CP/M Programmer's Guide 5.4 Assembly Language Directives

Table 5-2. (continued)

Directive Meaning

globl label(,label...]
xdef label(,label...]
xref label(,label...]

These directives make the label(s) external.
If the labels are defined in the current
assembly, this statement makes them available
to other routines during a load by LO68. If
the labels are not defined in the current
assembly, they become undefined external
references, which LO68 links to external
values with the same label in other routines.
If you specify the -U option, the assembler
makes all undefined labels external.

ifeq expression
ifne expression
ifle expression
iflt expression
ifge expression-
ifgt expression

All of the directives listed above are
conditional directives in which the
expression is tested against zero for the
condition specified by the directive. If the
expression is true, the code following is
assembled; otherwise, the code is ignored
until an end conditional directive (endc) is
found. The directives and the conditions
they test are listed below.

ifeq equal to zero
ifne not equal to zero
ifle less than or equal to zero
iflt less than zero

. , ifge greater or equal to zero
ifgt greater than zero

ifc 'stringl', 'string2'
ifnc ‘'stringl', 'string2'

The conditional string directive compares two
strings. The 'c' condition is true if the
strings are exactly the same. The ‘'nc'
condition is true if they do not match.

CP/M Programmer's Guide 5.4 Assembly Language Directives

Table 5-2. (continued)

Directive Meaning

offset expression

The offset directive creates a dqummy storage
section by defining a table of offsets with
the define storage directive (ds). The
storage definitions are not passed to the
linker. The offset table begins at the
address specified in the expression. Symbols
defined in the offset table are internally
maintained. No instructions or code-
generating directives, except the egquate
(equ) and register mask (reg) directives, can
be used in the table. The offset directive
is terminated by one of the following
directives:

bss
data
end
section
text

org expression

The absolute origin directive (org) sets the
location counter to the value of the

- expression. Subsequent statements are
assigned absolute memory locations with the
new value of the location counter. The
expression cannot contain any forward,
undefined, or external references.

page

The page directive causes a page break which
forces text to print on the top of the next
page. It does not require an operand or a
label and it does not generate machine code.

The page directive allows you to set
the page length for a listing of code. 1If
you use this directive and print the source
code by specifying the -P option in the ASé68
command line, pages break at predefined
rather than random places. The page
directive does not appear on the printed

. program listing.

17
- e

Information Presented Here is Proprietary to Digital Research

162

()

)

CP/M Programmer's Guide 5.4 Assembly Language Directives

Table 5-2. (continued)

Directive Meaning

reg reglist

The register mask directive builds a register
mask that can be used by movem instruction.
One or more registers can be listed in
ascending order in the format:

R?2[-R{/R?[-R?...]...]]

Replace the R in the above format with a
register reference. Any of the following
mnemonics are valid:

AQ-A7
D0-D7
RO-R15

The example below illustrates a sample
register list.

A2-A4/A7/D1/D3-DS

You can also use commas to separate registers
as shown below.

Al,A2,D5,D7

section §

The section directive defines a base segment.
The sections can be numbered from 0 to 15
inclusive. Section 14 always maps to data.
Section 15 is bss. All other section numbers
denote text sections.

text

The text directive instructs AS68 to change
the assembler base segment to the text
segment. Each assembly of a program begins
with the first word in the text segment. e

All Information Presentad Here i3 Prcpristars <o Sizitzl Research

CP/M-68K Programmer's Guide 5.5 Sample Commands Invoking AS68
S.5 Sample Commands Iavoking AS68
A>AS68 -U -L TEST.S

This command assembles the source file TEST.S and produces the
object file TEST.O. Error messages appear on the screen. Any
undefined symbols are treated as global.

A>A568 -P SHPL.S >SMPLOL

This command assembles the source file SMPL.S and produces the
object file SMPL.O. The program must run in the first 64K of
memory; that is, no address can be larger than 16 bits. Error
messages and the listing are directed to the file SMPL.L.

5.6 Assembly Language Differences

The syntax differences between the AS68 assembly language and
‘Motorola's assembly language are listed below.

1) All assembler directives are optionally preceded by a period
(.). For example,

.equ or equ
.ds or ds

2) AS68 does not support the following Motorola directives:

comline
mask2
idnt
opt

3) The Motorola .set directive is implemented as the equate

directive (equ).

4) AS68 accepts upper- and lower-case characters. You can
specify instructions and directives in either case.
However, labels and variables are case sensitive. For
example, the label START and Start are not equivalent.

5) For AS68, all labels must terminate with a colon (:). For
example,

A:
FOO:

However, if a label begins in column one, it need not
terminate with a colon (:).

All Inicrmazion Presented Here 1is Proprietary to Digital Kesearch

104

e

A CP/M-68K Programmer's Guide 5.6 Assembly Language Differences

6)

7)

8)

9)

10)

11)

12)

For AS68, ASCII string constants can be enclosed in either
single or double quotes. For example,

'ABCD’
"acl4"

For AS68, registers can be referenced with the following
mnemonics:

r0-rls
RO-R15
do-47
D0-D7
ad-a7
AQ0-A7

Upper- and lower-case references are equivalent. Registers
RO-R7 are the same as DO-D7 and R8-R1l5 are the same as AQ-
A7.

For AS68, comment lines cannot begin with an asterisk that
is immediately followed by an equals sign (*=), since the
location counter can be manipulated with a statement of the
form:

*=expr

Use caution when manipulating the location counter forward.
An expression can move the counter forward only. The
unused space is filled with zeros in the text or data
segments. -

For AS68, comment lines can begin with an asterisk followed
by an equals sign (* =) but only if one or more spaces
exist between the asterisk and the equals sign as shown
below.

* = This command loads Rl with zeros.
* = Branch to subroutine X¥2Z

For AS68, the syntax for short form branches is Bxx.b rather
than bxx.s

The Motorola assembler supports a programming model in which
a program consists of a maximum of 16 separately
relocatable sections and an optional absolute section.
AS68 distributed with CP/M-68K does not support this model.
Instead, AS68 supports a model in which a program contains
three segments, text, data, and bss as described in
Sections 2 and 3 of this guide.

All Information Presented Here i3 Proprietary to Digital Research

CP/M-68K Programmer's Guide 5.7 Assembly Language Extensions

5.7 Assembly Language Extensions

The enhancements listed below have been added to AS68 to aid
the assembly language programmer by making the assembly language
more efficient:

1)

2)

3)

4)

5)

6)

7)

8)

9)

i ———— e

When the instructions add, sub, cmp are used with an address
register in the source or destination, they generate adda,
suba, and cmpa. When the clr instruction is used with an
address register (Ax), it generates sub Ax, AX.

add, and, cmp, eor, or, sub are allowed with immediate first
operands and actually generate addi, andi, cmpi, eori, ori,
subi, instructions if the second operand is not register
direct.

<N
All branch instructions generate short relative btanchesJ
where possible, including forward references.

Any shift instruction with no shift count specified assumes
a shift count of one. For example, "asl rl" is equivalent
to "asl #1,rl".

_ N
A jsr instruction is changed to a bsr instruction if the
resulting bsr is shorter than the jsr instruction. I

The .text directive causes the assembler to begin assembling
instructions in the text segment.

The .data directive causes the assembler to begin assembling

initialized data in the data segment. .

The .bss directive instructs the assembler to begin defining
storage in the bss. No instructions or constants can be
place in the bss because it is for uninitialized data only.
Bowever, the .ds directives can be used to define storage
locations, and the location counter (*) can be incremented.

The .globl directive in the form:
.globl label[,label] ...

makes the labels external. If they are otherwise defined
(by assignment or appearance as a label) they act within
the assembly exactly as if the .globl directive was not
given. However, when 1linking this program with other
programs, these symbols are available to other programs.
Conversely, if the given symbols are not defined within the
current assembly, the linker can combine the output of this
assembly with that of others which define the symbols.

CP/M-68K Programmer's Guide 5.7 Assembly Languade Extensions

10)

11)

12)

The common directive (comm) defines a common region, which
can be accessed by programs that are assembled separately.
The syntax for the common directive is below.

.comm label, expression

The expression specifies the number of bytes that is
allocated in the common region. If several programs
specify the same label for a common region, the size of the
region is determined by the value of the largest
expression.

The common directive assumes the label is an undefined
external symbol in the current assembly. However, the
linker, LO68, is special-cased, so all external symbols,
which are not otherwise defined, and which have a nonzero
value, are defined to be in the bss, and enough space is
left after the symbol to hold expression bytes. All
symbols which become defined in this way are located before
all the explicitly defined bss locations.

The .even directive causes the location counter (*), if
positioned at an odd address, to be advanced by one byte so
the next statement is assembled at an even address.

The instructions, move, add, and sub, specified with an
immediate first operand and a data (D) register as the
destination, generate Quick instructions, where possible.

5.8 Error Messages

Appendix E lists the error messages generated by AS68.

Info

End of Section 5

rmation Presen:tad dere is 2rcprietary 2 Digital Researcn

Section 6
LOG8 Linker

6.1 Linker Operation

L068 is the CP/M-68K Linker that combines several AS68
assembled (object) programs into one executable command file. All
external references are resolved. The linker must be used to create
executable programs, even when a single object program contains no
unresolved references. The argument routines are concatenated in
the order specified. The entry point of the output is the first
instruction of the first routine.

6.2 Invoking the Linker (L068)
Invoke L068 by edtering a command of the following form:
L068 [~F d:] [-R] [-S] ([-I] [-Umodname]
[-O filename] [-X] [-Zaddress]

[-Daddress] [-Baddress] object filename [object filename]
[>message filename] ’

Table 6-1. Linker Command Options

Option Meaning

-F d:

The -F option specifies the drive on which
temporary files are created. The variable d:
is the drive designation.

-R
The -R option preserves the relocation bits so
the resulting executable program is
relocatable.

-S

If specified, the output is stripped; the
symbol table and relocation bits are removed to
save memory Sspace.

All Information Presented dere is Propristary o DJigital Researcn

CP/M-68K Programmer's Guide 6.2 1Invoking the Linker

Table 6-1. (continued)

Option Meaning

If -I is specified, no 16-bit address overflow
messages are generated. When you assemble a
program without the AS68 -L option, the linker
may generate address overflow messages if the
program contains addresses longer than 16 bits.

-Umodname

Links a module within the library with other
modules in the command line. The module name,
specified by the modname parameter, cannot
exceed eight characters. You can use this
option to create a program from modules within
a library, if the module following the U option
calls other modules in the library.

-0 filename

If specified, the object file produced by LO068

has the filename that you specify following the

-0 option. The -0 option and filename are

separated by one or more spaces. If you do not

specify a filename, the object file has the
- name C.OUT..

If specified, the symbol table includes all
local symbols except those that begin with the
letter L. If not specified, L068 puts only
global symbols in the symbol table. This
option is provided so that you can discard
compiler internally-generated labels that begin
with the letter L while retaining symbols local
to routines.

()

(™

CP/M-68K Programmer's Guide 6.2 Invoking the Linker

Table 6-1. (continued)

Option Meaning

-Taddress
-Zaddress

The -T and -Z options are equivalent. If
specified, the hexadecimal address given is
defined by L068 as the beginning address for
the text segment. This address defaults to
zero, or it can be specified as any hexadecimal
number between 0 and FFFFFFFFH. This option is
especially useful for stand-alone programs, or
for putting programs in ROM. Hexadecimal
characters can be in upper-case or lower-case.

