compiler generate relocation words for
external symbols and address constants referenced in the text and
data program segments. The linker and sometimes the BDOS Program
Load Function (59) use these relocation words as described below.

- - . : . : o i m e
All Informacticon 2ra2sented Here 13 2r2prla2T3ry o TLTlIxL REsearcnh

CP/M=bUK Programmer s Guiqe 3.3 KelOoCatilion lnrormacion

The linker resolves external symbols when linking £files by
modifying bits 0 through 2 of each relocation word that references
an external symbol. After being modified, the relocation word
indicates the program segment that the symbol references.
Therefore, instead of referencing an external symbol, the relocation
word references a word located in one of the program segments.
Because the linker only modifies relocation words that refer to
external symbols, relocation words that do not reference this type
of symbol have the same value in the source file input to the linker
and the executable file output by the linker.

The BDOS Program Load Function uses relocation words when it
loads a program in a location other than the one at which it was
linked. The Program Load Parameter Block (LPB) used by the Program
Load Function specifies where the program is loaded. When the LPB
specifies a location other than the linked location, the BDOS
computes a bias (the difference between where a program segment is
linked and where it will be loaded in memory). When loading the
program, the BDOS adds the bias as indicated by the relocation words
to the address of the relocatable words in the text and/or data
segments. However, when the BDOS loads the program in the memory
locations at which it was linked, the BDOS does not use the
relocation words.

3.3.1 The Format Of A Relocation Word

A relocation word is a l6-bit quantity. Bits 0 through 2 in
each relocation word indicate the type of address referenced and, if
applicable, designate the segment to which the relocation word
refers. Values for these bits are described in Table 3-2.

Table 3-2. Relocation Word Values (bits 0 through 2)

Value Description

00 no relocation information required; the reference
is absolute

0l reference relative to the base addreés of the data
. segment

02 reference relative to the base address of the text
segment

03 reference relative to the base address of the bss
04 references an undefined symbol

05 references the upper word of a longword; the next
relocation word contains the value determining
whether the reference is absolute or dependent on
the base address of the text or data segments, or
the bss.

e - A

}U
'
Q
!(J
v
bt
1
D
n
n
1
)
ry

ry
t

1]
(A
o
(!
O
(&)
+

(18]
t

)
’ 4

CP/M-68K Programmer's Guide : 3.3 Relocation Information

Table 3-2. (continued)

Value Description

06 16=-bit PC-relative reference

07 indicates the first word of an instruction, which

does not require relocation information.

The remaining bits, 3 through 15,
program references an external symbol. In that case, these bits
contain an index to the symbol table. The index specifies the entry
number of the symbol listed in the symbol table. Entry numbers in
the symbol table are numbered sequentially starting with zero.

are not used unless the

End of Section 3

o]
tt

-

-~

console,

Section 4

Basic Disk Operating System (BDOS) Functions

To access a file
or to

reset the

or a drive,

to output characters to the
system, your program must access the

CP/M-68K file system through the Basic Disk Operating System (BDOS).
The BDOS provides functions that allow your program to perform these

tasks.

Table 4-1 summarizes the BDOS functions.

Table 4-1. CP/M—-68K BDOS Functions

F# Function Type

0 System Reset System/Program Control

1 Console Input ‘Character I/0, Console Operation
2 Console Output Character I/0, Console Operation
3 Auxiliary Input* Character 1/0, Additional Serial I/O
4 Auxiliary Output* Character I/0, Additional Serial I/O
5 List Output Character I/O, Additional Serial I/O
6 Direct Console I/0 Character I/0, Console Operation
7 Get I/0 Byte* I/0 Byte

8 . Set I/0 Byte* I/0 Byte

9 Print String Character I/0, Console Operation
10 Read Console Buffer Character I/O, Console Operation
11 Get Console Status Character I/0, Console Operation
12 Return Version Number System Control

13 Reset Disk System Drive

14 Select Disk Drive

15 Open File File Access

16 Close File File Access

17 Search for First File Access

18 Search for Next File Access

19 Delete File File Access

20 Read Sequential File Access

21 Write Sequential File Access

22 Make File File Access

23 Rename File File Access

24 Return Login Vector Drive

25 Return Current Disk Drive

26 Set DMA Address File Access

28 Write Protect Disk Drive

29 Get Read-Only Vector Drive

30 Set File Attributes File Access

31 Get Disk Parameters Drive

32 Set/Get User Code System/Program Control

33 Read Random File Access

34 Write Random File Access

35 Compute File Size File Access

* Must be implemented in the BIOS

CP/M-68K Programmer 's Gulae

‘s

DLVD L Uil v \Wiao

Table 4-1. (continued)

F# Function TYPE

36 Set Random Record Pile Access

37 Reset Drive Drive

40 Write Random With File Access

Zero Fill

46 Get Disk Free Space Drive

47 Chain To Program System/Program Control

48 Flush Buffers System/Program Control

50 Direct BIOS Call System/Program Control

59 Program Load System/Program Control

61 Set Exception Vector Exception

62 Set Supervisor State Exception

63 Get/Set TPA Limits Exception

4.1 BDOS Functions and Parameters

To invoke a BDOS function, you must specify one or more

parameters. Each BDOS function is identified by a number, which is

the first parameter you must specify.
in the first word of data register DO (DO.W).
a second p

re passed as 16-bit words.
and the high order byte should be zeroed.
the second parameter for the Cons

The function

character, which is a byte parameter. The character

low order byte of data register D1l (Dl.W).

number is loaded

Some functions require
arameter, which is loaded, depending on
low order word (Dl.W) or lon
parameters a
the data,

its size, in the

gword (Dl.L) of data register Dl. Byte
The low order byte contains

For example,

ole Output Function (2) is an ASCII

is loaded in the

Some BDOS functions

return a value, which is passed in the first word of data register

DO (DO.W).

when you specify an invalid
4-2 illustrates the syntax and summarizes the reg
functions use.

The hexadecimal value FFFF is returned in register DO.W

function number in your program. Table

isters that BDOS

Table 4-2. BDOS Parameter Summary

BDOS Parameter Register
Function Number DO.W
Word Parameter D1l.W
Longword Parameter Dl.L
Return Value, if any DO.W

4.1.1 Invoking BDOS PFunctions

appropriate registers,

After the parameters for a function are loaded in the

the program must specify a trap 2 instruction

to access the BDOS and invoke the function. The example below

illustrates the assembler syntax required to invoke the Console
Output Function (2).

» 1

24

4ll Informz-icn Presented Here i1g Proprietary to Digital Research

CP/M-86K Programmer's Guide 4.1 BDOS Functions

move.w #2,d0 *Moves the function number to the first
- *word in data register DO.

move.w #'U,dl *Moves the ASCII character upper-case U
*to the first word in data register DI.

trap #2 -*Accesses the BDOS to invoke the function.

The example above outputs the ASCII character upper-case U to
the console. The assembler moves instructions load register DO.W
with the number 2 for the BDOS Console Qutput Function and register
D1.W with the ASCII character upper-case U. A pair of single ('')
or double ("") quotation marks must enclose an ASCII character. The
trap 2 instruction invokes the BDOS Output Console Function, which
echos the character on the console's screen.

4.1.2 Organization Of BDOS Functions

The parameters and operation performed by each BDOS function
are described in the following sections. Each BDOS function 1is
categorized according to the function it performs. The categories
are listed below. '

File Access

Drive Access

Character I/0
System/Program Control
Exception

As you read the description of the functions, notice that some
functions require an address parameter designating the starting
location of the direct memory access (DMA) buffer or file control
block (FCB). The DMA buffer is an area in memory where a 128-byte
record resides before a disk write function and after a disk read
operation. Functions often use the DMA buffer to obtain or transfer.
data. The FCB is a 33- or 36-byte data structure that file access
functions use. The FCB is described in Section 4.2.1.

4.2 PFile Access PFunctions
This section describes file access functions that create,

delete, search for, read, and write files. They include the
functions listed in Table 4-3. : :

All Information Presented Here 1s Proprietarv’ o

CP/M-68K Programmer's Guide 4.2 File Access Functions

Table 4-3. Pile Access Functions

Function FPunction Number
Open File 15
Close File 16
Search For First 17
Search For Next 18
Delete File 19
Read Sequential 20
Write Sequential 21

. Make File 22
Rename File 23
Set DMA Address 26
Read Random 33
Write Random 34
Compute File Size 35
Write Random With
Zero Fill ‘ 40

4.2.1 A File Control Block (FCB)

Most of the file access functions in Table 4-3 require the
address of a File Control Block (FCB). A FCB is a 33- or 36-byte
data structure that provides file access information. The FCB can be
33 or 36 bytes when a file is accessed sequentially, but it must be
36 bytes when a file is accessed randomly. The last three bytes in
the 36-byte FCB contain the random record number, which is used by
random I/0 functions and the Compute File Size Function (35). The
starting location of a FCB must be an even-numbered address. The
format of a FCB and definitions of each of its fields are below.

o

CP/M-68K Programmer's Guide 4.2 File Access Functions

r2

Field [dr|f1]£2]...|£8[cl|t2|t3|ex|sl]s2|rc|d0|... dnlcr|r0|r]
Byte 00-01 02 ... 08 09 10 11 12 13 14 15 16 ... 31 32 33 34 35
dr drive code (0 - 16)
0 => use default drive for file
1 => auto disk select drive A,
2 => auto disk select drive B,
16=> auto disk select drive P.
fl...£8 contain the filename in ASCII
upper-case. High bit should equal 0
when the file is opened.
tl,t2,t3 contain the filetype in ASCII
upper-case. The high bit should equal 0
when the file is opened. For the Set File
Attributes Function (see Section 4.2.13),
tl', t2', and t3' denote the high bit. The
list below indicates which attributes are set
when these bits are set and equal the value 1.
tl' = 1 => Read-Only file
t2' = 1 => SYS file
t3' = 1 => Archive
ex. contains the current extent number,
normally set to 00 by the user, but is in the
range 0 - 31 (decimal) for file I/0
sl reserved for internal system use
s2 reserved for internal system use, set to zero for
Open (15), Make (22), Search (17,18) file functions.
rc record count field, reserved for system use
d0...dn filled in by CP/M, reserved for
system use
cr current record to be read or written;
for a sequential read or write file
operation, the program normally sets
this field to zero to access the first
record in the file
r0,rl,r2 optional, contain random record number
in the range 0-3FFFFH; bytes r0, rl, and r2
are a 24-bit value with the most significant
‘byte r0 and the least significant byte r2.
Random I/0 functions use the random record
number in this field.
111 Infsrmaticn Sroasenced Hderaz 15 PIonTisTanl Tl LIZ. m=ExxZIc

CP/M-68K Programmer's Guide 4.2 File Access Functions

For users of other versions of CP/M, note that both CP/M-80
Version 2.2 and CP/M-68K perform directory operations in a reserved
area of memory that does not affect the DMA buffer contents, except
for the Search For First (17) and Search For Next (18) Functions in
which the directory record is copied to the current DMA buffer.

4.2.2 File Processing Brrors

When a program calls a BDOS function to process a file, an
error condition can cause the BDOS to return one of five error
messages to the console:

e CP/M Disk read error

e CP/M Disk write error

® CP/M Disk select error

e CP/M Disk change error

e CP/M Disk file error: ffffffff.ttt is read-only

Except for the CP/M Disk file error, CP/M-68K displays the error
message at the console in the format:

"error message text" on drive x

The "error message text"™ is one of the error messages listed above.
The variable x iS a one-letter drive code that indicates the drive
on which CP/M-68K detects the error. CP/M-68K displays the CP/M
Disk file error in the format shown above.