-Daddress

I1f specified, the hexadecimal address given is
defined by L068 as the beginning address for
the data segment. This address defaults to the
next byte after the end of the text segment, or
it can be specified as any hexadecimal number
between 0 and FFFFFFFF. This option is
especially useful for stand-alone programs or
for putting programs in ROM. Hexadecimal
address characters can be in upper-case or
lower-case.

-Baddress

If specified, the hexadecimal address given is
defined by L068 as the beginning address for
the bss. This address defaults to the next
byte after the end of the data segment, or it
can be specified as any hexadecimal number
between 0 and FFFFFFFF.

object filename [object filename]

The name of one or more object files produced
by the assembler AS68. These are the object
files that L068 links.

- - . -

All Informatiocn Prasenzed dere i3 2rosriscary o Tloltali Fes=2arfzn

CP/M-68K Programmer's Guide 6.2 Invoking the Linker

Table 6-1. (centinued)

Option Meaning

>message filename

If specified, error messages produced by L068
are redirected to the file that you specify
immediately after the greater than (>) sign.
If you do not specify a filename, error
messages are written to the standard default
output device, which typically is your console
terminal.

6.3 Sample Commands Invoking LO68
A>L068 -S -0 TEST.68K TEST.O

This command links assembled file TEST.O into file TEST.68K and
strips out the symbol table and relocation bits.

A>L0O68 -T4000 -D8000 -BC000 A.O0 B.O C.O

This command links assembled files A.O0, B.O, and C.0 to the
default output file C.OUT. The text segment starts at location
4000H; the data segment starts at location 8000H; and the bss starts

at location COOOH.
A>L068 -I -O TERST.68K TEST.O0 TEST1.0 ?BRBOR

This command links assembled files TEST.O and TEST1.0 to file
TEST.68K. Any l6-bit address overflow errors are ignored; error
messages are directed to the file ERROR.

6.4 L068 Error Messages

Appendix E lists the error messages that LO068 displays.

End of Section 6

at S e s ; - = R - e vt - e Y - 3
ALl Infcrmation P-sssentec nere 1s Pooprietarl I© Cigitzl Research

Section 7
Programming Utilities

CP/M-68K supports five programming utilities: Archive (AR68),
DUMP, Relocation (RELOC), SIZE68, and SENDC68. AR68 allows you to
create and modify libraries. DUMP displays the contents of files in
hexadecimal and ASCII notation. RELOC creates an absolute command
file from a relocatable command file. SIZE68 displays the total
size of a memory image command file and the size of each of its
program segments. SENDC68 creates a file of Motorola S-records from
a command file. S-records are described in the CP/M-68K Operating
System System Guide. This section describes each of these utilities
in a separate subsection. -

7.1 Archive Utility

The Archive Utility, AR68, creates a library or replaces, adds,
deletes, lists, or extracts object modules in an existing library.
AR68 can be used on the C Run-Time Library distributed with CP/M-68K
and documented in the C Language Reference Manual for the 68000
"microprocessor.

7.1.1 AR68 Syntax | -

To invoke AR68, specify the components of the command line
shown below. Optional components are enclosed in square brackets
(1.

AR68 DRTWX([AV] [F D:] [OPMOD] ARCHIVE OBMOD1l [OBMOD2...] [>filespec]
You can specify multiple object modules in a command line provided

the command line does not exceed 127 bytes. The delimiter character
between components consists of one or more spaces.

Table 7-1. AR68 Command Line Components

Component Meaning

AR68

invokes the Archive Utility. However, if
you specify only the AR68 command, AR68
returns the command line syntax and the
system prompt as shown below.

A>AR68
usage: AR68 DRTWX(AV] ([P D:] (OPMOD] ARCHIVE OBMODl (OBMOD2...] (>filespec]
A>

All Information Presented Here I3 2Proprietary to Tigital Research

CP/M-68K Programmer's Guide 7.1 Archive Utility

®able 7-1. (continued)

Component Meaning

DRTWX
/'

indicates you must specify one of these
letters as an AR68 command. Each of these
one-letter commands and their options are
described in Section 7.1.3.

AV

indicates you can specify one or both of
these one-letter options. These options are
described with the commands in Section
7.1.3.

OPMOD

is an object module within the library that
you specify. The OPMOD parameter indicates
the position in which additional object
modules reside when you incorporate modules
in the library and specify the A option.

Kl "\ /

e

specifies the drive on which the temporary
file created by AR68 resides. The variable
D is the drive select code; it must be
followed by a colon (:). AR68 creates a
temporary file called AR68.TMP that ARG68
uses as a scratchpad area.

ARCHIVE

is the file specification of the library.

OBMOD1 [OBMOD2 ...]

indicates one or more object modules in a
library that AR68 deletes, adds, replaces,
or extracts.

N

All Informa<:on Presented Here 1s Proprietary to Digital Research

114

CP/M-68K Programmer's Guide 7.1 Archive Utility

Table 7-1. (continued)

Component Meaning

>filespec

redirects the output to the file
specification that you specify, rather than
sending the output to the standard output
device, which is usually the console device
(CONSOLE). You can redirect the output for
any of the AR68 commands described in
Section 7.1.3. :

7.1.2 AR68 Operation

AR68 sequentially parses the command line only once. AR68
Searches for, inserts, replaces, or deletes object modules in the
library in the sequence in which you specify them in the command
line. Section 7.1.3 describes each of the commands AR68 supports.

When AR68 processes a command, it creates a temporary file
called AR68.TMP. AR68 creates and uses AR68.TMP when it processes
AR68 commands. After the operation is complete AR68 erases
AR68.TMP. However, depending on when an error occurs, AR68.TMP is
not always erased. If this occurs, erase AR68.TMP with the ERA
command and refer to Appendix E for error messages output by AR6S8.

7.1.3 AR68 Commands and Optioms
This section describes AR68 commands and their options.

Examples illustrate the effect and interaction between each command
and the options it supports.

Table 7-2. AR68 Commands and Optioms

Command/Option Meaning

D deletes from the library one or more
object modules specified in the
command. You can specify the V option
for this command.

v lists the modules in the library and
indicates which modules are retained
and deleted by the D command. The V
option precedes modules retained in
the library with the lower-case letter
¢ and modules deleted from the library
with the lower-case letter d as shown
below.

"
Q
g
[a)
'_‘
W
a4
(9]
]
.
3
R
[¢]
()
-
9]
12
ii
§.
}
W
()
{1
1]
v
"
Q
91

All Information Prasaented Zera is D2

115

CP/M-68K Programmer's Guide 7.1 Archive Utility

Table 7-2. (continued)

Command/Option Meaning

A>AR68 DV MYRAH.ARC ORC.O
¢ red.o

¢ blue.o

d orc.o

c white.o

A>

The D command deletes the module ORC.O
from the library MYRAH.ARC. In
addition to listing the modules in the
library, the V option indicates which
modules are retained and deleted.

R creates a library when the one
specified in the command line does not
exist or, replaces or adds object
modules to an existing library. You
must specify one or more object
modules. '

You can replace more than one
object module in the library by.
specifying their module names in the
command line. However, when the
library contains more than one module
with the same name, AR68 replaces only
the first module it finds that matches
the one specified in the command line.
AR68 replaces modules already in the
library only if you specify their
names prior to the names of new
modules to be added to the library.
Por example, if you specify the name
of a module that you want replaced
after the name of a module that you
are adding to the library, AR68 adds
both modules to the end of the
* library.

By default, the R command adds
new modules to the end of the library.
The R command adds an object module to
a library if:

CP/M-68K Programmer's Guide : 7.1 Archive Utility

Table 7-2. (continued)

Command/Option Meaning

e The object module does not
already exist in the library.

e You specify the A option in the
command line.

e The name of a module follows the
name of module that does not
already exist in the library. ‘

The A option indicates where AR68
adds modules to the library. You
specify the relative position by
including the OPMOD parameter with the
A option. '

In addition to the A option, the
R command also supports the V option,
which lists the modules in the library
and indicates the result of the
operation performed on the library.
All options are described below.
Examples illustrate their use.

A adds one or more object modules
following the module specified in the
command line as shown below.

A>AR68 RAV SDAV.0 MYRAH.ARC WORK.O MAIL.O
much.o
sdav.o
work.o
mail.o
less.o

Qa0

The RAV command adds the object
modules WORK.O and MAIL.O after the
module SDAV.O0 in the 1library
MYRAH.ARC. The V option, described
below, lists all the modules in the
library. New modules are preceded by
the lower-case letter a and existing
modules are preceded by the lower-case
letter c.

All Information Presented Here is Proprietary to Digital Research

117

CP/M-68K Programmer's Guide 7.1 Archive Utility

rable 7-2. (continued)

Command/Option Meaning

v lists the object modules that the R
command replaces or adds.

A>AR68 RV JNNK.MAN NAIL.O WRENCH.O
saw.o

ham.o

nail.o

screw.o

wrench.o

pPOROO

A>

The R command replaces the object
module NAIL.O and adds the module
WRENCE.O to the library JNNK.MAN. The
V option lists object modules in the
library and indicates which modules
are replaced or added. Each object
module that is replaced is preceded
with the lower-case letter r and each
one that is added is preceded with the
lower-case letter a.

T requests AR68 print a table of contents
or a list of specified modules in the
library. The T command prints a
table of contents of all modules in
the library only when you do not
specify names of object modules in the
command line.

\' : displays the size of each file in the
table of contents as shown in the
example below.

A>AR68 TV WINE.BAD

rw-rw-rw- 0/0 6818 rose.o
‘rw-rw-rw- 0/0 2348 white.o
rw=rw=-rw- 0/0 396 red.o
A>

21l Information Presenteé Here is Proprietary to Digital Research

¢

118

N

.

Ned fbd VUL S LW LQUUUST AL

Table 7-2. (continued)

Command/Option

Meaning

The T command prints a table of
contents in the library WINE.BAD. In
addition to listing the modules in the
library, the V option indicates the
size of each module. The character
string rw-rw-rw- 0/0 that precedes the
module size is meaningless for CP/M-
68K. However, 1if the file is
transferred to a UNIX® system, the
character string denotes the file
~protection and file owner. The size
specified by the decimal number that
precedes the object module name
indicates the number of bytes in the
module.

writes a copy of an object module in
the library to the >filespec parameter
specified in the command line. This
command allows you to extract a copy
of a module from a library and rename
the copy when you write it to another
disk, as shown below. For this
command, the >filespec parameter is
not optional.

A>AR68 W GO.ARC NOW.O >B:NEWNAME.O

The W command writes a copy of the
object module NOW.O0 from the library
GO.ARC to the file NEWNAME.O on drive
B. .

extracts a copy of one or more object
modules from a library and writes them
to the default disk. If no object
modules are specified in the command
line, the X command extracts a copy of
each module in the library.

2 Juiuc . /e ALCillve UTLLLITY

CP/M-68K Programmer's Guide 7.1 Archive Utility

Table 7-2. {(continued)

Command/Option Meaning
v Lists only those modules the X command
extracts from the 1library. It

precedes each extracted module with
the lower-case letter as shown below.

A>AR68 XV JNNK.MAN SAW.O HAM.O SCREW.O
X saw.o

x ham.o

X screw.o

The V option with the X command lists
only the modules SAW.0, HAM.O, and
SCREW.0O that the X command extracts
from the library JNNK.MAN and precedes
each of these modules with the lower-
case letter Xx.

7.1.4 BErrors

When AR68 incurs an error during an operation, the operation is
not completed. The original library is not modified if the
operation would have modified the library. Thus, no modules in the
library are deleted, replaced, added, or extracted. Refer to
Appendix E for error messages output by AR6S8.

When you specify the >filespec parameter in the command line to
redirect the output and one or more errors occur, the error messages
are sent to the output file. Thus, you cannot detect the errors
without displaying or printing the file to which the output was
sent. If the contents of the output file is an object file (see the
W command), you must use the DUMP Utility described in Section 7.2
to read any error messages.

7.2 DUMP Utility

The DUMP Utility (DUMP) displays the contents of a CP/M file in
both hexadecimal and ASCII notation. You can use DUMP to display
any CP/M file regardless of the format of its contents (bxnary data,
ASCII text, an executable file).
7.2.1 Invoking DUMP

Invoke DUMP by entering a command in the following format.

DUMP [-sxxxx] filenamel [>filename2]

All Information Presented Eere is Proprietary to Digital Research

&

120

7

O

CP/M-68K Programmer's Guide . /.4 VUMK uvtilllTy

Table 7-3. DUMP Command Line Components

Component Meaning

-SXXXX XXXX 1s an optional offset (in

' hexadecimal) into the file. If specified,
DUMP starts dumping the contents of the
file from the byte-offset xxxx and
continues until it displays the contents
of the entire file. By default, DUMP
starts dumping the contents of the file
from the beginning of the file until it
dumps the contents of the entire file.

"filenamel is the name of thesfile you want to dump.

>filename2 the greater than sign (>) followed by a
filename or logical device optionally
redirects the output of DUMP. You can
specify any valid CP/M specification, or
one of the logical device names CON:
(console) or LST: (list device). If you
do not specify this optional parameter,
DUMP sends its output to the console.

7.2.2 DUMP Output
DUMP sends the output to the console (or to a filé or device,
if specified), 8 words per line, in the following format:

rrrr oo (E£££££): hhhh hhhh hhhh hhhh hhhh hhhh hhhh hhhh *aaaaaaaaaaaaaaaa*

Table 7-4. DUMP Output Components

Component) Mean ing

Crrr is the record number (CP/M records are 128
bytes) of the current line of the display.

oo is the offset (in hex bytes) from the
beginning of the CP/M record.

ffEffsf is the offset (in hex bytes) from the
beginning of the file.

hhhh is the contents of the file displayed in
hexadecimal.

aaaaaaaa is the contents of the file displayed as

ASCII characters. If any character is not
representable in ASCII, it is diplayed as
a period (.).

All Information Presented Hers is Propriecary =0 Sifital

121

Lr/mToon rLUngllmleL'h' Su LU . i ok MUmMr vlkdhdhdty

7.2.3 DUMP Examples

An example of the DUMP Utility is shown below. The example shows
the contents of a command file that contains both binary and ASCII
information. I

A>dump dump.68k

0000 00 (000000): 60la 0000 1lb34 0000 011d 0000 Oe5e 0000 *“....4....... Sl
0000 10 (000010): 0000 0000 0000 0000 0900 £££ff 6034 4320 *...c.ccvevee t4C

0000 20 (000020): 5275 6e74 696d 6520 436f 7079 7269 6768 *Runtime Copyrigh*
0000 30 (000030): 7420 3139 3832 2062 7920 4469 6769 7461 *t 1982 by Digita*
0000 40 (000040): 6c20 5265 7365 6172 6368 2056 3031 2c30 *1 Research vol.0*
0000 50 (000050): 3320 206f 0004 2268 0018 2649 d3e8 00lc *3 o.."h..&ISh..*

. « « » (and so on) . . .

7.3 Relocation Utility

The Relocation Utility (RELOC) creates an absolute file from a
relocatable command file. See Section 3 for a description of the
CP/M-68K command file format. An absolute file is a file that is
loaded at an absolute address. RELOC creates the absolute file by
relocating the address constants in the file before it strips off
the relocation bits. Thus, RELOC creates a new file but does not
alter the original file. :

-The advantage of using RELOC is RELOC decreases the size of the
file and increases performance. You can load the absolute command
file into memory approximately twice as fast as its relocatable
counterpart and it occupies half the disk storage space.

7.3.1 Invoking RELOC

You invoke RELOC by entering a command in the format shown

below. -

- RELOC [-Baddress] input filename output filename

()

* vy

411 Informaczion Presented Here 1S Proprietary to Digital Research

122

CP/M-68K Programmer's Guide 7.3 Relocation Utility

Table 7-5. RELOC Command Line Components

Component Meaning

-Baddress The address parameter is the
absolute address for the command
file. The address parameter is
optional. If you do not specify
the address parameter, RELOC uses
the base address at which it runs
as the default address for
relocating the input file. See the
first example in Section 7.3.2.
The base address of the file is the
lowest address in the TPA.

input filename The input filename is the file
specification of the relocatable
command file that RELOC converts to
an absolute file.

output filename The output filename is the file
specification of the absolute file
RELOC creates.

7.3.2 RELOC Examples

This section contains two examples of RELOC. The first example
illustrates how to relocate a file with the filetype of REL to the
bottom of the TPA. You can use this example to create an absolute
command file that runs in the bottom of the TPA. The second example
illustrates how to specify an alternate address for a command file.

1) In this example, the RELOC.REL file distributed with CP/M-

2)

68K is used to relocate itself. The resulting file,
RELOC.68K, uses its base address for the absolute address
of an input file when the address parameter of the input
file is not specified. You can use this example to
relocate other utilities with a filetype of REL so that
they also run in the bottom of the TPA.

A>RELOC.REL RELOC.REL RELOC.68K

The RELOC.REL file relocates itself and outputs the file
RELOC.68K. The command file RELOC.68K is an absolute file
that runs at the bottom of the TPA.

In this example, RELOC creates an absolute file that must be
loaded at a specific address.

A>RELOC -B500 JUNK.REL JUNK.68K

- n - aeie T e

All Informaticn Prasented Hers i3 Prosrizcazy <o Diglial Fassaren

CP/M-68K Programmer's Guide 7.3 Relocation Utility

RELOC converts the relocatable command file, JUNK.REL, to
the absolute command file, JUNK.68K, which must locad into
memory at location 500H.

7.4 SIZE68 Utility

The SIZE68 Utility (SIZE68) displays the sizes of each program
segment within one or more command files and the total memory needed
by each file. CP/M-68K command files usually have a filetype of
.68K or .REL. The size of a command file returned by SIZE68 and the
size of a command file returned by the STAT command are not equal.
The file size returned by SIZE68 includes the size of the text,
data, and bss program segments but does not include the size of the
header, symbol table, and relocation bits. For more details on the
CP/M-68K command file format, refer to Section 3. For more details
on the STAT command, refer to the CP/M-68K User's Guide.

7.4.1 1Invoking SIZE68

You invoke SIZE68 by entering the SIZE68 command line in the
format shown below.

SIZE68 filename [filename2 filename3 ...] [>outfile]

Table 7-6. SIZE68 Command Line Components

Component Meaning

filename the file specification of a file whose
size you want to determine.

filenamel one or more additional file

filename2 specifications of files whose size you

want to determine. SIZE68 can process
multiple files, provided the command line
does not exceed 128 bytes.

>outfile specifies the file specification to which
SIZE68 sends its output. If you do not
specify an output £file specification,
SIZE68 sends the output to the console.
For the output file specification, you can
specify a valid CP/M filename, or one of
the logical device names CON: (console),
or LST: (list device).

7.4.2 SIZEB68 Output

SIZE68 produces one output line for each input file you
specify. The format of the output line is shown below.

filename: csize+dsize+bsize=totsize (hexsize) stack size = ssize
Lll Information Presented Here ig Proprietary to Digital Resea:ch

124

()

CP/M-68K Programmer's Guide . , 7.4 SIZE68 Utility

Table 7-7. SIZE68 Output Components

Component Meaning

csize is the size, in decimal bytes, of the
text segment of the file.

dsize is the size, in decimal bytes, of the
' data segment of the file.

--bsize is the size, in decimal bytes, of the
block storage segment (bss) of the file.

totsize is the total size, in decimal bytes, of
the memory image occupied by the file.
It is the sum of c¢size, dsize, and
bsize.

hexsize " is the same value as totsize, expressed
‘ in hexadecimal bytes.

ssize is the size of the stack required by the
file.

For an explanation of the program segments of a command flle, see
Section 3, Command File Format.

7.4.3 SIZE68 Examples

This section contains examples of the SIZE68 Utility.

1) The SIZE68 command line specified in this example returns
the size of one command file and its program segments.

A>size68 reloc.68k
reloc.68k:11330+1012+2922=15264 (3BAO) stack size = 0

The program file reloc.68k contains a 11330-byte (decimal)
text segment, a 1l0l2-byte (decimal) data segment, and a
2922-byte (decimal) bss. The total size of the program
file is 15264 decimal bytes, which is the same as 3BAO
hexadecimal bytes. The header in the Reloc.68k file does
not specify a minimum stack size. However, when CP/M-68K
loads a command file, CP/M-68K always reserves at least 256
bytes for the user stack. CP/M-68K also creates a 256-byte
base page. Therefore, to run reloc.68k, the minimum size
of the TPA cannot be less than 15776 -decimal bytes (15264
bytes for the program, 256 bytes for the stack, and 256
bytes for the base page).

All Information Presentad dere i3 Propristary ©o Zigital

CP/M-68K Programmer's Guide 7.4 SIZE68 Utility

2) The SIZE68 command line specified in this example returns
the size of several program files and their program
segments.

A>8ize68 size.68k, dump.68k
size68.68k:7010+388+3706=11104 (2B60) stack size = 0
dump.68Kk:6964+286+3678=10928 (2AB0) stack size = 0

When you specify multiple file specifications in a command
line, use a comma to delimit each file specification.

A>size68 clink.sub
Not c.out format: clink.sub

SIZ2E68 printed an error message because clink.sub is an
ASCII file and not a command file. Files input to SIZE68
must be command files. Refer to Section 3 for the format
of CP/M-68K command files.

7.5 SENDC68 Utility

The SENDC68 Utility (SENDC68) creates a file with Motorola S-
record format from an absolute command file. S-records are a means
of representing an absolute program in ASCII character form. For a
detailed description of the S-record format, refer to the CP/M-68K
Operating System System Guide.

7.5.1 Invoking SENDC68

You invoke SENDC68 by entering a command in the format shown
below. '

SENDC68 [~] input file [output file]

Table 7-8. SENDC68 Command Line Compoments

Component Meaning

- The hyphen is optional. 1If you specify
the hyphen, SENDC68 does not create any S-
records for the bss program segment. If
you do not specify the hyphen, SENDCé68
fills the bss with zeroes. Thus, if you
specify the hyphen, SENDC68 creates a
smaller S-record file.

input file The file specification for the command
file that SENDC68 converts to S-record
format. The command file must be an
absolute file in the format produced by
1068 or RELOC.

~

CP/M-68K Programmer's Guide 7. SENDCS58 Utility

(W]

Table 7-8. (continuéd)

Component Meaning

output file The file specification of the SENDC68
output file containing the S-records. If
you do not specify a file, SENDC68 sends
the S-record that it outputs to the
console.

7.5.2 SENDC68 Example

This section contains an example of the SENDC68 command line.
The example below illustrates how to create a file that contains
Motorola S-records from an absolute command file.
A>SENDC68 - JUNK.68K JUNK.SR
In the above example, SENDC68 creates the S—reéord file JUNK.SR from

the absolute command file JUNK.68K. However, the file JUNK.SR does
not contain S-records for the bss program segment.