When CP/M-68K detects one of these errors, the BDOS traps it.
CP/M-68K displays a message indicating the error and, depending on
the error, allows you to abort the program, retry the operation, or

continue processing. Each of these errors and their options are -

described below.

CP/M issues a CP/M Disk read or write error when the BDOS
receives a hardware error from the BIOS. The BDOS specifies BIOS
read and write sector commands when the BDOS executes file-related
system functions. If the BIOS read or write routine detects a
hardware error, the BIOS returns an error code to the BDOS that
results in CP/M-68K displaying a disk read or write error message at
your console. In addition to the error message, CP/M-68K also
displays the option message:

Do you want to Abort (d), Retry (R), or Continue with bad data (C)?

In response to the option message, you type one of the letters
enclosed in parentheses and a RETURN. Each of these options is
described below.

Al Tnfprrma-ion Presentec dere is Proprietary to Digital Kesearch

SN

CP/M-68K Programmer's Guide 7 4.2 File Access Functions

Table 4-4. Read-Write Error Message Response Options

Option Action

A The A option or CTRL-C aborts the program
and returns control to the CCP. CP/M-68K
returns the system prompt (>) preceded by
the drive code.

R The R option retries the operation that
caused the error. For example, it rereads
or rewrites the sector. If the operation
succeeds, program execution continues as if
no error occurred. However, 1f the
operation fails, the error message and
option message is displayed again.

(o] The C option ignores the error that occurred
and continues program execution. The C
option is not an appropriate response for
all types of programs. Program execution
should not be continued in some cases. For
example, if you are updating a data base and
receive a read or write error but continue
program execution, you can corrupt the index
fields and the entire data base. For other

-programs, continuing program execution is
recommended. For example, when you transfer
a long text file and receive -an error
because one sector is bad, you can continue
transferring the file. After the file is
transferred, review the file. Using an
editor, add the data that was not
transferred due to the bad sector.

Any response other than an A, R, C, or CTRL-C is invalid. The
BDOS reissues the option message if you enter any other response.

The CP/M Disk select error occurs when you select a disk but
you receive an error due to one of the conditions below.

e You specified a disk drive not supported by the BIOS.
e The BDOS receives an error from the BIOS.
e You specified a disk drive outside the range A through P.

Before the BDOS issues a read or write function to the BIOS, the
BDOS issues a disk select function to the BIOS. If the BIOS does
not support the drive specified in the function, or if an error
occurs, the BIOS returns an error to the BDOS, which in turn, causes
CP/M-68K to display the disk select error at your console. If the
error is caused by a BIOS error, CP/M-68K returns the option
message:

Do you want to Abort (A) or Retry (R)?

3]
£

All Information 2rasented Here is 2roprie

29

CP/M-68K Programmer's Guide 4.2 File Access Functions

To select one of the options in the message, specify one of the
letters enclosed in parentheses. The A option terminates the
program and returns control to the CCP. The R option tries to select
the disk again. If the disk select function fails, CP/M-68K
redisplays the disk select error message and the option message.

However, if the error is caused because you specify a disk
drive outside the range A through P, only the CP/M Disk select error
is displayed. CP/M-68K aborts the program and returns control to
the CCP.

Your console displays the CP/M Disk change error message when
the BDOS detects the disk in the drive is not the same disk that was
logged in previously. Your program cannot recover from this error.
Your program terminates. CP/M-68K returns program control to the
CCP.

You log in a disk by accessing the disk or resetting the disk
or disk system. The Select Disk Function (14) resets a disk. The
Reset Disk System Function (13) resets the disk system. Files cannot
be open when your program invokes either of these functions.

You receive the CP/M Disk file error and option messages (shown
below) if you call the BDOS to write to a file that is set to read-
only status. Either a STAT command or the BDOS Set File Attributes
Function (30) sets a file to read-only status.

CP/M Disk file error: £ffffffff.ttt is read-only.
Do you want to: Change it to read/write (C), or Abort (aA)?

The variable ffffffff.ttt in the error message denotes the filename
and filetype. To select one of the options, specify one of the
letters enclosed in parentheses. Each option is described below.

Table 4-5. Disk File Error Response Options

Option Action

c Changes the status of this file from read-only
to read-write and continues executing the
program that was being processed when this
error occurred.

A Terminates execution of the program that was
being processed and returns program control to
the CCP. The status of the file remains read-
only. If you enter a CTRL-C, it has the same
effect as specifying the A option.

CP/M-68K reprompts with the option message if you enter any
response other than those described above.

L/ 1To0N FLuVYlLaliuucs D TULUCT T e L L LT ALLSOO ULV LCLWVILID

4.2.3 Open File Function

FUNCTION 15: OPEN FILE

Entry Parameters:
Register DO.W: OFH
Register Dl.L: FCB Address

Returned Values:
Register DO.W: Return Code

success: O00H - 03G
error: FFH

The Open File Function matches the filename and filetype fields
of the FCB specified in register Dl.L with these fields of a
directory entry for an existing file on the disk. When a match
occurs, the BDOS sets the FCB extent (ex) field and the second
system (S2) field to zero before the BDOS opens the file. Setting
these one~-byte fields to zero opens the file at the base extent, the
first extent in the file. In CP/M-68K, files can be opened only at
the base extent. In addition, the physical I/0 mapping information, .
which allows access to the disk file through subsequent read and
write operations, is copied to fields 40 through dn of the FCB. A
file cannot be accessed until it. has been opened successfully. The
open function returns an integer value ranging from 00H through 03H
in DO.W when the open operation is successful. The value FFH is
returned in register DO.W when the file cannot be found.

The question mark (?) wildcard can be specified for the
filename and filetype fields of the FCB referenced by register Dl.L.
The ? wildcard has the value 3FH. For each position containing a ?
wildcard, any character constitutes a match. For example, if the
filename and filetype fields of the FCB referenced by D1.L contain
only ? wildcards, the BDOS accesses the first directory entry.
However, you should not create a FCB of all wildcards for this
function because you cannot ensure which file this function opens.

Note that the current record field (cr) in the FCB must be set
to zero by the program for the first record in the file to be
accessed by subsequent sequential I/O functions. However, setting
the current record field to zero is not required to open the file.

V]

CP/M-68K Programmer 's Guide 4.2 File Access Functions

4.2.4 Close File Punction

FUNCTION 16: CLOSE FILE

Entry Parameters:
Register DO.W: 10H
Register Dl.L: FCB Address

Returned Values:
Register DO0.W: Return Code

success: 00H - 03H
error: FFH

The Close File Function performs the inverse of the Open File
Function. When the FCB passed in Dl.L was opened previously by
either an Open File (15) or Make File (22) PFunction, the close
function updates the FCB in the disk directory. The process used to
match the FCB with the directory entry is identical to the Open File
Function (15). An integer value ranging from 00H though 03H is
returned in DO.W for a successful close operation. The value FFH is
returned in DO.W when the file cannot be found in the directory.
When only read functions access a file,.closing the file is not
required. However, a file must be closed to update its disk
directory entry when write functions access the file.

All Information Presented Here is Proprietary to Digital Research

32

CP/M-68K Programmer's Guide 4.2 File Access Functions

4.2.5 Search For Pirst Function

FUNCTION 17: SEARCH FOR FIRST

Entry Parameters:
" Register DO.W: 1llH
Register D1.L: FCB Address

Returned Values:
Register DO.W: Return Code

success: O00H - 03H
error: FFH

The Search For First Function scans the disk directory
allocated to the current user number to match the filename and
filetype of the FCB addressed in register Dl.L with the filename and
filetype of a directory entry. The value FFH is returned in register
DO.W when a matching directory entry cannot be found. An integer
value ranging from 00H through 03H is returned in register DO.W when
a matching directory entry is found.

The directory record containing the matching entry is copied to
the buffer at the current DMA address. Each directory record
contains four directory entries of 32 bytes each. The integer value
returned in DO.W indexes the relative location of the matching
directory entry within the directory record. For example, the value
0lH indicates that the matching directory entry is the second one in
the directory record in the buffer. The relative starting position
of the directory entry within the buffer is computed by multiplying
the value in DO.W by 32 (decimal), which is equivalent to shifting
the binary value of DO.W left 5 bits.

When the drive (dr) field contains a ? wildcard, the auto disk
select function is disabled and the default disk is searched. All
entries including empty entries for all user numbers in the
directory are searched. The search function returns any matching
entry, allocated or free, that belongs to any user number. An
allocated directory entry contains the filename and filetype of an
existing file. A free entry is not assigned to an existing file. If
the first byte of the directory entry is E5H, the entry is free. A
free entry is not always empty. It can contain the filename and
filetype of a deleted file because the directory entry for a deleted
file is not zeroed.

All Information Presented Here is Proprietar:

v
0

igigal Research

33

L ——

CP/M-68K Programmer's Guide 4.2 File Access Functions

4.2.8 Search For Next Punction

FUNCTION 18: SEARCH FOR NEXT ' ~

Entry Parameters:
Register DO.W: 12H

Returned Values:
Register DO.W: Return Code

success: O00H - 03H
error: FFH

The Search For Next Function scans the disk directory for an
entry that matches the FCB and follows the last matched entry, found
with this or the Search For First Function (17).

A program must invoke a Search For First Function before
invoking this function for the first time. Subsequent Search For
Next Functions can follow, but they must be specified without other
disk related BDOS functions intervening. Therefore, a Search For
Next Function must follow either itself or a Search For First

Function.] {m
N
The Search For Next Function returns the value FFH in DO.W when
no more directory entries match.
“

~

- - ~ -

-~ * = v =
Par PR S I O N O S

L&/ M=oon rrudiadliddsl 9 QYuiLwg Tl L LdT NALLTOO L UMIGLLULIS

4.2.7 Delete File Punction

FUNCTION 19: DELETE FILE

Entry Parameters:
Register DO.W: 13H
Register Dl.L: FCB Address

Returned Values:
Register DO.W: Return Code

success: 00H
error: FFH

The Delete File Function removes files and deallocates the
directory entries for and space allocated to files that match the
filename in the FCB pointed to by the address passed in Dl.L. The
‘filename and filetype can contain wildcards, but the drive select
code cannot be a wildcard as in the Search For First (17) and Search
For Next (18) Functions. The value FFH is returned in register DO.W
when the referenced file cannot be found. The value 00H is returned
in DO.W when the file is found.

All Information 2raseaat=d

e
]
"
({Y)
+
[
4y
[}
(9]
"

N 2 T -

4.2.8 Read Sequential Function

FUNCTION 20: READ SEQUENTIAL

Entry Parameters:
Register DO.W: 1l4H
Register Dl.L: FCB Address

Returned Values:
Register DO.W: Return Code

success: O00H
error: O0l1H

The Read Sequential Function reads the next 128-byte record in
a file. The FCB passed in register Dl.L must have been opened by an
Open File (15) or the Make File Function (22) before this function
is invoked. The program must set the current record field to zero
following the open or make function to ensure the file is read from
the first record in the file. After the file is opened, the Read
Sequential Function reads the 128-byte record specified by the
current record field from the disk file to the current DMA buffer.
The FCB current record (cr) and extent (ex) fields indicate the
location of the record that is read. The current record field is
automatically incremented to the next record in the extent after a
read operation.

When the current record field overflows, the next logical
extent is automatically opened and the current record field is reset
to zero before the read operation is performed. After the first
record in the new extent is read, the current record field contains
the value (0lH.