End of Section 7

All Information Presenzad Hera s 2roprietary %o Dizlzal Research

127

Section 8
DDT-68K

8.1 DDT-68K Operation

DDT-68K allows you to test and debug programs interactively in
a CP/M-68K environment. You should be familiar with the MC68000
Microprocessor, the assembler (AS68) and the CP/M-68K operating
system.

8.1.1 Invoking DDT-68K
Invoke DDT-68K by entering one of the following commands:

DDT
- DDT filename

The first command loads and executes DDT-68K. After displaying
its sign-on message and the hyphen (-) prompt character. DDT-68K
is ready to accept commands. The second command invokes DDT-68K and
loads the file specified by filename. If the filetype is not
specified, it defaults to the 68K filetype. The second form of the
command is equivalent to the sequence:

A>DDT

DDT-68K

Copyright 1982, Digital Research
-Efilename

At this point, the program that was loaded is ready for execution.

8.1.2 DDT-68K Command Conventioms

wWhen DDT-68K is ready to accept a command, it prompts you with
a hyphen (-). In response, you can type a command line or a
CONTROL-C ("C) to end the debugging session (see Section 8.1.4). A
command line can have as many as 64 characters, and must be
terminated with a RETURN. While entering .the command, -use standard
CP/M line-editing functions to correct typing errors. See Table 4-
12. DDT-68K does not process the command line until you enter a
RETURN.

The first nonblank character of each command line determines
the command action. Table 8-1 summarizes DDT-68K commands. They
are defined individually in Section 8.2.

All Information 2resented Here 15 Procriecary ©o Diglital Research

Py

129

CP/M—08K FProgrammer's Guiae 0.4 ULui-oon uperacivi

Table 8-1. DDT-68K Command Summary

Command Action
D display memory in hexadecimal and ASCII
E load program for execution
F fill memory block with a constant
G begin execution with optional breakpoints
H hexadecimal arithmetic
I set up file control block and command tail
L list memory using MC68000 mnemonics
M move memory block
R read disk file into memory
S set memory to new values
T trace program execution
U untrace program monitoring
v show memory layout of disk file read
w write contents of memory block to disk
X examine and modify CPU state

The command character may be followed by one or more arguments,
which may be hexadecimal values, filenames, or other information,
depending on the command. Some commands can operate on byte, word,
or longword data. The letter W for word or a L for longword must be
appended to the command character for commands that operate on
multiple data lengths. Details for specific commands are provided
with the command descriptions. Arguments are separated from each
other by commas or spaces.

8.1.3 Specifying Addresses

Most DDT-68K commands reqguire one or more addresses as
operands. All addresses are entered as hexadecimal numbers of up to
eight hexadecimal digits (32 bits)
8.1.4 Terminating DDT-68K

Terminate DDT-68K by typing a 1C in response to the hyphen
prompt. This returns control to the CCP.
8.1.5 DDT-68K Operation with Interrupts

DDT-68K operates with interrupts enabled or disabled, and
preserves the interrupt state of the program being executed under

. DDT-68K. When DDT-68K has control of the CPU, either when it is

initially invoked, or when it regains control from the program being
tested, the condition of the interrupt mask is the same as it was
when DDT-68K was invoked, except for a few critical regions where
interrupts are disabled. While the program being tested has control
of the CPU, the user's CPU state, which can be displayed with the X
command, determines the state of the interrupt mask.

21 Informz-icn Presenteé Here is Proprietary to Digital Research

130

M

)

C2/M-68BK Programmer's Guide 8.1 DDT-68K Operation

Note that DDT-68K uses the Trace and Illegal Instruction
exceptions. Therefore, programs debugged under test should not use
these.

8.2 DDT-68K Commands

This section defines DDT-68K commands and their arguments.
DDT-68K commands give you control of program execution and allow you
to display and modify system memory and the CPU state.

8.2.1 The D (Display) Command

The D command displays the contents of memory as 8-bit, l6-bit,
or 32-bit hexadecimal values and in ASCII. The formns are:

D

Ds
Ds,f
DW
DWs
DWs, £
DL
DLS
DLS r f

where s is the starting address, and f is the last address that DDT-

.68K displays.

Memory is displayed on one or more lines. Each line shows the
values of up to 16 memory locations. For the first three forms, the
display line appears as follows:

aaaaaaaa bb bb ... bbecec ... cc

where aaaaaaaa is the address of the data being displayed. The bb's
represent the contents of the memory locations in hexadecimal, and
the c's represent the contents of memory in ASCII. Any nongraphic
ASCII characters are represented by perlods.

In response to the DS form of the D command, shown above, DDT-
68K displays 12 lines that start from the current address. Form
Ds,f displays the memory block between locations s and £. Forms DW,
DWs, and DWs,f are identical to D, Ds, and Ds,f except the contents
of memory are displayed as l6-bit values, as shown below:

Adaadaaa WWWW WWWW ... WwWww CCCC cee cc

Forms DL, DLs, and DLs,f are identical to D, Ds, and Ds,f
except the contents of memory are displayed as 32-bit or longword
values, as shown below:

aaaaaaaa 11111111 11111111 ... 1111111l ccceceecee ...

n

All Inifcrmaticn Presented Here is Proprietary tc Sigiczal Fesearch

Aﬂ

131

CP/M—-68K Programmer's Guide 8.2 DDT-68K Commands

puring a display, the D command may be aborted by typing any
character at the console.

8§.2.2 The E (Load for Execution) Command

The E command loads a file in memory so that a subsequent G, T
or U command can begin program execution. The syntax for the E
command is:

E<filename>

where <filename> is the name of the file to be loaded. If no file
type is specified, the filetype 68K is assumed.

An E command reuses memory used by any previous E command.
Thus, only one file at a time can be loaded for execution.

When the load is complete, DDT-68K displays the starting and
ending addresses of each segment in the file loaded. Use the V
command to display this information at a later time.

If the file does not exist or cannot be successfully loaded in
the available memory, DDT-68K displays an error mesSsage. See
appendix E for error messages returned,by DDT-68K.

8.2.3 The F (Fill) Command

The F command fills an area of memory with a byte, word, or
longword constant. The forms are

Fs,£,b
FWs,f,w
FLs,£,1

where s is the starting address of the block to be filled, and £ is
the address of the final byte of the block within the segment
specified in s. '

In response to the first form, DDT-68K stores the 8-bit value b

in locations s through f£. In the second form, the 16-bit value w is
stored in locations s through f in standard form: the high 8 bits
are first, followed by the low 8 bits. In the third form, the 32-
bit value 1 is stored in locations s through f with the most
significant byte first.

1f s is greater than £, DDT-68K responds with a gquestion mark.
Also, if b is greater than FF hexadecimal (255), w is greater than
FFFF hexadecimal (65,535), or 1 is greater than FFFFFFFF hexadecimal
(4,294,967,295), DDT-68K responds with a guestion mark. DDT-68K
displays an error message if the value stored in memory cannot be
read back successfully. This error indicates a £faulty or
nonexistent RAM location.

4.1 Information Presentec Here 1is Proprietary te Digital Research

132

-,

CP/M-68K Programmer's Guide 8.2 DDT-68K Commands

8.2.4 The G (Go) Command

The G command transfers control to the program being tested,
and optionally sets one to ten breakpoints. The forms are

G
-G,bl,...bl0
- Gs

Gs,bl,...bl0

where s is the address where program begins executing and bl through
bl0 are addresses of breakpoints.

In the first two forms, no starting address is specified. DDT-
68K starts executing the program at the address specified by the
program counter (PC). The first form transfers control to your
program without setting any breakpoints. The second form sets
breakpoints before passing control to your program. The next two
forms are analogous to the first two except that the PC is first set
to s.

Once control has been transferred to the program under test, it
executes in real time until a breakpoint is encountered. At this
point, DDT-68K regains control, clears all breakpoints, and displays
the CPU state in the same form as the X command. When a breakpoint
returns control to DDT-68K, the instruction at the breakpoint
address has not yet been executed. To set d breakpoint at the same
address, you must specify a T or U command first. '

8.2.5 The H (Hexadecimal Math) Command

The H command computes the sum and difference of two 32-bit
values. The form is:

Ha,b
where a and b are the values whose sum and difference DDT-68K
computes. DDT-68K displays the sum (ssssssss) and the difference
(dddddddd) truncated to 1l6- bits on the next line as shown below:

ssssssss dddddddd

8.2.6 The I (Input Command Tail) Command

- The I command prepares a file control block (FCB) and command
tail buffer in DDT-68K's base page, and copies the information in
the base page of the last file loaded with the E command. The form
is

I<command tail>

All Information Presentad Here is 2zcprietary to Digical Isesearch

133

o o — i 45

CP/M-68K Programmer's Guide 8.2 DDT-68K Commands

where <command tail> is the character string wnich usually contains
one or more filenames. The first filename is parsed into the
default file control block at 005CH. The optional second filename,
if specified, is parsed into the second default file control block
beginning at 0038H. The characters in the <command tail> are also
copied to the default command buffer at 0080H. The length of the
<command tail> is stored at 0080H, followed by the character string
terminated with a binary zero.

If a file has been loaded with the E command, DDT-68K copies
the file control block and command puffer from the base page of DDT-
68K to the base page of the program loaded.

8.2.7 The L (List) Command

The L command lists the contents of memory in assembly
language. The forms are

L
Ls
Ls,f .

where s is the starting address, and £ is the last address in the

The first form lists 12 lines of disassembled machine code from
the current address. The second form sets the list address to s and
then lists 12 lines of code. The last form lists disassembled code
from s through £. 1In all three cases, the list address is set to
the next unlisted location in preparation for a subsequent L
command. When DDT-68K regains control from a program being tested
(see G, T and U commands), the list address is set to the address in
the program counter (PC). ’

Long displays can be aborted by typing any key during the list
process. Or, enter CONTROL-S (1s) to halt the display temporarily.
A CONTROL-Q (1Q) restarts the display after 1S halts it. :

The syntax of the assembly language statements produced by the
L command is described in the Motorola 16-Bit Microprocessor User's
Manual, third edition, MC68000UM(AD3).

8.2.8 The M (Move) Command

The M command moves a block of data values from one area of
memory to another. The form is

Ms,f,d
where s is the starting address of the block to be moved, f is the
address of the final byte to be moved, and d is the address of the

first byte of the area to receive the data. Note that if 4 is
between s and £, part of the block being moved will be overwritten

221 Informacion Presented Here 1E Preprietary to Digital. Research

- - —— e e e e o S £ S TS S ST S T e v m—re o e w—na - ——

o~

CP/M-68K Programmer's Guide 8.2 DDT-68K Commands

before it is moved, because data is transferred starting from
location s. ‘

8.2.9 The R (Read) Command

The R command reads a file to a contiguous block in memory.
The format is

R<filename>
where <filename> is the name and type of the file to be read.
DDT-68K read the file in memory and displays the starting and
ending addresses of the block of memory occupied by the file. A
Value (V) command can redisplay the information at a later time.

The default display pointer (for subsequent Display (D) commands) is
set to the start of the block occupied by the file.

8.2.10 The S (Set) Command

The S command can change the contents of bytes, words, or
longwords in memory. The forms are

Ss
SWs
SLs

where s is the address where the change is to occur.