The value 00H is returned in register DO.W when the read
operation is successful. The value of 0lH is returned in DO.W when
the record being read contains no data. Normally, the no data
situation is encountered at the end of a file. However, it can also
occur when this function tries to read either a previously unwritten
data block or a nonexistent extent. These situations usually occur
with files created or appended with the BDOS Write Random Function
(34). ,

y 3o T o S - e
Aad SOZCITZTLCON

N

CP2/M-o8K rrogrammer 's wulde 4.4 LlLifE ACLEDD fUNLLLULLD

4.2.9 Write Sequential Function

FUNCTION 21: WRITE SEQUENTIAL

Entry Parameters:
Register DO.W: 15H
Register Dl.L: FCB Address

Returned Values:
Register DO.W: Return Code

succesé: 00H
error: 0lH or 02H

The Write Sequential Function writes a 128-byte record from the
DMA buffer to the disk file whose FCB address is passed in register
D1.L. The FCB must be opened by either an Open File (1l5) or Make
File (22) Function before your program invokes the Write Sequential
Function. The record is written to the current record, specified in
the FCB current record (cr) field.

The current record field is automatically incremented to the
next record. When the current record field overflows, the next
logical extent of the file is automatically opened and the current
record field is reset to zero before the write operation.. After the
write operation, the current record field in the newly opened extent
is set to 0OlH.

Records can be written to an existing file. However, newly
written records can overlay existing records in the file because the
current record field usually is set to zero after a file is opened
or created to ensure a subsequent sequential I/O function accesses
the first record in the file.

The value 00H is returned in register DO.W when the write
operation is successful. A nonzero value in register DO.W indicates
the write operation is unsuccessful due to one of the conditions
described below.

1,
Q
ry
2]
fo
¢t
13
[0}
o}
V]
[
W
[
1Y
it
(1%
3
(v
"
w
]
[
"W
(A
(9]
[#]
"
b
(i
1
i)
by
{
{
i
1
v
i
i
t
i
t
1
i
L}
{
1]

o SRR

CP/M-68K Programmer's Guide

msble 4-6. Unsuccessful Write Operation Return Codes

4.2 PFile Access Functions

Value Meaning
01 No available directory space - This condition
occurs when the write command attempts to create
a new extent that requires a new directory entry
and no available directory entries exist on the
selected disk drive.
02

No available data block - This condition 1is
encountered when the write command attempts to
allocate a new data block to the file and no

unallocated data blocks exist on the selected
disk drive.

focrmation Presented Here 1S Proprietary to Digitali Rese

a

-
P

~
~

[}
.-

e
‘.»

N

CP/M-68K Programmer's Guide 4.2 File Access Functions

4.2.10 Make File Fumnction

FUNCTION 22: MAKE FILE

Entry Parameters:
Register DO.W: 16H
Register Dl1.L: FCB Address

Returned Values:
Register DO.W: Return Code

success: O0QH - 03H
error: FFH

The Make File Function creates and opens a new file on a
specified disk or the default disk. The address of the FCB for the
file is passed in register Dl.L. You must ensure the FCB contains a
filename that does not already exist in the referenced disk
directory. The drive field (dr) in the FCB indicates the drive on
which the directory resides. The disk directory is on the default
drive when the FCB drive field contains a zero.

The BDOS creates the file and initializes the directory and the
FCB in memory to indicate an empty file. The program must ensure
that no duplicate filenames occur. Invoking the ‘Delete File
Function (19) prior to the Make File Function excludes the
possibility of duplicate filenames.

Register DO.W contains an integer value in the range "00H
through 03H when the function is successful. Register DO.W contains
the value FFH when a file cannot be created due to insufficient
directory space.

All Informaticn 2rzsenced Here is Prcprietary To JuIlial R@searsch

LF/MT00N FlUYlauuueli 5 GuLuc

4.2.11 Rename File Function

- de eSS

FUNCTION 23:

RENAME FILE

Entry Parameters:

Register DO.W:
Register Dl.L:

17H
FCB Address

Returned Values:

Register DO.W:

Return Code
success: 00H
error: FFH

EWMA P Co Tl S BN e W RS

The Rename File Function uses the FCB specified in register
Dl1.L to change the filename and filetype of all directory entries
for a file. The first 12 bytes of the FCB contains the file
specification for the file to be renamed as shown in Figure 4-1l.
Bytes 16 through 27 (40 through dl2) contain the new name of the
file. The filenames and filetypes specified must be valid for Cp/M.
Wildcards cannot be specified in the filename and filetype fields.
The FCB drive field (dr) at byte position 0 selects the drive. This
function ignores the drive field at byte position 16, if it is
specified for the new filename. Register DO.W contains the value
zero when the rename function is successful. It contains the value
FFH when the first filename in the FCB cannot be found during the .
directory scan.

FCB byte position
0 1 2 3 4 5 6 7 8 910 11...16 17 18 19 20 21 22 23...27...

dr | £1] £2| £3| £4| £5| £6| £7| £8] t1] t2|£3 dl} d2|d3|d4|d5| 46| d7

eeddl2..

.. 40

[

oléd file specification new file specification

Figure 4-1. FCB Format for Rename Function

In the above figure, horizontal ellipses indicate FCB fields
that are not required for this function. Refer to Section 4.1.2 for
a description of all FCB fields. »

CP/M-68K Programmer's Guide 4.2 File Access Functions

4.2.12 Set Direct Memory Access (DMA) Address Function

FUNCTION 26: SET DMA ADDRESS

Entry Parameters:
Register DO.W: 1lAH
Register D1.L: DMA Address

Returned Values:
Register DO.W: O0O0H

The Set DMA Address Function sets the starting address of the
128-byte DMA buffer. DMA is an acronym for Direct Memory Access,
which often refers to disk controllers that directly access memory
to transfer data to and from the disk subsystem. Many computer
systems use nonDMA access in which the data is transferred through
programmed I/O operations. In CP/M the term DMA is used differently.
The DMA address in CP/M-68K is the beginning address of a 128-byte
data buffer, called the DMA buffer. The DMA buffer is the area in
memory where a data record resides before a disk write operation and
after a disk read operation. The DMA buffer can begin on an even or
odd address.

11l Informaticn Presencad Her= 13 Propri2atary I8 SlIlTi. a2SE3

CP/M—0UK Programmer "s suiae 4.4 rlle ACCesS runctions

4.2.13 Set Pile Attributes Function

FUNCTION 30: SET FILE ATTRIBUTES

Entry Parameters:
Register DO.W: 1lEH
Register Dl.L: FCB Address

Returned Values:
Register DO.W: Return Code

success: O00H
error: FFH

The Set File Attributes Function sets or resets file attributes
supported by CP/M-68K and user defined attributes for application
programs. CP/M-68K supports read-only, system, and archive
attributes.

The high bit of each character in the ASCII filename (f1
through £8) and filetype (tl through t3) fields in the FCB denotes
whether attributes are set. When the high bit in any of these fields
has the value 1, the attribute is set. Table 4-7 denotes the FCB
fields and their attributes.

The address of the FCB is passed in register Dl.L. Wildcards
cannot be specified in the filename and filetype fields.

This function searches the directory on the disk drive,
specified in the FCB drive field (dr), for directory entries that
match the FCB filename and filetype fields. All matching directory
entries are updated with the attributes this function sets.

A zero is returned in register DO.W when the attributes are

set. However, if a matching entry cannot be found, register DO.W
contains FFH.

All Informat:cn Presented Here 1s Propriecary to Digital Research

CP/M-68K Programmer's Guide 4.2 File Access Functions

Table 4-7. PFile Attributes

Field : Attribute ,

f1 through f£4 User-defined attributes for application
programs.

£5 through f8 Reserved for future use by CP/M-68K.

tl The Read-Only attribute indicates the file
status is Read-Only. The BDOS does not
allow write commands to write to a file
whose status is Read-Only. The BDOS does
not permit a Read-Only file to be deleted.

t2 The System attribute indicates the file is
a system file. Some built-in commands and
system utilities differentiate between
system and user files. For example, the
DIRS command provides a directory of
system files. The DIR command provides a
directory of user files for the current
user number. For details on these
commands, refer to the CP/M-68K Operating
System User's Guide.

t3 The Archive attribute is reserved but not
used by CP/M-68K. If set, it indicates
that the file has been written to backup
storage by a user-written archive program.
To implement this facility, the archive
program sets this attribute when it copies
a file to backup storage; any programs
updating or creating files reset this
attribute. The archive program backs up
only those files that have the Archive
attribute reset. Thus, an automatic
backup facility restricted to modified
files can be implemented easily.

The Open File (15) and Close File (16) Functions do not use the
high bit in the filename and filetype fields when matching
filenames. However, the high bits in these fields should equal zero
when you open a file. Also, the Close Pile Function does not update
the attributes in the directory entries when it closes a file.

All Incformation Presentad Fer2 13 o :2arch

e}
[a
X
1)
it
|9
[a
o

o
L)
13

Ui
1
il
fu
t
fu
11
o

CP/M-68K Programmer's Guide 4.2 File Access Functions

4.2.14 Read Random Function

FUNCTION 33: READ RANDOM

Entry Parameters:
Register DO.W: 21H
Register Dl.L: FCB Address

Returned Values:
Register DO.W: Return Code

success: 00H
error: O0lH, 03B
04H, 06H

The Read Random Function reads records randomly, rather than
sequentially. The file must be opened with an Open File Function
(15) or a Make File Punction (22) before this function is invoked.
The address of a 36-byte FCB is passed in register Dl.L. The FCB
random record field denotes the record this function reads. The
random record field is a 24-bit field, with a value ranging from
00000H through 3FFFFH. This field spans bytes r0, rl, and r2 which
are bytes 33 through 35 of the FCB. The most significant byte is
first, r0, and the least significant byte, r2, is last. This byte
sequence is consistent with the addressing conventions for the 68000
microprocessor but differs from other versions of CP/M.

The random record number must be stored in the FCB random
record field before the BDOS is called to read the record. After
reading the record, register DO.W either contains an error code (see
Table 4-8), or the value 00H which indicates the read operation was
successful. In the latter case, the current DMA buffer contains the
randomly accessed record. The record number is not incremented. The
FCB extent and current record fields are updated to correspond to
the location of the random record that was read. A subsequent Read
Sequential (20) or Write Sequential (21) Function starts from the
record which was randomly accessed. Therefore, the randomly read
record is reread when a program switches from randomly reading
records to sequentially reading records. This is also true for the
Write Random Functions (34, 40). The last record written is
rewritten if the program switches from randomly writing records to
sequentially writing records with the Write Sequential Function
(21). However, a program can obtain the effect of sequential I/0
operations by incrementing the random record field following each
Read Random Function (33) or Write Random Function (34, 40).

{1,
i
]
ty
m
’-l
tn
'Y
(3}
Q
'
ey
'—l
o
(t
[+
"

.- - . -
233 Informaztion Tresence:

O

CP/M-68K Programmer's Guide 4.2 File Access Functions

Numeric codes returned in register DO.W following a random read
operation are listed in Table 4-8.

Table 4-8. Read Random Function Return Codes

Code

Meaning

00

0l

03

04

06

Success - returned in DO.W when the Read Random
Function succeeds.

Reading unwritten data - returned when a random
read operation accesses a previously unwritten
data block.

Cannot close current extent - returned when the
BDOS cannot close the current extent prior to
moving to the new extent containing the FCB
random record number. This error can be caused
by an overwritten FCB or a read random operation
on an FCB that has not been opened.

Seek to unwritten extent - returned when a
random read operation accesses a nonexistent
extent. This error situation is equivalent to
error Ol.

Random record number out of range - returned
when the value of the FCB random record field'is
greater than 3FFFFH.

all

- : oy i~ P < =
Information Pr=2sanctag Here L3

CP/M-68K Programmer's Guide

4.2.15 Write Random Function

4.2 File Access Functions

FUNCTION 34:

WRITE RANDOM

Entry Parameters:
Register DO.W:
Register Dl.L:

22H
FCB Address

Returned Values:
Register DO.W: Return Code
success: 00H
error: 02H, 03H
05H, 06H

The Write Random Function writes a 128-byte record from the
current DMA address to the disk file that matches the FCB referenced
in register D1.L. Before this function is invoked, the file must be
opened with either the Open File Function (15) or the Make File
Function (22).