DDT-68K displays the memory'addteSS and its current contents on
the following line. 1In response to the first for@, the display is

aaaaaaaa bb

In response to the second form, the display is
aaaaaaaa wwww

In response to the third form, the display is
aaaaaaaa 11111111

where bb, wwww, and 11111111 are the contents of memory in byte,
word, and longword formats, respectively. ’

In response to one of the above displays, you can alter the
memory location or leave it unchanged. If a valid hexadecimal value
is entered, the contents of the byte, word, or longword in memory is
replaced with the value entered. If no value is entered, the
contents of memory are unaffected and the contents of the next
address are displayed. In either case, DDT-68K continues to display
successive memory addresses and values until either a period or an
invalid value is entered. ’

All Information Presented Heres is Procrierary =c Digital Research

135

CP/M-68K Programmer's Guide 8.2 DDT-68K Commands

DDT-68K displays an error message if the value stored in memory
cannot be read back successfully. This error indicates a faulty or
nonexistent RAM location.

8;2.11 The T (Trace) Command

The T command traces program execution for 1 to OFFFFFFFFH
program steps. The forms are

T
Tn

where n is the number of instructions to execute before returning
control to the console.

After DDT-68K traces each instruction, it displays the current
CPU state and the disassembled instruction in the same form as the X
command display. ‘

Control transfers to the program under test at the address
indicated in the PC. If n is not specified, one instruction is
executed. Otherwise, DDT-68K executes n instructions and displays
the CPU state before each step. You can abort a long trace before
all the steps have been executed by typing any character at the
console.

After a Trace (T) command, the list address used in the L
command is set to the address of the next instruction to be
executed.

Note that DDT-68K does not trace through a BDOS interrupt
instruction, since DDT-68K itself makes BDOS calls and the BDOS is
not reentrant. Instead, the entire sequence of instructions from
the BDOS interrupt through the return from BDOS is treated as one
traced instruction.

8.2.12 The U (Untrace) Command

The U command is identical to the Trace (T) command except that
the CPU state is displayed only after the last instruction is
executed, rather than after every step. The forms are

U
Un

where n is the number of instructions to execute before control
returns to the console. You can abort the Untrace (U) command
before all the steps have been executed by typing any key at the
console.

]
1
)
1
i
)
1
)]
1
l(_!
ty
1l
n
1]
0
[
w
[}
8¢
{4
L4}
[}
on
"y
(B
0
ty

136

N

N

N
()

™)

CP/M-68K Programmer's Guide 8.2 DDT-68K Commands

8.2.13 fThe V (Value) Command

The V command displays information about the last file loaded
with the Load For Execution (E) or Read (R) commands. The form is

v

If the last file was loaded with the E command, the V command
displays the starting address and length of each of the segments
contained in the file, the base page pointer, and the initial stack
pointer. The format of the display is

Text base=00000500 data base-00000372 bss base=00003FDA
text length=00000672 data length=00003468 bss length=0000A1B0
base page address=00000400 initial stack pointer=000066D4

If no file has been loaded, DDT-68K responds to the V command with a
question mark (?).

8.2.14 The W (Write) Command

The W command writes the contents of a contiguous block of
memory to disk. The forms are

W<filename> .
W<filename>,s, f

The <filename> is the file specification of the disk file that
receives the data. The letters s and f are the first and last
addresses of the block to be written. If f does not specify the
last address, DDT-68K uses the same value that was used for s.

If the first form is used, DDT-68K assumes the values for s and
f from the last file read with a R command. If no file is read by
an R command, DDT-68K responds with a question mark (?). This form
is useful for writing out files after patches have been installed,
assuming the overall length of the file is unchanged.

If the file specified in the W command already exists on disk,
DDT-68K deletes the existing file before it writes the new file.

8.2.15 The X (Examine CPU State) Command

The X command displays the entire state of the CPU, including
the program counter (PC), user stack pointer (usp), system stack
pointer (ssp), status register (by field), all eight data registers,
all eight address registers, and the disassembled instruction at the
memory address currently in the PC. The forms are

AR - . - h - N - - s s - - - -~ < .- he .
te- -3I0rmacicn Fr2senctad Here 15 Propri2carv o Zizizzl Research

CP/M-68K Programmer's Guide 8.2 DDT-68K Commands

where r is one of the following registers:
The first form displays the CPU state as follows:

PC=00016000 USP=00001000 SSP=00002000 ST=FFFF=> (etc.)
D 00001000 00000DO1 ... 00000001

A 000BOAOO 000A0010 ... 00000000

lea $16028,A0

The f£irst line includes:

PC Program Counter

Usp User Stack Pointer
Ssp System Stack Pointer
ST Status Register

Following the Status Register contents on the first display line,
the values of each bit in the status register are displayed. A
sample is shown below:

TR SUP IM=7 EXT NEG ZER OFL CRY

This sample display includes:

TR Trace Bit
sup Supervisor Mode Bit
IM=7 Interrupt Mask=7
EXT Extend
NEG Negative
ZER Zero
OFL Overflow -
CRY Carry

The second form, Xr, allows you to change the value in the
registers of the program being tested. The r denotes the register.
DDT-68K responds by displaying the current contents of the register,
leaving the cursor on that line. If you type a RETURN, the value is
not changed. If you type a new valid value and a RETURN, the
register is changed to the new value. The contents of all registers
except the Status Register can be changed.

)

C
N

CP/M-68K Programmer's Guide 8.3 Assembly Language Syntax

8.3 Assembly Lanquage Syntax for the L Command

In general, the syntax of the assembly language statements used
in the L command is standard Motorola 68000 assembly language.
Several minor exceptions are listed below.

-® DDT-68K prints all numeric values in hexadecimal.

® DDT-68K uses lower-case mnemonics.

® DDT-68K assumes word operations unless a byte or longword
specification is explicitly stated.

End of Section 8

Appendix A
Summary of BIOS Functions

Table A-1 lists the BIOS functions supported by CP/M-68K.

more details on these functions, refer to the CP/M-68K Operating

System System Guide.

For

Table A-1. Summary of BIOS Functions

Function F§ Description

Init 0 Called for Cold Boot

Warm Boot 1 Called for Warm Start

Const 2 Check for Console Character
Ready

Conin 3 Read Console Cha:acter In

Conout 4 Write Console Character Out

List 5 Write Listing Character Out

Auxiliary Output 6 Write Character to Auxlllary
OQutput Device

Auxiliary Input 7 Read from Auxiliary Input

, Device

Home 8 Move to Track 00

Seldsk 9 Select Disk Drive

Settrk 10 Set Track Number

Setsec 11 Set Sector Number

Setdma 12 Set DMA Offset Address

Read 13 Read Selected Sector

Write 14 Write Selected Sector

Listst 15 Return List Status

Sectran 16 Sector Translate

Get Memory Region

Table Address 18 Address of Memory Reg1on
Table

Get I/O Byte 19 "Get I/0 Mapping Byte

Set I/0 Byte 20 Set I/0 Mapping Byte

Flush Buffers 21 Writes Modified Buffers

Set Exception Vector 22 Sets Exception Vector

End of Appendix A

ALl Information Presented Jere is Proprietarvy tc Digital Research

141

)

Appendix B
Transient Program Load Examples

This appendix contains two examples, an assembly language
program and a C language program. Both illustrate how a transient
program loads another program with the BDOS Program Load Function
(59) but without the CCP.

Examples:

1) The example below is an AS68 assembly language program that
loads another program into the TPA.

* BDOS Function Definitions
*
ceboot = 0
printstr = 9
open = 15
setdma = 26
pgmldf = 59
gettpa = 63
. text
. s
* OPEN file to be loaded
*
start: link a6,4#0 *mark stack frame
move.l 8(aé6),al *get the address of the base page
lea $5c(al),al *get address of lst parsed FCB in base page
move.l al,dl *put that address in register dl
move.w #open,do *put BDOS function number in register 40
trap $2 *try to open the file to be loaded
cmpi $255,40 *test d0 for BDOS error return code
beq openerr *if 40 = 255 then goto openerr

»

Compute Address to Load File

move.l $18(a0),d2 *get starting address of bss from base page

move.l S$lc(al0),d3 *get length of bss

add.1l d2,d3 *compute first free byte of memory
*after bss

move.l $20(a0),d4 *get length of free memory after bss

sub $$100,44 *leave some extra room

move.l d4,d5 *save that length in register 45

add.1l 43,44 *compute high end of free memory after bss

move.,l d3,a3 . *get the starting address of free memory
*into a3)

sub $1,d45 *adjust loop counter

clear: clr.b (a3)+ *clear out free memory

Listing B-1l. Transient Load Program Example 1

All Informacion Presencad Heras i 2zcmrli2ctary o Jigizal Researcn

143

CP/M-68K Programmer's Guide B Transient Program Load Examples

abf d5,clear *decrement loop counter and loop until
* *negative
*
* FILL the LPB
*
* Low address becomes first free byte of memory after bss
* High address of area in which to load program becomes
* the Low address plus length of free memory
*
®
move.l d3,lowadr *get low end of area in which to load
* *program
move.l d4,hiadr *get high end of area in which to load
* *program
move.l al,LPB *put address of open FCB into LPB
move.w #pgmldf,do *get BDOS program load function number
move.l $LPB,dl *put address of LPB into register dl
trap $2 *do the program load
tst do *was the load successful?
bne lderr *if not then print error message
*
* Set default DMA address
*
move.l baspag,dl *d]l points to new program's base page
add #$80,d1 *dl points to default dma in base page
move.w $setdma,do *get BDOS function number
trap $2 *get the default dma address
* .
* Now push needed addresses on stack
* -
movea.l usrstk,a’ *get up user stack pointer
move.l baspag,al *get address of base page
move.l al,-(sp) *push base page address
move.l #cmdrtn,-(sp) *push return address
move.l 8(al),-(sp) *push address to jump to
rts *jump tO new program
*
* Print ERROR message
*
openerr:
move.l $openmsg,dl *get address of error message
* *to be printed
bra print
iderr: move.l #loaderr,dl *get address of error message to
*be printed
print: move.w #printstr,dl *get BDOS function number
trap $2 *print the message
cmdrtn: move.w #reboot,dol *get BDOS function number
trap $2 , *warmboot and return to the CCP
*
* DATA
*
.data
. even
»
Listing B-1l. (continued)
51 Infcrmecicn Presented Here Ls Propristary o Digital EEsearch

/'\

27N

CP/M-68K Programmer's Guide B Transient Program Load Examples

* LOAD PARAMETER BLOCK
»
LPB: .ds.1 1 *PCB address of program file
lowadr: .ds.1l 1 *Low boundary of area in which
* *to load program
hiadr: .ds.l 1 *High boundary of area in which to
* *to load program '
baspag: .ds.l 1 *Base page address of loaded program
usrstk: .ds.l 1 *Loaded program's initial stack pointer
flags: .dc.w 0 *Load program function control flags
*
* TPA Parameter Block
*
.even
TPAB: .dc.w 0
low: .ds.l 1
high: .ds.1 1
.even.
loaderr: .dec.b 13,10,'Program Load Error$'
openmsg: .de.b 13,10,'Unable to Open File$'
.end

Listing B-1l. (continued)

CP/M—-bY8K Programmer-'s Guide

B Transient Program Load Examples

2) The example below is a C language transient program that
loads another program in the TPA without the assistance of
the CCP. The C language program calls an AS68 assembly
language routine to perform tasks not permitted by the C

language.

/t
'C' Language Program to Load Another
Program into the TPA
*®
/* DEFINES */
$define BSS_OFFSET (long)0x18
$define FCB_OFFSET (long)0x5C
#¢define BSS_LENGTH (long) 0xl1C
#define FREE_MEMORY (long)0x20
$define DMA_OFFSET (long)0x80
$¢define ROOM (long)0x100
#define NULL 'o’
§define CR (long)1l3
$define LF (long)l0
§define REBOOT 0
#define CON_OUuT 2
$define PRINTSTR 9
$define , OPEN"’ 15
$define SETDMA 26
$define PGMLDF 59
$define GETTPA 63
/* Error Messages */

char openmsg[20] = "Unable to Open File$";
char loadmsg{l19] = "Program Load Error$";

/* Load Parameter Block */

extern long LPB,lowadr, hzad:.baspag,usrstk,

extern int flags;

/* TPA Parameter Block */

extern int TPAB;
extern long low,high;

tc Digital Research

w“\

CP/M-68K Programmer's Guide B Transient Program Load Examples

Openfile (baseaddt) /*it!tttt*t.i*ttittttttit*ttti*tt/
— register char *baseaddr; /* base page address */
/* */
register long *el,*e2; /* pointers to long word values */
register long count; /* long word value */
register char *ptrl,*ptr2; /* pointers to character values */

: * *
7 %
ptrl = baseaddr + FCB_OFFSET; /* get address of FCB */
if (bdos(OPEN, ptrl) <= 3) . /* try to open the file */
1 /* ./
tl = baseaddr + /* set pointer to STARTING addr */
BSS_OFFSET; /* of the BSS segment */
t2 = baseaddr + /* set pointer to LENGTH of */
BSS_LENGTH; /* the BSS segment */
lowadr = *tl + *t2; /* compute the first free byte */
/* address of memory after the */
/* BSS segment */
ptr2 = lowadr /* *ptr2 now points to first */
/* free byte in memory */
t2 = baseaddr + /* get length of free memory */
FREE_MEMORY; /* after the BSS segment */
/* */
hiadr = *t2 + lowadr /* compute high end of avaiable */
/* memory */
count = *t2 - ROOM /* Leave some extra room in Mem */
while(count--) /* Clear out available Memory */
) *ptr2++ = NULL; /* with NULL byte values */
{’~\‘ LPB = ptri; /* first long of parameter blk */
o /* gets the address of the FCB */
S /ﬁ'itt*ﬁ'*‘h'**t'*t"*tt**ttttt*tt/

/* *

- If the Load is Successful
1. Set the Default DMA address
2. Call Assembly Code to push

the base page address, the
return address, and the
address you wish to jump to.

* */
%f(bdos(PGHLDF,&LPB) == ()

bdos (SETDMA, (baspag + DMA_OFFSET))";
push();

else
error (PGMLDF) ;

Listing B-2. (continued)

All Information Presented Here is Proprietary zo Digital Research

147

CP/M-68K Programmer's Guide B Transient Program Load Examples

else
error (OPEN); '

}

error (£flag)
%nt flag;

bdos (CON_OUT,CR) ;
bdos (CON_OUT,LF) ;
‘if(flag == QPEN)

bdos (PRINTSTR,openmsg) ;
else

bdos (PRINTSTR, loadmsg) ;
bdos (REBOOT, (1long)0) ;

main ()
| bdos (REBOOT, (1long)0);
AR R AR R R RN RN RN R RN RN RRRR NN AR N NP AARCTRNE RSN R
* ®
* Assembly Language Module Needed to *
* Assist 'C' code to Load a Program into the TPA *
* *
Yy R 22 222223222 XT XSRS X2 22422 2 2 2 2 2 4222222222 2]
4
* - .
* Make All these labels GLOBAL
*
.globl _bdos
.globl _LPFB -
.globl _lowadr-
.globl _hiadr
.globl _baspag
.globl _usrstk
.globl _flags
.globl _TPAB
.globl _low
.globl _high
.globl _start
.globl _openfile
.globl _push
.globl _main
*
* Get the address of the base page
*
. . . o~
Listing B-2. (continued) K“
L11 Information Presentel Bere 1 Propriletary t©o Dicita. Resezcfch

CP/M-68K Programmer's Guide

B Transient Program Load Examples

*link and allocate
*push the address of the base page
*Jjump to 'C' code to open the file

*get the BDOS function number
*get the BDOS parameter
*call the BDOS

*set up the user stack pointer
*get address of user base page
*push base page address

*push return address

*push address to jump to

*jump to new program

*FCB address of program file

*Low boundary of area in which

*to load program

*High boundary of area in which to

*to load program

*Base page address of loaded program
*loaded program's initial stack pointer
*Load program function control flags

_start:
link a6,#0
move.l 8(a6),-(sp)
jsr _openfile

*

* Call the BDOS

»

_bdos:
move.w 4 (sp),do
move.l 6(sp),dl
trap $2
rts *return

.

* Push the needed addresses on to the stack

*

_Pbush:
movea.l _usrstk,a7
move.l _baspag,al
move.l al,-(sp)
move.l # main,-(sp)
move.l 8(al),-(sp)
cts

*

* DATA

»
'dau
.even

* N .

* Load Parameter Block

»

_LPB: .ds.1 1

lowadr: .ds.l1 1

*

hiadr: .ds.l 1

¥

_baspag: .ds.l1 1

_usrstk: .ds.l 1

_flags: .dc.w 0

*

* TPA Parameter Block

*
.even

_TPAB: .dc.w 0

_low: .ds.l 1

_high: .ds.1 1

»

* END of Assembly Language Code

»

.end

Listing B-2.

(continued)

End of Appendix B

e is ?ropriaczary &5 Digimal Research

Appendix C
Base Page Format

Table C-1 shows the format of the base page. The base page
describes a program's environment. The Program Load Function (59)
allocates space for a base page when this function is invoked to
load an executable command file. For more details, on the Program
Load Function and command files, refer to the appropriate sections
in this manual.

Table C-1. Base Page Format: Offsets and Contents

Offset Contents

- 0000 - 0003 Lowest address of TPA (from LPB)

0004 - 0007 1 + Highest address of TPA
(from LPB)

0008 - 000B Starting address of the Text

) Segment

QoocC é-OOOF) Length of Téxt Segment (bytes)

0010 - 0013 Starting address of the Data
Segment (initialized data)

0014 - 0017 Length of Data Segment

0018 - 001B Starting address of the bss
(uninitialized data)

001C - Q01lF Length of bss

0020 - 0023 Length of free memory after bss.

0024 - 0024 Drive from which the program was
loaded

0025 - 0037 Reserved, unused

0038 - 00SB 2nd parsed FCB from Command Line

005C - 007F lst parsed FCB from Command Line

0080 - OOFF Command Tail and Default DMA
Buffer

End of Appendix C
All Information Presented Here Is Proprierary o Zigizal Research

151

”

S

Appendix D
Instruction Set Summary

This appendix contains two tables that describe the assembler
instruction set distributed with CP/M-68K. Table D-1 summarizes the
assembler (AS68) instruction set. Table D-2 lists variations on the
instruction set listed in Table D-l1. For details on specific
instructions, refer to Motorola's 1l6-Bit Microprocessor User's
Manual, third edition, MC68000UM(AD3) .

Table D-1. Instruction Set Summary

Instruction Description
abecd Add Decimal with Extend
add Add
and Logical AND
asl Arithmetic Shift Left
asr Arithmetic Shift Right
bece Branch Conditionally
bchg Bit Test and Change
belr Bit Test and Clear
bra Branch Always
bset Branch Test and Set
bsr Branch to Subroutine
btst Bit Test
chk Check Register Against Bounds
clr Clear Operand
cmp Compare
dbcc Test Condition, Decrement and Branch
divs Signed Divide
divu Unsigned Divide
eor ExXclusive Or
exg Exchange Registers
ext Sign Extend
jmp Jump
jsr Jump to Subroutine
lea " Load Effective Address
link Link Stack
1sl Logical Shift Left
1src Logical Shift Right

CP/M-68K Programmer's Guide D Instruction Set Summary

‘*able D-1. (comntinued)

Instruction Description
move Move
movem Move Multiple Registers
movep Move Peripheral Data
muls Signed Multiply
mulu Unsigned Multiply
nbecd Negate Decimal with Extend
neg Negate
nop No Operation
no Ones Complement
or Logical OR
pea Push Effective Address
reset Reset External Devices
rol Rotate Left without Extend
ror Rotate Right without Extend
roxl Rotate Left with Extend
roxr Rotate Right with Extend
rte Return From Exception
rtr Return and Restore
rts Return from Subroutine
sbcd Subtract Decimal with Extend
scc Set Conditional
stop Stop
sub Subtract
swap Swap Data Register Halves
tas Test and Set Operand
trap Trap
trapv Trap on Overflow
tst Test
unlk Unlink
L)
all Informatiorn Presented Here .8 Propriecary to Digital Research

154

P

7Y

)

CP/M-68K Programmer's Guide

D Instzuction Set Summary

Table D-2. Variatioms of Instructicn Types
Instruction Variation Description
add add Add
adda Add address
addg Add Quick
addi Add Immediate
addx Add with Extend
and and Logical AND
andi AND Immediate
andi to cecr AND Immediate to Condition
: Code
andi to sr AND Immediate to Status
Register
cmp _ cmp Compare
cmpa Compare Address
cmpm Compare Memory
cmpi Compare Immediate
eor eor Exclusive OR
eori Exclusive OR Immediate
eori to cecr Exclusive Immediate to
Condition Codes
eori to sr Exclusive OR Immediate to
Condition Codes
move move Move
movea Move Address
moveq Move Quick
move to ccr Move to Condition Codes
move to sr Move to Status Register
move from sr Move from Status Register
move to usp Move to User Stack Pointer
neg neg Negate
negx Negate with Extend
or or Logical OR
ori OR Immediate
ori to ccr OR Immediate to Condition
Codes
ori to sr OR Immediate to Status
Register
sub sub Subtract
suba Subtract Address
subi Subtract Immediate
subg Subtract Quick
subx Subtract with Extend

End of Appendix D

All Informaticn Pre2senced Hers

i3 Propristary "o 2igital Research

)

Appendix E
Error Messages

This appendix lists the error messages returned by the internal
components of CP/M-68K and by the CP/M-68K programmer's utilities.
The sections are arranged alphabetically by the name of the internal
component or utility. The error messages are listed alphabetically
within each section, with explanations and suggested user responses.

‘

E.1l AR68 Error Messages

The CP/M-68K Archive Utility, AR68, returns two types of fatal
error messages: diagnostic and logic. Both types of fatal error
messages are returned at the console as they occur.

E.1l.1 Patal Diagnostic Error Messages

The AR68 errors are listed below in alphabetic order with
explanations and suggested user responses.

Table E-1. FPatal Diagnostic Error Messages

Message Meaning

filename not in archive file

The object module indicated by the
variable “"filename” is not in the library.
Check the filename before you reenter the
command line.

cannot create filename

The drive code for the file indicated by
the variable "filename” is invalid, or the
disk to which AR68 is writing is full.
Check the drive code. If it is valid, the
-disk is full. Erase unnecessary files, if
any, or insert a new disk before you
reenter the command line.