This function requires a 36-byte FCB. The last three bytes of
the FCB contain the random record field. It contains the record
number of the record that is written to the file. To append to an
existing file, the Compute File Size Function (35) can be used to

write the random record number to the FCB random record field. For a

new file, created with the Make File Function (22), you do not need
to use the Compute File Size Function to write the first record in
the newly created file. 1Instead, specify the value 00H in the FCB
random record field. The first record written to the newly created
file is zero.

When an extent or data block must be allocated for the record,
the Write Random Function allocates it before writing the record to
the disk file. The random record number is not changed following a
Write Random Function. Therefore, a new random record number must be
written to the FCB random record field before each Write random
Function is invoked.

However, the logical extent number and current record field of
the FCB are updated and correspond to the random record number that
is written. Thus, a Read Sequential (20) or Write Sequential (21)
- Function that follows a Write Random Function, either rereads or
rewrites the record that was accessed by the Read or Write Random
Function. To avoid overwriting the previously written record and
simulate sequential write functions, increment the random record
number after each Write Random Function.

After the random write function completes, register DO.W
contains either an error code (see Table 4-9), or the value 00H that
indicates the operation was successful.

]
"
"
[{Y
n
]

3
ct
(M
(o7
s
®
[n]
[{Y]
m
Al

A
- -

$-1

< < -
Proprietary tc Dig:itaz

[1e]

46

-

CP/M-68K Programmer's Guide 4.2 File Access Functions
g

Table 4-9. Write Random Function Return Codes

Code Meaning

00 Success - returned when the Write Random Function
succeeds without error.

02 No available data block = occurs when the Write
Random function attempts to allocate a new data
block to the file, but the selected disk does not
contain any unallocated data blocks.

03 Cannot close current extent - occurs when the
BDOS cannot close the current extent prior to
moving to the new extent that contains the record
specified by the FCB random record field. This
error can be caused by an overwritten FCB or a
write random operation on an FCB that has not
been opened.

0s No available directory space - occurs when the
write function attempts to create a new extent
that requires a new directory entry but the
selected disk drive does not have any available
directory entries. ‘

06 Random record number out of range - returned
when the value of the FCB random record field is
greater than 3FFFFH.

LI¥]

il Informaticn Presentad Zer2 13

CFY/M=00N Yrrogrammer s suligae G.4 riie ACCeS8sS Functions

4.2.16 Compute Pile Size Function

FUNCTION 35: COMPUTE FILE SIZE

Entry Parameters:
Register DO.W: 23H
Register Dl.L: FCB Address

Returned Values:
Register DO.W: O0OEB

success: Pile Size written
to FCB random
Record Field
error: 2Zero written to
FCB Random Record
Field

The Compute File Size Function computes the size of a file and
writes it to the random record field of the 36-byte FCB whose
address is passed in register Dl.L.

The FCB filename and filetype are used to scan the directory
for an entry with a matching filename and filetype. If a match
cannot be found, the value zero is written to the FCB random record
field. However, when a match occurs, the virtual file size is
written in the FCB random record field.

The virtual file size is the record number of the record
following the end of the file. The virtual size of a file
corresponds to the physical size when the file is written
sequentially. However, the virtual file size may not equal the
physical file size when the records in the file were created by
random write functions. The Compute File Size Function computes the
file size by adding the value 1 to the record number of last record
in a file. However, for files that contain randomly written
records, the record number of the last record does not necessarily
indicate the number of records in a file. For example, the number
of the last record in a sparse file does not denote the number of
records in the f£ile. Record numbers for sparse files are not usually
sequential. Therefore, gaps can exist in the record numbering
sequence. You can create sparse files with the Write Random
Functions (34 and 40).

In addition to computing the file size, you can use this
function to determine the end of an existing file. For example,
when you append data to a file, this function writes the record
number of the first unwritten record to the FCB random record field.
When you use the Write Random (34) or the Write Random With Zero
Fill (40) Function, your program more efficiently appends data to
the file because the FCB already contains the appropriate record
number.

All Informacion Presented Here is Proprietary to Digital Research

48

o

CP/M-68K Programmer's Guide 4,2 File Accesss Functions

4.2.17 Set Random Record Function

FUNCTION 36: SET RANDOM RECORD

Entry Parameters:
Register DO.L: 24H
Register D1l.L: FCB Address

Returned Values:
Register DO: (QO0H
Register FCB: Random Record
Field Set

The Set Random Record Function calculates the random record
number of the current position in the file. The current position in
the file is defined by the last operation performed on the file.
Table 4-10 lists the current position relative to operations
performed on the file.

Table 4-10. Current Pdsitioﬁ Definitions

Operation Function Current Position

Open file Open File (15) record 0

Create file Make File (22) record 0

Random read Read Random (33) last record read

Random write Write Random (34) last record

Write Random With written
Zero Fill (40)

Sequential read Read Sequential (20) record following
the last record
read

Sequential write Write Sequential (21) record following
the last record
written

This function writes the random record number in the random record
field of the 36-byte FCB whose address your program passes in
register Dl.L.

You can use this function to set the random record field of the
next record your program accesses when it switches from accessing
records sequentially to accessing them randomly. For example, your
program sequentially reads or writes 128-byte data records to an

All Iaformation Presentad Here i3 Propristary o Jigital Researzcn

49

CP/M-68K Programmer's Guide 4.2 PFile Access Functions

arbitrary position in the file that is defined by your program.
Your program then invokes this function to set the random record
field in the FCB. The next random read or write operation that your
program performs accesses the next record in the file.

Another application for this function is to create a key list

from a file that you read sequentially. Your program sequentially

reads and scans a file to extract the positions of key fields. After
your program locates each key, it calls this function to compute the
random record position for the record following the record
containing the key. To obtain the random record number of the
record containing the key, subtract one from the random record
number that this function calculates. CP/M-68K reads and writes 128-
byte records. If your record size is also 128 bytes, your program
can insert the record position minus one into a table with the key
for later retrieval. By using the random record number stored in the
table when your program performs a random read or write operation,
your program locates the desired record more efficiently.

Note that if your data records are not equal to 128 bytes, your
program must store the random record number and an offset into the
physical record. For example, you must generalize this scheme for
variable-length records. To find the starting position of key
records, your program stores the buffer-relative position and the
random record number of the records containing keys.

<2l Research

()

£

CP/M-68K Programmer's Guide 4.2 File Access Functions

4.2.18 Write Random With Zero Fill Function

FUNCTION 40: WRITE RANDOM WITH ZERO FILL

Entry Parameters: .
Register DO.W: 28H
Register D1.L: FCB Address

Returned Values:
Register DO.W: Return Code

success: O0O0H
error: 025, 03H
05H, 06H

The Write Random With Zero Fill Function, like the Random Write
Function (34), writes a 128-byte record from the current DMA buffer
to the disk file. The address of a 36-byte FCB is passed in
register D1.L. The last three bytes contain the FCB random record
field. This field specifies the record number of the record that
this write random function writes to the file. Refer to Write Random
Function (34) for details on the FCB and setting its random record
field.

Like the Write Random Function, this function allocates a data
block before writing the record when a block is not already
allocated. However, in addition to allocating the data block, this
function also initializes the block with zeroes before writing the
record. If your program uses this function to write random records
to files, it ensures that the contents of unwritten records in the
block are predictable.

After the random write function completes, register DO.W
contains either an error code (see Table 4-9), or the value 00H,
which indicates the operation was successful.

Nk [A WU b WY AMMILG L W WS e

4.3 Drive Functions

systenm,

e w e eV A MW WAL

This section describes drive functions that reset the disk
select and write-protect disks,

include the functions listed in Table 4-11.

. -

Aol Informaticn Presencec Here 1

Drive Functions

Function

Function Number

Reset Disk System
Select Disk

Return Login Vector
Return Current Disk
Write Protect Disk
Get Read-Only Vector
Get Disk Parameters
Reset Drive

Get Disk Free Space

13
14
24
25
28
29
31
37
46

and return vectors. They

CP/M-68K Programmer's Guide 4.3 Drive Functions

4.3.1 Reset Disk System Function

FUNCTION 13: RESET DISK SYSTEM

Entry Parameters:
Register DO.W: ODH

Returned Values:
Register DO.W: O00H

The Reset Disk. System Function restores the file system to a
reset state. All disks are set to read-write (see Write Protect Disk
(28) and Get Read-Only Vector (29) Functions), and all the disk
drives are logged out. This function can be used by an application
program that requires disk changes during operation. The Reset
Drive Function (37) can also be used for this purpose. All files
must be closed before your program invokes this function.

-CP/M-68K Programmer's Guide 4.3 Drive Functions

4.3.2 Select Disk Function

FUNCTION 14: SELECT DISK

Entry Parameters:
Register DO.W: OEH
Register D1.W: Disk Number

Returned Values:
Register DO.W: O0OH

The Select Disk Function designates the disk drive specified in
register D1.W as the default disk for subsequent file operations,
The decimal numbers 0 through 15 correspond to drives a through P,
For example, D1.W contains a 0 for drive A, a 1 for drive B, and so
forth through 15 for a full 16-drive system. In addition, the
designated drive is logged-in if it is currently in the reset state.
Logging in a drive places it in an on-line status which activates
the drive's directory until the next cold start, or Reset Disk
System (13) or Reset Drive (37) Function.

When the FCB drive code equals zero (dr = 0H), this function
references the currently selected drive. However, when the FCB

drive code value is between 1 and 16, this function references
drives A through P.

If this function fails, CP/M-68K returns a CP/M Disk select
error, which is described in Section 4.2.2.

o
' a
et
[&
w3
th
QO
r
H
f
gt
’. .
Q
3
iv
(a}
]
mn
1)
&}
(t
i
(o]
49

ere is Proprietary to Digital KResearch

54

;

Y

N

CP/M-68K Programmer's Guide 4.3 Drive Functions

4.3.3 Return Login Vector Function

FUNCTION 24: RETURN LOGIN VECTOR

Entry Parameters: :
Register DO.W: 18H

Returned Values:
Register DO.W: Login Vector

The Return Login Vector Function returns in register DO.W a 16~
bit value that denotes the log-in status of the drives. The least:
significant bit corresponds to the first drive A, and the high order
bit corresponds to the sixteenth drive, labeled P. Each bit has a
value of zero or one. The value zero indicates the drive is not on-
line. The value one denotes the drive is on-line. When a drive is
logged in, its bit in the log-in vector has a value of one.
Explicitly or implicitly logging in a drive sets its bit in the log-
in vector . The Select Disk Function (14) explicitly logs in a drive.

File operations implicitly log in a drive when the FCB drive field
(dr) contains a nonzero value.

ni

CrY/m=—o0on rrogrammer s suiqe ‘e UIlive runcuions

4.3.4 Return Current Disk Function

FUNCTION 25: RETURN CURRENT DISK

Entry Parameters:
Register DO.W: 19H

Returned Values:
Register DO.W: Current Disk

The Return Current Disk Function returns the current default
disk number in register DO.W. The disk numbers range from 0 through
15, which correspond to drives A through P. Note that this numbering
convention differs from the FCB drive field, which specifies
integers 1 through 16 correspond to drives labeled A through P.