All Information Presented Fer2 is 2Proprietary o Z:igizal Research

CP/M-68K Programmer's Guide E.1l AR68 Error Messages

Table E-1. (continued)

Message Meaning

cannot open filename

The file indicated by the variable
"filename®™ cannot be opened because the
filename or the drive code is incorrect.
Check the drive code and the filename
before you reenter the command line.

invalid option flag: X

The symbol, letter, or number in the
command line indicated by the variable "x"
is an invalid option. Refer to the
section of this manual on AR68 for an
explanation of the command line optionms.
Specify a valid option and reenter the
command line.

not archive format: filename

The file indicated by the variable
"filename®™ is not a library. Ensure that {
you are using the correct filename before
you reenter the command line.

not object file: filename

The file indicated by the variable
*"filename®™ is not an object file, and
cannot be added to the library. Any file
added to the library must be an object
file, output by the assembler, AS68, or
the compiler. Assemble or compile the
file before you reenter the AR68 command
line.

one and only one of DRTWX flags required

The AR68 command line requires one of the
D, R, T, W, or X commands, but not more
than one. Reenter the command line with ’
the correct command. Refer to the section x
of this manual on AR68 for an explanation
of the AR68 commands.

AL) Irformation Prasented Here .s Proprietarv te Digital Research

c e m— o ——————— e i o e e s e e s [ot e e ooty v e = A o e i % e o s o

P
\

~,

p—ag

CP/M-68K Programmer's Guide E.1 AR68 Error Messages

Table E-~1. (continued)

Message Meaning

filename not in library

The object module indicated by the
variable "filename” is not in the library. _
Ensure that you are requesting the
filename of an existing object module
before you reenter the command line.

Read error on filename

The file indicated by the variable
"filename” cannot be read. This message
means one of three things: the file
listed at "filename” is corrupted; a
hardware error has occurred; or when the
file was created, it was not correctly
written by AR68 due to an error in the
internal logic of AR68.

Cold start the system and retry the
operation. If you receive this error
message again, you must erase and recreate
the file. Use your backup file, if you
maintained one. If the error. reoccurs,
check for a hardware error. If the error
persists, contact the-place you purchased
your system for assistance. You should
provide the following information:

® Indicate which version of the operating
system you are using.

® Describe your system's hardware
configuration.

® Provide sufficient information to
reproduce the error. Indicate which
program was running at the time the
error occurred. If possible, you
should also provide a disk with a copy
of the program.

temp file write error

The disk to which AR68 was writing the
temporary file is full. Erase unnecessary
files, if any, or insert a new disk before
you reenter the command line.

All

Informaticn 2rasented .-

[
1}
"
®
]
u
[V}
[a]
[®)
‘g
~
]
17
{1
1]
[}
ir
O
@)
'J
[V ¥}
14
ot
| #]
t
wJ
1}
un
1)
fu
re
QO
o3

159

CP/M-68K Programmer's Guide E.1 AR68 Error Messages

Table E-1l. (continued)

Message Meaning

usage: AR68 DRTWX{AV][F D:] [OPMOD] ARCHIVE OBMOD1l (OBMOD2...]) [>filespec]

This message indicates a syntax error in
the command line. The correct format for
the command line is given, with the
possible options in brackets. Refer to
the section in this manual on AR68 for a

more detailed explanation of the command
line.

Write error on filename

The disk to which AR68 is writing the file
indicated by the variable “filename" is
full. Erase unnecessary files, if any, or

insert a new disk before you reenter the
command line.

E.1l.2 AR68 Internal Logic Error Messages

This section lists messages indicating fatal errors in the
internal logic of AR68. If you receive one of these messages,
contact the place you purchased your system for assistance. You
should provide the following information:

1) Indicate which version of the operating system you are
using.
2) Describe your system's hardware configuration.

3) Provide sufficient information to reproduce the error.
Indicate which program was running at the time the error
occurred. If possible, you should also provide a disk with
a copy of the program.

cannot reopen filename

seek error on library

Seek error on tempname

Unable to re-create--library is in filename

Note: for the above error, "Unable to re-create--library is in
filename,” you should rename the temporary file indicated by the
variable "filename.® AR68 used the library to create the temporary

file and then deleted the library in order to replace it with the
updated temporary file. This error occurred because AR68 cannot

e e g v s+ s e e

R

C?/M-68K Programmer's Guide E.1 AR68 Error Messages

write the temporary f£ile back to the original location. The entire
library is in the temporary file.

E.2 AS68 Error Messages

The CP/M-68K assembler, AS68, returns both nonfatal, diagnostic
error messages and fatal error messages. Fatal errors stop the
assembly of your program. There are two types of fatal errors:
user-recoverable fatal errors and fatal errors in the internal logic
of AS68.

E.2.1 AS68 Diagnostic Error Messages

Diagnostic messages report errors in the syntax and context of
the program being assembled without interrupting assembly. Refer to
the Motorola 16-Bit Microprocessor User's Manual for a full
discussion of the assembly language syntax.

Diagnostic error messages appear in the following format:

& line no. error message text

The ampersand (&) indicates that the message comes from AS68. The
"line no." indicates the line in the source code where the error
occurred. The "error message text"™ describes the error. Diagnostic
error messages are printed at the console after assembly, followed
by a message indicating the total number of errors. In a printout,
they are printed on the 1line preceding the error. The AS68
diagnostic error messages are listed below in alphabetic order.

Table E-2. AS68 Diagnostic Error Messages

Message Meaning

& line no. backward assignment to *

The assignment statement in the line
indicated illegally assigns the location
counter (*) backward. Change the location
counter to a forward assignment and
reassemble the source file. /

& line no. bad use of symbol

A symbol in the source line indicated has
been defined as both global and common. A
symbol can be either global or common, but
not both. Delete one of the directives
and reassemble the source file. -

All In: ar7 Iz Jizizcal Research

(&1
0]
21
3]
[V
(44
'l
0
o)
(V]
(]
(1]
n
1]
o
or
[
o}
13}
®
[a}
14
[4

1)
'y
"
O
8
n
)

v
Y

161

B L ———

Ccp/M-68K Programmer's Guide E.2 AS68 Error Messages

Table E-2. (continued)

Message Meaning

& line no. constant required

An expression on the line indicated
requires a constant. Supply a constant
and reassemble the source file.

& line no. end statement not at end of source

The end statement must be at the end of
the source code. The end statement cannot
be followed by a comment or more than one
carriage return. Place the end statement
at the end of the source code, followed by
a single carriage return “only, and
reassemble the source file.

& line no. illegal addressing mode

The instruction on the line indicated has

an invalid addressing mode. ‘Provide a

valid addressing mode and reassemble the
- . source file.

& line no. illegal constant

The line indicated contains an illegal
constant. Supply a valiad constant and
reassemble the source file.

& line no. illegal expr

The line indicated contains an illegal
expression. Correct the expression and
reassemble the source file.

& line no. illegal external

The line indicated illegally contains an
external reference to an 8-bit guantity.
Rewrite the source code to define the
reference locally or use a l6-bit
reference and reassemble the source file.

VR

CP/M-68K Programmer's Guide E.2 AS68 Error Messages

Table E-2. (continued)

Message Meaning

& line no. 1illegal format

An expression or instruction in the line
indicated is illegally formatted. Examine
the line. Reformat where necessary and
reassemble the source file.

& line no. illegal index register

The line indicated contains an invalid
index register. Supply a valid reglster
and reassemble the source file. '

& line no. 1illegal relative address

An addressmg mode spec:.fied is not valid
for the instruction in the line indicated.

Refer to the Motorola 16-Bit
Micr_o_gtocessor User's Manual for valid
register modes for the specified
instruction. Rewrite the source code to
C use a valid mode and reassemble the file.

& line no. 1illegal shift count

The instruction in the line indicated
shifts a quantity more than 31 times.
Modify the source code to correct the
error and reassemble the source file.

& line no. illegal size .
The instruction in the line indicated
requires one of the following three size
specifications: b (byte), w (word), or 1
(longword) . Supply the correct size
specification and reassemble the source
file.

C & line no. illegal string

The line indicated contains an illegal
. string. Examine the line. Correct the
string and reassemble the source file.

\

All Information Presentad Here is Proprietary to Digital Research

163

CP/M—-68K Programmer's Guide

wable E-2. {(continued)

Message

Meaning

& line no.

illegal text delimiter

The text delimiter in the line indicated
is in the wrong format. Use single quotes
(*text') or double guotes ("text®") to
delimit the text and reassemble the source
file.

& line no.

illegal 8-bit displacement

The line indicated illegally contains a
displacement larger than 8-bits. Modify
the code and reassemble the source file.

& line no.

illegal 8-bit immediate

The line indicated illegally contains an
immediate operand larger than 8~bits. Use
the 16- or 32-bit form of the instruction
and reassemble the source file.

& line no.

illegal 16-bit displacement

The line indicated illegally contains a
displacement larger than l6-bits. Modify
the code and reassemble the source file.

line no.

f

illegal 16-bit immediate

The line indicated illegally contains an
immediate operand larger than l6-bits.
Use the 32-bit form of the instruction and
reassemble the source file. '

& line no.

invalid data 1list

One or more entries in the data list in
the line indicated is invalid. Examine
the line for the invalid entry. Replace
it with a valid entry and reassemble the
source file. '

E.Z2 ASb8 Error Messages

)

CP/M-68K Programmer's Guide

Table E~2. (continued)

Message

Meaning

& line no.

invalid first operand

The first operand in an expression in the
line indicated is invalid. Supply a valid
operand and reassemble the source file.

& line no.

invalid instruction length

The instruction in the 1line indicated
requires one of the following three size
specifications: b (byte), w (word), or 1
(longword). Supply the correct size
specification and reassemble the source
file.

& line no.

invalid label

A required operand is not present in the
line indicated, or a label reference in
the line is not in the correct format.
Supply a valid label and reassemble the
source file. . : L

& line no.

invalid opcode

The opcode in the line indicated is
nonexistent or invalid. Supply a valid
opcode and reassemble the source file.

& line no.

invalid second operand

The second operand in an expression in the
line indicated is invalid. Supply a valid
operand and reassemble the source file.

& line no.

label redefined

This message indicates that a label has
been defined twice. The second definition
occurs in the line indicated. Rewrite the
source code to specify a unique label for
each definition and reassemble the source
file.

All Information Presented Here is Provrietary o Digital Research

165

E.2 AS68 Error Messages

CP/M-68K Programmer's Guide E.2 AS5b8 Error messages

Table E-2. {continued)

Message Meaning

& line no. missing)

An expression in the line indicated is
missing a right parenthesis. Supply the
missing parenthesis and reassemble the
source file.

& line no. no label for operand

An operand in the 1line indicated is
missing a 1label. Supply a label and
reassemble the source file.

& line no. opcode redefined

A label in the line indicated has the same
mnemonics as a previously specified
opcode. Respecify the label so that it
does not have the same spelling as the
mnemonic for the opcode. Reassemble the
source file.

& line no. register required

The instruction in the line indicated
requires either a source or destination
register. Supply the appropriate register
and reassemble the source file.

& line no. relocation error

An expression in the line indicated
contains more than one externally defined
global symbol. Rewrite the source code.
Either make one of the externally defined
global symbols a local symbol, or evaluate
the expression within the code.
Reassemble the source file.

& line no. symbol required

A statement in the line indicated requires
a symbol. Supply a valid symbol and
reassemble the source file.

™

St LR

=/t won riuyiLawmer s Gulae E.2 AS68 Error Messages

Table E-2. (continued)

Message ~ Meaning

& line no. undefined symbol in equate -

One of the symbols in the equate directive
in the 1line indicated is undefined.
Define the symbol and reassemble the
source file.

& line no. undefined symbol

The line indicated contains an undefined
symbol that has not been declared global.
Either define the symbol within the module
or define it as a global symbol and
reassemble the source file.