Proprietary to Digital Research

g
' >
ot
[
o]
(41
0]
"
=]
v
or
)
Q
»)
1y
te
(19
n
U]
3
i1
{D
[e])
m
1]
e
o
.-.l
n

R

-~

CP/M~-68K Programmer's Guide ‘ 4.3 Drive Functions

4.3.5 Write Protect Disk Function

FUNCTION 28: WRITE PROTECT DISK

Entry Parameters:
Register DO.W: 1CH

Returned Values:
Register DO.W: O0O0H

The disk write protect function provides temporary write
protection for the currently selected disk. Any attempt to write to
the disk, before the next cold start, warm start, disk system reset,
or drive reset operation produces the message:

Disk change error on drive x

Your program terminates when this error occurs. Program control
returns to the CCP. '

All Information Presented Hers 15 2ropriatary to Digizzl Re

n

230120

57

CP/M-68K Programmer'‘'s Guide . 4.3 Drive Functions

4.3.6 Get Read-Only Vector Function

FUNCTION 29: GET READ-ONLY VECTOR

Entry Parameters:
Register DO.W: 1DH

Returned Values:
Register DO.W: Read-Only
Vector Value

The Get Read-Only Vector Function returns a l6-bit vector in
register DO.W. The vector denotes drives that have the temporary
read-only bit set. Similar to the Return Login Vector Function (24),
the least significant bit corresponds to drive A, and the most
significant bit corresponds to drive P. The Read-Only bit is set
either by an explicit call to the Write Protect Disk Function (28),
or by the automatic software mechanisms within CP/M-68K that detect
changed disks.

TS -3 -~ 1 N 5 - NP .
L11 Informzcion Presented Here i1s Proprietarv to Digital Research

- [e e e e s ——— —— e wa © e a1 o % < o e« gonar—

CP/M-68K Programmer's Guide 4.3 Drive Functions

4.3.7 Get Disk Parameters Function

FUNCTION 31: GET DISK PARAMETERS

Entry Parameters:
Register DO.W: 1FH
Register D1.L: CDPB Address

Returned Values:
Register DO.W: O0O0H
Register CDPB: Contains DPB
Values

The Get Disk Parameters Function writes a copy of the l6-byte
BIOS Disk Parameter Block (DPB) for the current default disk, called
the CDPB, at the address specified in register D1.L. Figure 4-2
illustrates the format of the DPB and CDPB. The values in the CDPB
can be extracted and used for display and space computation
purposes. Normally, application programs do not use this function.
For more details on the BIOS DPB, refer to the CP/M-68K Operating
System System Guide.

SPT BSH BLM EXM RES DSM DRM RES CKS OFF

16 8 8 8 8 16 16 16 16 16

FPigure 4-2. DPB and CDBP

All Information Presentad Here is Proprietary to Digizal Researcn

59

NSde [LB W WAL & de WY S cownne e - -~ -

Table 4-12 lists the fields in the DPB and CDPB.

Table 4-12. PFields in the DPB and CDPB

e a Y w - eseew wa weew

Field Description

SPT Number of 128-byte logical sectors per track

BSH Block shift factor

BLM Block mask

EXM Extent mask

RES Reserved byte

DSM Total number of blocks on the disk

DRM Total number of directory entries on the
disk

RES Reserved for system use

CKS' Length (in bytes) of the checksum vector

OFF

Track offset to disk directory

*» 3 ha

Hhdae -

nfcrmation Presented Here is Proprietary to Digital Research

60

e
Vi \

7N

CP/M-68K Programmer's Guide 4.3 Drive Functions

4.3.8 Reset Drive Punction

FUNCTION 37: RESET DRIVE

Entry Parameters:
Register DO.W: 25H
Register D1.W: Drive Vector

Returned Values:
Register DO.W: O0O0H

The Reset Drive function restores specified drives to the reset
state. A reset drive is not logged-in and its status is read-write.
Register D1.W contains a 16-bit vector indicating the drives this
function resets. The least significant bit corresponds to the first
drive, A. The high order bit corresponds to the sixteenth drive,
labeled P. Bit values of 1 indicate the drives this function resets.

To maintain compatibility with other Digital Research operating
systems, this function returns the value zero in register DO.W.

Aall Information Presencaed Zere 1s 2roprietary %o Tigizal Research

61

Cp/M-68K Programmer's Guide 4.3 Drive Functions

4.3.9 Get Disk Free Space Punction

FUNCTION 46: GET DISK FREE SPACE

Entry Parameters:
Register DO.W: 2EH
Register D1.W: Disk Number

Returned Values:
Register DMA Buffer: Free Sector Count

The Get Pree Disk Space Function returns the free sector count,
the number of free 128-byte sectors on a specified drive, in the
first four bytes of the current DMA pbuffer. The drive number is
passed in register D1.W. CP/M-68K assigns disk numbers sequentially
from 0 through 15 (decimal). Each number corresponds to a drive in
the range A through P. For example, the disk number for drive A is
0 and for drive B, the number is 1.

Note that these numbers do not correspond to those in the drive
field of the FCB. The FCB drive field (dr) uses the numbers 1
through 16 (decimal) to designate drives.

4.4 Character I/0 Functions

Character I/0 functions read or write characters serially to a

peripheral device. Character 1/0 functions supported in CP/M-68K are

described in this section and listed in Table 4-13.

Table 4-13. Character 1/0 Functions

Function Function Number
Console Operations

Console Input - 1)
Console Output 2

Direcf Console I/0 ‘6

Print String 9

Read Console Buffer 10

Get Console Status 11

411 Information Presented Here is Proprietary to Digital Research

62

3

e e e e - = ————— i o o S o S Tam ST e STTIIIT SIS emomTesSeTE s TS [-

CP/M-68K Programmer's Guide " 4.4 Character I/0 Functions

Table 4-13. (continued)

Function Function Number

Additional Serial I/O

Auxiliary Input 3

Auxiliary Output 4

List Qutput 5
I/0 Byte

Get I/O Byte 7

set I/0 Byte 8

All Information Presented Here 13 Proprietary to Dijital Research

63

CP/M—-68K Programmer's Guide I 4.4 Character I/O Functions

4.4.1 Conmnsole 1I/0 Punctions

This section describes functions that read from, write to, and
report the status of the logical device CONSOLE.

‘ Y
Console Input Function o
FUNCTION 1: CONSOLE INPUT
Entry Parameters:
Register DO.W: OlH
Returned Values:
Register DO.W: ASCII Character
The Console Input function reads the next character from the
logical console device (CONSOLE) to register DO.W. Printable
characters, along with carriage return, line feed, and backspace
(CTRL-H), are echoed to the console. Tab characters (CTRL-I) are
expanded into columns of eight characters. Other CONTROL characters,
such as CTRL-C, are processed. The BDOS does not return to the
calling program until a character has been typed. Thus, execution
of the program is suspended until a character is ready. ('5
- ‘ ’
‘./.\
N

3 T

411 Inormation Presented Here is Proprietary to Digitazl Researcn

64

CP/M-68K Programmer's Guide 4.4 Character I/0 Functions

e - -

Console Output Function

FUNCTION 2: CONSOLE OUTPUT

‘Entry Parameters:
Register DO.W: 02H
Register D1.W: ASCII Character

Returned Values:
Register DO: O0O0H

The ASCII character from D1.W is sent to the logical console.
Tab characters expand into columns of eight characters. In
addition, a check is made for stop scroll (CTRL-S), start scroll
(CTRL-Q), and the printer switch (CTRL-P). This function also
processes CTRL-C, which aborts the operation and warm boots the
system. If the console is busy, execution of the calling program is
suspended until the console accepts the character.

All Information Presentad dere 13 2ropriatary <c 2iga

vy —— v n -

CP/M-68K Programmer's Guide 4.4 Character I/0 Functions

Direct Console I/0 Function

FUNCTION 6: DIRECT CONSOLE I/0

Entry Parameters:
Register DO.W: O06H
Register D1.W: OFFH (input)
OFEH (status)
or
Character (output)

Returned Values:
Register DO.W: Character or Status

Direct Console I/0 is supported under cp/M-68K for those
specialized applications where character-by-character console input
and output are required without the control character functions
CcP/M-68K supports. This function bypasses all of CP/M-68K's normal
CONTROL character functions such as CTRL-S, CTRL-Q, CTRL-P, and
CTRL-C.

Upon entry to the Direct Console I/0 Function, register D1.W
contains one of the values listed below.

Table 4-14. Direct Console I/0 Function Values

Value Meaning
FFH denotes a CONSOLE input request
FEH denotes a CONSOLE status request
ASCII -
character output to CONSOLE where CONSOLE is the
logical console device ‘

when the input value is FFH, the Direct Console I/O Function
calls the BIOS Conin Function, which returns the next console input
character in D0.W but does not echo the character on the console
screen. The BIOS Conin function waits until it receives a character.
Thus, execution of the calling program remains suspended until a
character is ready. '

When the input value is FEH, the Direct Console 1/0 Function
returns the status of the console input in register DO.W. When
register DO.W contains the value zero, no console input exists.
However, when the value in DO.W is nozero, conscle input is ready to
be read by the BIOS Conin Function. -

A1l Information Presented Here is Proprietary to Digital Research

66

P

CP/M-68K Programmer's Guide 4.4 Character I/0 Functions

When the input value in D1.W is neither FEH nor FFH, the Direct
Console I/O Function assumes that Dl.W contains a wvalid ASCII
character, which is sent to the console.

All Information Presented Here is Proprietary o Digital Research

67

e —— -

CP/Mm—0OBN Programmer s suiae 4.4 Lnaracter 1l/U runctions

Print String Function

FUNCTION 9: PRINT STRING

Entry Parameters:
Register DO.W: 09H
Register Dl1.L: String Address

Returned Values:
Register DO.W: O0OH

The Print String function sends the
memory at the location given in register
device (CONSOLE) until a dollar sign ($) is encountered in the
string. Tabs are expanded as in the Console Output Function (2), and

checks are made for stop scroll (CTRL-S), start scroll (CTRL-Q), and
the printer switch (CTRL-P).

character string stored in
Dl.L to the logical console

nformation Presented Here is Proprietary to Digital Research.

68

.

CP/M-68K Programmer's Guide 4.4 Character I/0 Functions

Read Console Buffer Function

FUNCTION 10: READ CONSOLE BUFFER

Entry Parameters:
Register DO.W: OAH
Register D1.L: Buffer Address

Returned Values:
Register DO.W: OQO0H
Register Buffer: Character Count
" and Characters

The Read Buffer function reads a line of edited console input
from the logical console device (CONSOLE) to a buffer address passed
in register D1.L. Console input is terminated when the input buffer
is filled, or, a RETURN (CTRL-M) or a line feed (CTRL-J) character
is entered. The input buffer addressed by D1.L takes the form:

D1.L: +0 +1 +2 +3 +4 +5 +6 +7 +8 o o +n

mx nc cl c2 c3 c4 c5 c6 c7 ... 22

The variable mx is the maximum number of characters the buffer
holds. The variable nc is the total number of characters placed in
the buffer. Your program must set the mx value prior to invoking
this function. The mx value can range in value from 1 through 255
(decimal). The characters entered from the keyboard follow the nc
value. The value nc is returned to the buffer. It can range from 0
to the value of mx. If the nc value is less than the mx value,
uninitialized characters follow the last character. Uninitialized
characters are denoted by the double question marks (??) in the
above figure. A terminating RETURN or line feed character is not
placed in the buffer and is not included in the total character
count nc.

This function supports several editing control functions, which
are briefly described in Table 4-15.

All Information Presented Here is Proprietary tc Digital Research

69

Cp/M-68K Programmer's Guide 4.4 Character I/0 Functions

Table 4-15. Line Editing Controls

Keystroke Result

RUB/DEL removes and echoes the last character

CONTROL~-C reboots when it is the first character on a
line

CONTROL-E causes physical end-of-line

CONTROL-H backspaces one character position

CONTROL~-J (line feed) terminates input line

CONTROL~-M (return) terminates input line

CONTROL~-P starts and stops the eéhoing of console
output to the logical LIST device

CONTROL-Q restarts console I/0 after CTRL-S halts it

CONTROL-R retypes the current line on the next line

CONTROL-S halts console 1/0 and waits for CTRL-Q to

restart it

CONTROL-U echoes a pound sign (#) indicating ignore
characters previously input on the current-
line before it positions the cursor on the
next line

CONTROL~-X backspaces to beginning of current line

Certain functions that position the cursor to the leftmost position
(for example, CONTROL-X) move the cursor to the column position
where the cursor was prior to invoking the Read Console Buffer
Function. This convention makes your data input and line correction
more legible.

511 Information Presented Here is Proprietary to Digital Research

70

N

P

e e e e e e ——— - - e - e e & e o @ o 2

CP/M-68K Programmer's Guide 4.4 Character I/0 Functions

Get Console Status Function

FUNCTION 1l: GET CONSOLE STATUS

Entry Parameters:
Register DO.W: OBH

Returned Values:
Register DO.W: Console Status

The Get Console Status Function checks whether a character has
been typed at the logical console device (CONSOLE). If a character
is ready, a nonzero value is returned in register DO.W; otherwise

the value 00H is returned in DO.W.

All Information Presented Here is Proprietarv to Digital Researcnh

71

CP/M~-68K Programmer's Guide 4.4 Character I/0 Functions

4.4.2 Additional Serial I/0 Functions

This section describes additional serial I/0 functions that
read and write data to devices defined by 1/0 Byte Functions (7,8).

. Venl
Auxiliary Input Function !\
FUNCTION 3: AUXILIARY INPUT
Entry Parameters:
Register DO.W: O03H
Returned Values:
Register DO.W: ASCII Character
The Auxiliary Input function reads the next character from the
auxiliary input device into register DO.W. Execution of the calling
program remains suspended until the character is read. This
function assumes the BIOS implements its Auxiliary Input Function.
When more than one auxiliary input port exists, the BIOS should
implement the I/0 Byte Function. For details on the BIOS Auxiliary
Input and I/0 Byte Functions, refer to the CP/M-68K Operating System
System Guide. '
- i_
N
{
N

23

#11 Information Presented Here is Proprietary to Digital Research

72

e s o e e e e - £ e e ey <

CP/M-68K Programmer's Guide . 4.4 Character I/O Functions

Auxiliary Output Function

FUNCTION 4: AUXILIARY QOUTPUT

Entry Parameters:
Register DO.W: (04H
Register Dl.W: ASCII Character

Returned Values:
Register DO.W: 00H

The Auxiliary Output function sends a character from register
D1.W to the auxiliary output device. Execution of the calling
program remains suspended until the hardware buffer receives the
output character. This function assumes the BIOS implements its
Auxiliary Output Function. When more than one auxiliary output port
exists, the BIOS should implement the I/O Byte Function. For details
on the BIOS Auxiliary Output and I/O Byte Functions, refer to the
CP/M-68K Operating System System Guide.

All Information Presented Herz2 is Proorietary to 213iz3l Fesszarch

k& /T VWA A Y LQMIC. o T bW e S MRS RAY WGE &/ W L Wil -\ &

List Output Function

FUNCTION 5: LIST OUTPUT

Entry Parameters:
Register DO.W: O05H
Register D1.W: ASCII Character

Returned Values:
Register DO.W: OOH

The List Output function sends the ASCII character in register
Dl.W to the logical list device (LIST).

4.4.3 I/0 Byte Functioms

This section describes the I/0 Byte Functions. The I/O Byte is
an 8-bit value that assigns physical devices, represented by 2-bit
fields, to each of the logical devices: CONSOLE, AUXILIARY INPUT,
AUXILIARY OUTPUT, and LIST as shown in Figure 4-3. The I/0 Byte
functions allow programs to access the I/0 byte to determine its
current value (Get I/O Byte) or to modify it (Set I/0O Byte). These
functions are valid only if the BIOS implements its I/0 Byte
Function. Refer to the CP/M-68K Operating System System Guide for
details on implementing the I/0 Byte Function.

most significant least significant
AUXILIARY AUXILIARY
1/0 Byte LIST QUTPUT INPUT CONSOLE
bits 7,6 5,4 3,2 1,0

Pigure 4-3. 1I/0 Byte

The value in each field ranges from 0-3. The value defines the
assigned source or destination of each logical device, as shown in
Table 4-16.

411 Information Presented Here 1s Proprietary to Digital Research

74

PP

(N

CP/M-GBK Programmer's Guide 4.4 Character I/0 Functions

Table 4-16. I/GC Byte Field Definitions

CONSOLE field (bits 1,0) -

0 - console is assigned to the console printer
(TTY:)

1 - console is assigned to the CRT device (CRT:)

2 - batch mode: use the AUXILIARY INPUT as the
CONSOLE input, and the LIST device as the
CONSOLE output (BAT:)

3 - user defined console device (UCl:)

AUXILIARY INPUT field (bits 3,2)
0 - AUXILIARY INPUT is the Teletype device (TTY:)
1 - AUXILIARY INPUT is the high-speed reader device
(PTR:) '
2 - user defined reader # 1 (URL:)
3 - user defined reader # 2 (UR2:)

. AUXILIARY OUTPUT field (bits 5,4)
0 - AUXILIARY OUTPUT is the Teletype device (TTY:)
1 - AUXILIARY OUTPUT is the high-speed punch device
(PTP:)
2 - user defined punch # 1 (UPl:)
3 - user defined punch # 2 (UP2:)

LIST field (bits 7,6)
- 0 = LIST is the Teletype device (TTY:)
. 1l - LIST is the CRT device (CRT:)
2 =~ LIST is the line printer device (LPT:)
3 =~ user defined list device (ULl:)

The implementation of the BIOS I/0 Byte Function is optional.
PIP and STAT are the only CP/M-68K utilities that use the I/0 Byte.
PIP accesses physical devices. STAT designates and displays logical
to physical device assignments. For details on implementing the I/O
Byte Function, refer to the CP/M-68K Operating System System Guide.

All Information Presentad Here is 2roprietary o 0igital Research

" d /) 8B WA & &~ e scsms e e - ———— - - - _———— e =

Get I/0 Byte Function

FUNCTION 7: GET I/O BYTE

Entry Parameters:
Register DO.W: 07H

Returned Values:
Register DO.W: I/0 Byte Value

The Get I/0 Byte Function returns the current value of I/0 Byte
in register DO.W. The I/0 Byte contains the current assignments for
the logical devices CONSOLE, AUXILIARY INPUT, AUXILIARY OUTPUT, and
LIST. Note that this function is valid only if the BIOS implements

its I/0 Byte Function. Refer to the CP/M-68K Operating System

System Guide for details on implementing the BIOS I/0 Byte Function.

-

.71 Information Presented Here is Proprietary to Digital Research

76

7™

PR
VAN

CP/M-68K Programmer's Guide 4.4 Character I/0 Functions

Set I/0 Byte Function

FUNCTION 8: SET I/O BYTE

Entry Parameters:
Register DO.W: 08H
Register D1.W: I/O Byte Value

Returned Values:
Register DO.W: 00H

The Set I/O Byte Function changes the system I/0 Byte value to
the value passed in register D1.W. This function allows programs to
modify the current assignments for the logical devices CONSOLE,
AUXILIARY INPUT, AUXILIARY OUTPUT, and LIST in the I/0 Byte. This
function is valid only if the BIOS implements its I/0 Byte Function.
Refer to the CP/M-68K Operating System System Guide for details on
implementing the I/O Byte Function.

4.5 System/Program Control Functions
The System and program control functions described in this
section warm boot the system, return the operating system version

number, call the Basic I/O System (BIOS) functions, and, terminate
and load programs. These functions are listed in Table 4-17.

Table 4-17. System and Program Control Functions

Function Function Number
System Reset ' 0
Return Version Number 12
Set/Get User Code 32
Chain to Program 47
Flush Buffers 48
Direct BIOS Call 50
Program Load 59

All Information Presented Here is 2ropri2tary to Digizal 2essarchq

77

CP/M-68K Programmer's Guide 4.5 System Control Functions

4.5.1 System Reset Function

FUNCTION 0: SYSTEM RESET

Entry Parameters:
Register DO.W: OOH

Returned Values: Function Does Not
Return to Calling
Program

The System Reset Function terminates the current program and
returns program control to the CCP command level.

211 Information Presented Here is Proprietary to Digital Research

Y

™

CP/M-68K Programmer's Guide

4.5

4.5.2 Return Version Number Function

FUNCTION 12:

RETURN VERSION NUMBER

System Control Functions

Entry Parameters:
Register DO.W:

0CH

Returned Values:

Register DO.W:

Version Number

The Return Version Number Function provides information that
allows version dependent programmlng. The one-word value 2022H is
the version number returned in reglster DO.W for Release 1.1 of

CP/M-68K.
returns for Digital Research

operating systems.

Table 4-18 lists the version numbers this functlon

Table 4-18. Version Numbers

Operating System Version Version Number
CP/M-68K 1.1 2022H
CP/M-80 1.4 0014H
CP/M-80 2.2 00228
CP/M-80 3.0 0031H
MP/M-80™ 1.1 0122H
MP/M-80 2.0 0130H
MP/M-80 2.1 0130H
CP/M-86 1.0 1022H
CP/M-86 1.1 1022H
MP/M-86™ 2.0 1130H
MP/M-86 2.1 1130H

Concurrent CP/M-86™ 1.0 1430H

(for the IBM

Personal Computer)

Concurrent CP/M-86 2.0 1431H

All Information Presented Here 1s Propria2tary to Digital Research

CP/M-68K- Programmer 's Guide 4.5 System Control Functions

Add the hexadecimal value 0200 to any version number when the
system implements CP/NET® For example, CP/M-80 Release 2.2 returns
the version 0222H when the system implements CP/NET.

21l Information Presentec Here is Proprietary to Digital Research

80

O L p—— — e e RO

CP/M-08K Programmer's Guide 4.5 System Ccontrel Functions

4.5.3 Set/Get User Code

FUNCTION 32: SET/GET USER CODE

Entry Parameters:
Register DO.W: 20H
Register DL.W: FFH (get)
or
User Code -
(set)

Returned Values:
Register DO.W: Current User
. Number

An application program can change or obtain the currently
active user number by calling the Set/Get User Code Function. 1If
the value in register D1.W is FFH, the value of the current user
number is returned in register DO.W. The value ranges from 0 to 15
(decimal). If register D1.W contains a value in the range 0 through
15 (decimal), the current user number is changed to the value in
register D1.W. When the program terminates and control returns to
the CCP, the user number reverts to the BDOS default user number.
The BDOS assumes the default is zero unless you explicitly specify
the USER command to set an - alternate default.

All Information Presented Here is Prcopriecary to Digital Research

81

CP/M-68K Programmer's Guide 4.5 System Control Functions

4.5.4 Chain To Program Function

FUNCTION 47: CHAIN TO PROGRAM

Entry Parameters:
Register DO.W: 2FH

Returned Values:
Register DO.W: Function Does Not
Return to Calling

Program

The Chain to Program Function terminates the current program
and executes the command line stored in the current DMA buffer. The
format of the command line consists of a one-byte character count
(N), the command line characters, and a null byte as shown in Figure
4-4. The character count contains the number of characters in the
command line. The count must be no more than 126 characters. If an
error occurs, you receive one of the CCP errors described in

Appendix E.

o

N Command Line (N characters)

1 byte N bytes < 126 bytes 1 byte

Figure 4-4. Command Line Format in the DMA Buffer

211 Information Presenteé Here is Proprietary to Digital Research

82

CP/M=-68K Programmer's Guide 4.5 System Control Functions

4.5.5 PFlush Buffers Function

FUNCTION 48: FLUSH BUFFERS

Entry Parameters:
Register DO.W: 30H

Returned Values:
Register DO.W: Return Code

success: 00H
error: nonzero
value

The Flush Buffers Function calls a BIOS Flush Buffers Function
(21), which forces the system to write the contents of any unwritten
or modified disk buffers to the appropriate disks. Control and
editing applications use this function to ensure data is
periodically physically written to the appropriate disks. When the
buffers are successfully flushed, this function returns the value
00H in register DO.W. However, if an error occurs, and this
function does not complete successfully, this function returns a
nonzero value in register DO.W. :

All Information Presented Here i3 Provriecarty o Zi3ltil Research

4.5.6 Direct BIOS Call Function

FUNCTION 50: DIRECT BIOS CALL

Entry Parameters:
Register DO.W: 32H -~
Register Dl.L: BPB Address

Returned Values:
Register DO.L: BIOS Return Code
(if any)

Function 50 allows a program to call a BIOS function and
transfers control through the BDOS to the BIOS. The Dl.L register
contains the address of the BIOS Parameter Block (BPB), a 5-word
memory area containing two BIOS function parameters, Pl and P2, as
shown in Figure 4-5. When a BIOS function returns a value, it is
returned in register DO.L.

Like other BDOS functions, your program must specify a Trap 2
Instruction to invoke this BDOS function after the registers are
loaded with the appropriate parameters. The starting location of
the BPB must be an even-numbered address.

Field ' Size
Function Number 1 word
Value Pl 1 longword
Value P2 1 longword

Figure 4-5. BIOS Parameter Block (BPB)

In the above figure, the function number is a BIOS function number.
See Appendix A. The two values, Pl and P2, are 32-bit BIOS
parameters, which are passed in registers D1.L and D2.L before your
program invokes the BIOS function. Appendix A contains a list of
BIOS functions. For more details on BIOS functions, refer to the
CP/M-68K Operating System System Guide.

ALl Information Presented Here 1s Preoprietary to Digital Research

CY/M=0dK Programmer s Gulae 4.2 sSystem CONTIOL Punctions

4.5.7 4Program Load Function

FUNCTION 59: PROGRAM LOAD

Entry Parameters:
Register DO0.W: 3bH
Register D1.L: LPB

Returned Values:
Register DO.W: Return Code

success: 00H
error: O01lH - 03H

The Program Load function loads an executable command file into
memory. In addition to the function code, passed in register D0.W,
the address of the Load Parameter Block (LPB) is passed in register
Dl.L. After a program is loaded, the BDOS returns one of the return
codes listed below in register DO.W.

Table 4-19. Program Load Function Return Codes

Code Meaning
00 thé function is successful)
01 insufficient memory exists to load the file or
the header is bad
02 a read error occurs while the file is loaded in
memory
03 bad relocation bits exist in the program file

The LPB describes the program and denotes the address at which
it is loaded. The format of the LPB is outlined in Figure 4-6. The
starting location of the LPB must be an even-numbered address.

All Information 2r2sentad Hers is 2ropri==iz”y Iz Tiltltal Xesaarch

Byte Content Size
Offset
0H | address of FCB of successfully opened program file 1 longword
4H | lowest address of area in which to load program 1 longword
8H | highest address of area in which to load program +1| 1 longword
CH | address of base page (returned by BDOS) 1 longword
10H | default user stack pointer (returned by BDOS) 1 longword
14H | loader control flags 1 word

Figure 4-6. Format of the Load Parameter Block (LPB)

Before a program specifies the Program Load function, the file
must be opened with an Open File Function (15). The memory
addresses specified for the program in the LPB must lie within the
TPA. When the CCP calls the Program Load function to load a
transient program, the LPB addresses are the boundaries of the TPA.

The loader control flags in the LPB select loader options as
shown in Table 4-20.

Table 4-20. Load Parameter Block Optioms

Bit Number Value Meaning
0 (least 0 load program in the lowest
significant possible part of the
byte) ’ supplied address space
1 load program in the highest

possible part of the
supplied address space

1l - 15 (decimal) 0 Reserved, should be set to
. zero.

The CCP uses the Program Load Function to load a command file.
The CCP places a return address to itself on the top of the stack
for the program being loaded. The program can exit and return to the
CCP by performing a Return from Subroutine (RTS) instruction.
However, if the program modifies the stack, it must reset the top of
the stack to point to the CCP address before the program executes a
RTS instruction. The CCP also places the base page address on the

Al Information Presenced nere is Proprietary to Digital Research

86

—e e o o mea = e - s aapo—

¢
H

C2/M-68K Programmer's Guide. 4.5 System Control Functions

program's stack. The base page address is located four bytes from
the address pointed to by register A7, the stack pointer. The
assembly language notation for this offset is 4 (A7) or 4(sp). The
format of the base page is outlined in Appendix C.

The BDOS allocates memory for the base page within the limits
set by the low and high addresses in the LPB and returns the address.
of the allocated base page in the LPB. Locations 000QH - 0024H of
the base page are initialized by the BDOS. Locations 0025H through
0037H are not initialized but are allocated and reserved by the
BDOS. The CCP initializes the remaining base page values when it
loads a program.

The BDOS allocates a user stack located in the highest address
of the TPA. The maximum size of the stack equals the address of the
stack pointer minus the last address of the program plus 1. The
value of the initial stack pointer is passed to the LPB by the BDOS.

For programs loaded by a transient program rather than the ccp,
refer to Section 2.2.3. Appendix B contains two examples, an
assembly language program and a C language program, that illustrate
how a transient program loads another program with the Program Load
Function but without the CCP.

4.6 Exception PFunctions . .
This section describes the Set Exception (61), Set SupérviSér

State, (62), and the Get/Set TPA Limits Functions that set
exceptions for error handling and other exception processing.

all Information Presentad Hera is Prcpriatars

CP/M-68K Programmer's Guide 4.6 Exception Functions

4.5.1 Set Exception Vector Functicn

FUNCTION 6l1l: SET EXCEPTION VECTOR

Entry Parameters:
Register DO.W: 3DH
Register Dl1.L: EPB Address

Returned Values:
Register DO.W: Return Code

success: 00H
error: FFH

The Set Exception Vector Function allows a program to reset
current exception vectors, set new exception vectors, and create
exception handlers for the 68000 microprocessor.

In addition to passing the function number in register DO.W, a
program must pass the address of the Exception Parameter Block (EPB)
in register Dl.L. The EPB is a 10-byte data structure containing a
one-word vector number and two longword vector values. See Figure
4-7. The EPB specifies the exception and the address of the new
exception handler. Table 4-21 1lists valid exceptions that
correspond to 68000 microprocessor hardware. The starting location
of the EPB must be an even-numbered address.

Field Size
Vector Number 1 word
New Defined Vector Value 1 longword

0l1ld Vector Value Returned by BDOS 1 longword

Figure 4-7. Exception Parameter Block (EPB)

The vector number identifies the exception. The New Vector
Value specifies the address of the new exception handler for the
specified exception. The BDOS returns in the Old Vector Value Field,
the value that the exception vector contained before this function
was invoked. The BDOS replaces the old vector value with the new
vector value in its table of exception handlers and returns the
address of the old exception handler to the old vector value in the
EPB. After the BDOS sets the new exception vector, it passes the

) Lo e e . T S Ve Temee o nves N~ P~k e vonn
L1l Irfc-mz-ion Presented Here 1S PICcpILletary to D 2l Resesarch

Cr/M—0O0R rIOgrdiuner 's sdlide 4.0 LACRpLLIOn cuncTt.ions

value 00H in register DO.W. However, if an errcr, such as a bad
vector, occurs while the vector is being set, this function passes
the value FFH in register DO.W. The bad vector error occurs when a
vector other than one listed in Table 4-21 is specified for this
function.

When an exception occurs, before the BDOS passes control to an
exception handler, the BDOS restores the system state (user or
supervisor) to the state of the system before it incurred the
exception. To return from an exception handler to the normal
processing state, the last instruction an exception handler executes
is a Return and Restore (RTR) instruction.

Bus and address errors require special handling because they
push four additional words onto the stack. For example, when a bus
error occurs, the system pushes flags, the access address, and the
instruction register onto the stack. An exception handler must pop
these off the stack before it executes a RTR instruction.

If an exception handler does not exist for an exception, when
that exception occurs, the BDOS default exception handler returns an
exception message to the logical console device (CONSOLE) before it
aborts the program. The BDOS exception message format is defined
below:

Exception nn at user address aaaaaaaa. Aborted.
where:

nn is a hexadecimal number in the range 2 through 17 or 24
through 2F that defines all exceptions excluding reset,
hardware interrupts, and system Traps 0 through 3.

aaaaaaaa 1is the address of the instruction following the one that
caused the exception.

Except for exceptions handled by resident system extensions (RSXs),
the BDOS reinitializes all vectors to the default exception handler
when the BDOS System Reset Function (0) is invoked. Any exception
vectors, which your program sets, are reset after the BDOS warm
boots the system. An RSX is a program that is not configured in the
operating system but remains resident in memory after it is loaded.
RSXs normally provide additional system functions. The Get/Set TPA
Limits Function (63) allows you to create an area in the TPA in
which one or more RSXs can reside.

All Informaticon Presented Here 15 2roprietarv to Digital Resezrccn

CP/M-68K Programmer's Guide 4.6 Exception Functions

Table 4-21.

valid Vectors and Bxceptions

Vector Exception
2 Bus Error | {,\
3 Address Error —
4 Illegal Instruction
5 Zero Divide
6 CHK Instruction
7 TRAPV Instruction
8 Privilege Violation
9 Trace
10 Line 1010 Emulator
11 Line 1111 Emulator
32* Trap 0
33* Trap 1
36%* Trap 4 <:
37%* Trap 5
38%* Trap 6
39** Trap 7

* Vectors reserved for Resident System Extensions (RSX)
implemented with the Get/Set TPA Limits Function (63).

** Recommended Trap vectors for applications.

()

CP/M=-68K Programmer's Guide 4.6 Exception Functions

4.56.2 Set Supervisor State

FUNCTION 62: SET SUPERVISOR STATE

Entry Parameters:
Register DO.W: 3EH

Returned Values:
Register DO.W: O00H

The Set Supervisor Function puts the calling program in
supervisor state. This function should not be used by novice
programmers and experienced programmers should be careful when
invoking this function.

The user stack is swapped when the program enters supervisor
state. On return from this function, the stack pointer, register
A7, is the supervisor stack pointer and not the user stack pointer.
Thus, you cannot use register A7 to reference the user stack.

The supervisor stack is used by the BDOS and BIOS. This stack
is 300 longwords or 1200 bytes long. The percent of the stack used
by the system is dependent on the operation being performed and - -
those previously performed. Therefore, you cannot predict how much
of the stack is available for program operations. To avoid stack
overflow and overwriting the system, you should not push more than a
few dozen bytes onto the stack, especially when you call BDOS and
BIOS functions.

An alternate method of avoiding stack overflow is to switch to
a private supervisor stack. You create the stack by loading into A7
the address of an area in memory that you use as the supervisor
stack. The address must be an even address. If you call BDOS and
BIOS functions, your private supervisor stack should be 300
longwords, more than the space required by the program. If your
program exits supervisor mode, make sure your program restores the
system stack pointer to its original value. The supervisor stack is
reinitialized when the system warm boots. .

Note that in future CP/M-68K upward compatible systems, this
function may not exist, or will require privilege for the calling
process to access this function, or the function will fail. If it
fails the value FFH will be passed to DO.W. However, no privilege
is currently necessary. The function is always successful and the
value 00H is passed in register DO.W.

All Information Presented Here is 2rcprietary &0 Digital Research

CP/M-68K Programmer's Guide 4.6 Exception Functions

4.6.3 Get/Set TPA Limits

FONCTION 63: GET-SET TPA LIMITS

Entry Parameters:
Register DO.W: 3FH
Register Dl.L: TPAB Address

Returned Values:
Register DO.W: O0OH
Register TPAB: Contains TPA -
Values

The Get/Set TPA Limits Function allows you to obtain or set the
boundaries of the Transient Program Area (TPA). You must load the
address of the Transient Program Area Block (TPAB) in register Dl.L.
The TPAB is a 5-word data structure consisting of one word and two
longwords. You create the TPAB in the TPA as illustrated in Figure
4-8.

Byte Offset Field Size
00H Parameters : 1 word
02H Low TPA address 1 1ohgwo:d
06H . High TPA address + 1 1 longword

Pigure 4-8. Transient Program Parameter Block

The value of the first two bits in the one-word Parameters
Field determines whether this function gets or sets the TPA limits
and which fields you supply. Figure 4-9 illustrates the format of
the parameters field.

All Information Presented Here is Proprietary to Digital Research

e e s mt L e e e e ——— e s o e+ e =

(N

()

CP/M-68K Programmer's Guide 4.6 Exception Functions

Parameters 15{14 13112} 11}1019|8|7|6|5{4|3{2]1{0

Field
reserved bits (2-15) = 0
bits: 1 0
values = - 1/0 1/0

Figure 4-9. Parameters Field in TPAB

Bit Zero determines whether you get or set the TPA limits.
When the value of bit zero is zero, the BDOS returns the current TPA
boundaries in the Low and High Address fields of the TPAB. When the
value of bit zero is one, the BDOS sets new TPA boundaries. The
BDOS uses the values that you specify in the Low and High TPA
address fields of the TPAB to set the new TPA boundaries.

When you set the TPA boundaries, bit one determines whether the
boundaries are temporary or permanent. When the value of bit one is
zero, the TPA boundaries that you set are temporary; when the system
warm boots, the previous TPA limits are restored. When the value of
bit one is one, the TPA values that you set are permanent; they are
not changed when the system warm boots.

Bits 2 through 15 contain zeroes. These bits are reserved for
future use. Table 4-22 summarizes the values of bits zero and one.

Table 4-22.
Values For Bits 0 and 1 in the TPAB Parameters Field
Bit Value Explanation
0 0 Return boundaries of current TPA in
TPAB.Low and High Address Fields.
1 Set new TPA boundaries with the values
loaded in TPAB Low and High address
fields. .
1 0 Restore previous TPA values when the

system warm boots.

1 Permanently replace the TPA boundaries
with the ones you specify in the Low
and High TPAB Address Fields.

All Information Presented Her2 is5 Prcorietarw oo Tigital Research

CP/M-68K Programmer's Guide

4.6 Exception Functions

The examples below illustrate and explain values for bits zero and

one.
Examples:
l) Get TPA Limits
1 0
0 0
This function returns the boundaries of the current TPA in
the Low and High Address Fields of the TPAB when the value
of bit zero equals 0.
2) Temporarily Set TPA Limits

1 0

0 1

This function temporarily sets the TPA boundaries to the
boundaries that you supply in the Low and High Address
Fields of the TPAB when bit 2zero equals 1 and bit one

equals 0. The TPA boundaries are reset when the system warm
boots. '

3) Permanently Set TPA Limits

1 0

1 1

This function permanently sets the TPA boundaries to the
values that you supply in the Low and High Address Fields
of the TPAB when the value of bit zero equals 1 and bit one
equals 1. The TPA limits remain set until this function is
called to reset the boundaries or you cold boot system.

End of Section 4

A

Section 5
ASG68 Assembiler

S.1 Assembler Operation

The CP/M-68K Assembler, AS68, assembles an assembly language
source program for execution on the a 68000 microprocessor. It
produces a relocatable object file and, optionally, a listing. The
assembly language accepted by AS68 is identical to that of the
Motorola 68000 assembler described in the Motorola manuals: M68000
Resident Structured Assembler Reference Manual M68KMASM(D4) and the
16-bit Microprocessor User's Manual, third edition MC68000UM(AD3).
Appendix D contains a summary of the instruction set. Exceptions
and additions are described in Sections 5.6 and 5.7.

5.2 1Initializing ASé68

If the file AS68SYM.DAT is not on your disk, you must create
this file to initialize AS68 before you can use AS68 to assemble
files. To initialize AS68, specify the AS68 command, the -I option,
and the filename AS68INIT as shown below.

AS68 -I AS68INIT

AS68 creates the output file AS68SYMB.DAT, which AS68 requires when
it assembles programs. After you create this file, you need not
specify this command line again unless you reconfigure your system
to have different TPA boundaries.

5.3 Invoking the Assembler (AS68)
Invoke AS68 by entering a command of the following form:
AS68 (-F d:] [-P] [-s d4:] [-U] ([-L] ([-N] [-I]

(-0 object filename]
source filename [>listing filename]

-4

3 : = ;o a2 : e e M e e S neas
Informaticn 2rssented Jer2 13 Froprisciry D JlILTas ase32arch

e
b
[

-~y s

WAL b WY A GBS & & VUM oo o

AlAVINALLILY WMUT ADDTUMLTL

Table 5-1. Assembler Optioms

\NO9vVo;

Option

Meaning

-F 4:

The -F option specifies the drive on which
temporary files are created. The variable 4d: is
the drive designation, which must be followed by
a colon. If this option is not specified, the
temporary £iles that AS68 creates are created on
the current drive.

The -I option initializes the assembler. See

Sect;on 5.2 for details.

If specified, AS68 produces and prints a listing
on the standard output device which, by default,
is the console. You can redirect the listing,
including error messages, to a file by using the
>listing filename parameter. Note that error
messages are produced whether or not the -P
option is specified. No listing is produced,
however, unless you specify the -P option.

-S d:

The -S option indicates the drive on which the
assembler initialization file, AS68SYMB.DAT,
resides. This file is created when you
initialize AS68. See Section 5.2. AS68 reads
the file AS68SYMB.DAT before it assembles a
source file. The variable, d:, is the drive
designation; it must be followed by a colon. If
you do not specify this option, AS68 assumes the

initialization file is on the default drive.

Causes all undefined symbols in the assembly to
be treated as global references.

All Infcrmasion Presente

d Here 1is Proprietary to Digital

96

Research

CP/M-68K Programmer's Guide 5.3 Invoking the Assembler (ASé68)

A

9
e

1
S

Tablie 5-1. (continued)

Option Meaning

Ensures all address constants are generated as
longwords. Use the -L option for programs that
require more than 64K for execution or if the
TPA is not contained in the first 64K bytes of
memory. If -L is not specified, the program is
assembled to run in the first 64K bytes of
memory. If an address in the assembly does not
fit within one word an error occurs. Appendix E
describes all AS68 errors.

Disables optimization of branches on forward
references. Normally, wherever possible, AS68
uses the 2-byte form of the conditional branch
and the 4-byte BSR instruction to speed program
execution and reduce the instruction size
instead of the 6~byte JSR instruction.

source filename

This is the only required parameter. It ‘is the
file specification of the assembly language
source prodram to be assembled.

>listing filename

If specified, the listing requested with the -P
option is directed to the specified file rather
than to your console terminal, the standard
output device. The error messages are produced
in the listing file. Note that if you do not
request a listing file, you can still redirect
the error messages to a file by specifying the
greater than symbol (>) immediately followed by
a file specification.

Information Presencad Here is Proprietary o Sijltai Rese

-
-

CP/M Programmer's Guide

5.4 Assembly Language Directives

This section alphabetically lists and briefly describes the

directives AS68 supports.

Table 5-2. Assembly Language Directives

5.4 Assembly Lénguage Directives

Directive

Meaning

comm label, expression

The common directive (comm) specifies the
label and size of a common area, which can be
shared by separately assembled programs. The
linker, LO68, links all common areas with the
same label to the same address. The size of
the common area is determined by the value of
the largest expression when more than one
common area with the same label exists.

data
The data directive instructs AS68 to change
the assembler base segment to the data
segment.

bss

The bss directive instructs AS68 to change
the assembler base segment to the block
storage segment (bss). Instructions and data
cannot be assembled in the bss. However,
symbols can be defined and storage can be
reserved with the .ds directive in the bss.

dc operand [,operand, ...]

The define constant directive (dc) defines
one or more constants in memory. When you
specify more than one operand, separate each
with a comma. The operand can contain a
symbol or an expression that is assigned a
numeric value by AS68, or the value of the
constant in decimal, hexadecimal, or ASCII
notation. If you specify an ASCII value, you
must enclose the string in single quotes (').
Although an ASCII character is only seven
bits in length, each character is assigned a
byte of memory. The eighth bit always equals
zero.

.”-\

CP/M Programmer's Guide 5.4 Assembly Language Directives

Table 5-2. (continued)

Directive Meaning

You can specify the constants to be
bytes, words, or longwords. The list below
illustrates the notation for each of these
size specifications and describes the rules
that apply to them.

dc.b The constants are byte constants. If
you specify an odd number of bytes,
AS68 fills the odd byte on the right
with zeroes unless the next statement
is another dc.b directive. When the
next statement is a dc.b directive,
the dc.b uses the odd byte. Byte
constants are not relocatable.

dc.w The constants are word constants. If
you specify an odd number of bytes,
AS68 fills the last word on the right
with zeroes to force an even byte
count. The only way to specify an odd
number of bytes is with an ASCII
constant. Word constants can Dbe
relocated.

dc.l The constants are longword constants.

If less than a multiple of four bytes

is entered, AS68 fills the last

~ longword on the right with zeroes to

force a multiple of four bytes.
Longword constants can be relocated.

ds operand

The define storage directive (ds) reserves
memory locations. The contents aof the memory
that it reserves is not initialized. The
operand specifies the number of bytes, words,
or longwords that this directive reserves.
The notation for these size specifications is
shown below. :

ds.b reserves memory locations in bytes

ds reserves memory locations in words

ds.l reserves memory locations in
longwords

All Informacicn 2Presentzed Here i3

V]
(B
)
ke
(R
]
W
(1
)
{2
[}
’

99

CP/M Programmer's Guide 5.4 Assembly Language Directives

Table 5-2. (continued)

Directive Meaning

end
The end directive informs AS68 that no more
source code follows this directive. Code,
comments, or multiple carriage returns cannot
follow this directive.

endc

The endc directive denotes the end of the
code that is conditionally assembled. It is
used with other directives that conditionally
assemble code.

egu expression

The equate directive (equ) assigns the value
of the expression in the operand field to the
symbol in the label field that precedes the
directive. The syntax for the egquate
directive is below.

label EQU expression

The label and operand fields are required.
The label must be unigue; it cannot be
defined anywhere else in the program. The
expression cannot include an aundefined symbol
or one that is defined following the
expression. Forward references to symbols
are not allowed for this directive.

even

The even directive increments the location
counter to force an even boundary. For
example, if specified when the location
counter is odd, the location counter is
incremented by one so that the next
instruction or data field begins on an even
boundary in memory.

=g
}

'..‘
(2]
o]
th
(@]
ry
1t
'l
[0}
o
'y
(2]
®
O]
(0]
ja)
(r
1
()l
ey
1]
5]
1]
[2]
n
"
'
Q

prieczary to Digital Research

100