E.2.2 User-recoverable Fatal Error Messages

Described below are the fatal error messages for AS68. When an
érror occurs because the disk is full, AS68 creates a partial file.

You should erase the partial file to ensure that you do not try to
link it. :

Table E~3. User-recoverable Fatal Error Messages

Message Meaning

& cannot create init: AS68SYMB.DAT

AS68 cannot create the initialization file
because the drive code is incorrect or the
disk to which it was writing the file is
full. If you used the =-S switch to
redirect the symbol table to another disk,
check the drive code. If it is correct,
the disk is full. Erase unnecessary
files, if any, or insert a new disk before
you reinitialize AS68. Erase the partial
file that was created on the full disk to
ensure that you do not try to link it.

& expr opstk overflow

An expression in the 1line indicated
contains too many operations for the
operations stack. Simplify the expression
before you reassemble the source code.

-

All Infcrmation Presented Here is 2ropriestary “o Digital Research

167

e e e e U ——

-—— -- - e w g e —————— o~ —— o w o SO WY Adle e Ph VAL OUDUY SO

Table E-3. (continued)

Message Meaning

& expr tree overflow

The expression tree does not have space
for the number of terms in one of the
expressions in the indicated line of
source code. Rewrite the expression to
use fewer terms before you reassemble the
source file.

& I/0 error on loader output file

The disk to which AS68 was writing the
loader output file is full. AS68 wrote a
partial file. Erase unnecessary files, if
any, or insert a new disk and reassemble
the source file. Erase the partial file
that was created on the full disk to
ensure that you do not try to link it.

& 1/0 write error on it file

The disk to which AS68 was writing the o
intermediate text file is full. AS68
wrote a partial file. Erase unnecessary
files, if any, or insert a new disk and
reassemble the source file. Erase the
partial file that was created on the full
disk to ensure that you do not try to link
it.

& it read error itoffset= no.

The disk to which AS68 was writing the
intermediate text file is full. ASé68
wrote a partial file. The variable

* "Itoffset= no." indicates the first zero-
relative byte number not read. Erase
unnecessary files, if any, or insert a new
disk and reassemble the source file.
Erase the partial file that was created on
the full disk to ensure that you do not
try to link it.

)

-~

11 Infermation Presented Here 1c Proprietary to Digital Research

l68

Lf/m—uon rrogrammer s Gulde E.2 AS68 Error Messages

Table E~3. (continued)

Message Meaning

& Object file write error

The disk to which AS68 was writing the
object file is full. AS68 wrote a partial
file. Erase unnecessary files, if any, or
. insert a new disk and reassemble the
source file. Erase the partial file that
was created on the full disk to ensure
that you do not try to link it.

& line no. overflow of external table

The source code uses too many externally
defined global symbols for the size of the
external symbol table. Eliminate some
externally defined global symbols and
reassemble the source file.

& Read Error On Intermediate File: ASXXXXn

The disk to which AS68 was writing the
intermediate text file ASXXXX is full.
- AS68 wrote a partial file. The variable
"n" indicates the drive on which ASXXXX is
- located. Erase unnecessary files, if any,
or insert a new disk and reassemble the
source file. Erase the partial file that
was created on the full disk to ensur
that you do not try to link it. ‘

& symbol table overflow

The program uses too many symbols for the
symbol table. Eliminate some symbols
before you reassemble the source code.

& Unable to open file filename

The source filename indicated by the
variable *filename®™ is invalid or, has an
invalid drive code or user number. Check
the filename, drive code, and user number.
Respecify the command line before you
réeassemble the source file.

All Information Presented Sere is frooristary %o Digital Research

169

CP/M-68K Programmer's Guide

Table E-3. (continued)

E.2 AS68 Error Messages

Message

Meaning

&

Unable to open input file

The filename in the command line indicated
does not exist, or, has an invalid drive
code or user number. Check the filename,
drive code, and user number. Respecify
the command line before you reassemble the
source file.

Unable to open temporary file

Invalid drive code or the disk to which
AS68 was writing is full. Check the drive
code. If it is correct, the disk is full.
Erase unnecessary files, if any, or insert
a new disk before you reassemble the
source file.

Unable to read init file: AS68SYMB.DAT

The drive code or user number used to
specify the initialization file is invalid
or the assembler has not been initialized.
Check the drive code and user number.
Respecify the command line before you
reassemble the source file. If the
assembler has not been initialized, refer
to the section in this manual on AS68 for
instructions.

P

&

Write error

on init file: AS68SYMB.DAT

The disk to which AS68 was writing the
initialization file is full. AS68 wrote a
partial file. Erase unnecessary files, if
any, or insert a new disk and reassemble
the source file. Erase the partial file
that was created on the full disk to
ensure that you do not try to link it.

&

write error

on it file

The disk to which AS68 was writing the
intermediate text is full. AS68 wrote a
partial file. Erase unnecessary files, if
any, or insert a new disk. Erase the
partial file that was created on the full
disk to ensure that you do not try to link
it. Reassemble the source file.

m

e e - ety | om e s mme s

~forma-.on Presented Here 15 Proprietary to Di

18}

ital Research

)

()

CP/M-68K Programmer's Guide E.2 AS68 Error Messages

BE.2.3 AS68 Internal Logic Error Messaqges

This section lists messages indicating fatal errors in the
internal logic of AS68. If you receive one of these messages,
contact the place you purchased your system for assistance. You
should provide the information below.

1) Indicate which version of the operating system you are
using.

2) Describe your system's hardware configuration.

3) Provide sufficient information to reproduce the error.
Indicate which program was running at the time the error
occurred. If possible, you should also provide a disk with
a copy of the program.

Errors:

& doitrd: buffer botch pitix=nnn itbuf=nnn end=nnn

& doitwr: it buffer botch

& invalid radix in oconst

& 1i.t. overflow

& it sync error itty=nnn

& seek error on it file

& outword: bad rlflg

E.3 BDOS Error Messages

The CP/M-68K Basic Disk Operating System, BDOS, returns fatal
error messages at the console. The BDOS error messages are listed
below in alphabetic order with explanations and suggested user
responses.

All Infcrmation 2Prasencza

[o!
1l
(]
"
1]
-
w0
'
"
Q
'g
"
’—A
1]
ct
w
Lo
e
(34
O
(9
"
S
+
ot
[¥]
b
v
n
1]
W
re
Q
oy

CP/M-68K Programmer's Guide E.3 BDOS Error Messages

Table E—-4. BDOS Error Messages

Message Meaning

CP/M Disk change error on drive x

The disk in the drive indicated by the
variable ®"x" is not the same disk the
system logged in previously. When the
disk was replaced you did not enter a
CTRL-C to 1log in the current disk.
Therefore, when you attempted to write to,
erase, or rename a file on the current
disk, the BDOS set the drive status to
read-only and warm booted the system. The
current disk in the drive was not
overwritten. The drive status was
returned to read-write when the system was
warm booted. Each time a disk is changed,
you must type a CTRL-C to log in the new
disk.

CP/M Disk file error: filename is Read-Only.
Do you want to: Change it to read/write (C),
or Abort (A)?

You attempted to write to, erase, or
rename a file whose status is Read-Only.
Specify one of the options enclosed in
parentheses. If you specify the C option,
the BDOS changes the status of the file to
read-write and continues the operation.
The read-only protection previously
assigned to the file is lost.

If you specify the A option or a
CTRL~C, the program terminates and CPM-68K
returns the system prompt.

CP/M Disk read error on drive x
Do you want to: Abort (A), Retry (R), or Continue
with bad data (C)?2

BDOS. This message indicates a hardware
error. Specify- one of the options
enclosed in parentheses. Each option is
described below.

-

All Infcrmation Presented Here 1s Proprietary to Digital Research

172

Y

®

CP/M-68K Programmer's Guide E.3 BDOS Errcr Messages

Table E-4. (continued)

Message Meaning

Option Action

A or CTRL~C Terminates the operation and
CP/M-68K returns the system

prompt.

R Retries the operation. 1If
the retry fails, the system
reprompts with the option
message.

Cc Ignores the error and
continues program
execution. Be careful if
yYyou use this option.
Program execution should
not be continued for some
types of programs. For
example, if you are
updating a data base and
receive this error but
continue program execution,
you can corrupt the index
fields and the entire data
base. For other programs,
continuing program
execution is recommended.
For example, when you
transfer a long text file
and receive an error
because one sector is bad,
you can continue
transferring the file.
After the file 1is
transferred, review the
file, and add the data that
was not transferred due to
the bad sector.

CP/M Disk write error on drive x
Do you want to: Abort (A), Retry (R), or
Continue with bad data (C)?

BDOS. This message indicates a hardware
error. Specify one of the options
enclosed in parentheses. Each option is
described below.

All Information Presented Here is Proprietary to Digital Research

173

e et e e~ s

CP/M-68K Programmer's Guide

E.3 BDOS Error Messages

Table E-4. (continued)

Message Meaning

Option Action

A or CTRI-C Terminates the operation and
CP/M-68K returns the system

prompt.

R Retries the operation. 1If

. the retry fails, the system
reprompts with the option
message.

(o Ignores the error and
continues progranm
execution. Be careful if
you use this option.
Program execution should
not be continued for some
types of programs. For
example, if you are
updating a data base and
receive this error but
continue program execution,
you can corrupt the index
fields and the entire data

- base. For other programs,-
continuing program
execution is recommended.
For example, when you
transfer a long text file
and receive an error
because one sector is bad,
you can continue
transferring the file.
After the file \is
transferred, review the
file, and add the data that
was not transferred due to
the bad sector.

CP/M Disk select error on drive x
Do you want to: Abort (A), Retry (R)

There is no disk in the drive or the disk
is not inserted correctly. Ensure that
the disk is securely inserted in the
drive. If you enter the R option, the
system retries the operation. If you
enter the A option or CTRL-C the program
terminates and CPM-68K returns the system

prompt.

-9 2
Ha o

Iinformation Cresented Here 1is Proprietarv to Digitzl Research
- -

174

e e e e e -

&

CP/M-68K Programmer's Guide E.3 BDOS Error Messages

Table E-4. (continued)

Message Meaning

CP/M Disk select error on drive x

The disk selected in the command line is
outside the range A through P. CP/M-$8K
can support up to 16 drives, lettered A
through P. Check the documentation
provided by the manufacturer to find out
which drives your particular system
configuration supports. Specify the
correct drive code and reenter the command
line.

E.4 BIOS Error Messages

The CP/M-68K BIOS error messages are listed below in alphabetic
order with explanations and suggested user responses.

Table E-5. BIOS Error Messages

Message Meaning

C g BIOS ERROR -- DISK X NOT SUPPORTED

The disk drive indicated by the variable
"X" is not supported by the BIOS. The
BDOS supports a maximum of 16 drives,
lettered A through P. Check the
manufacturer's documentation for your
system configuration to find out which of
the BDOS drives your BIOS implements.
Specify the correct drive code and reenter
the command line.

BIOS ERROR -- Invalid Disk Status

The disk controller returned unexpected or
incomprehensible information to the BIOS.
Retry the operation. If the error
persists, check the hardware. If the
error does not come from the hardware, it
is caused by an error in the internal
- logic of the BIOS. Contact the place you
C purchased your system for assistance. You
should provide the information below.

All Information Presented Here is Proprietary to Digital Research

175

[PPSO

CP/M-68K Programmer's Guide E.4 BIOS Error Messages

Table E-5. (continued)

Message

Meaning

1) Indicate which version of the operating
system you are using.

2) Describe your system's hardware
configuration.

3) Provide sufficient information to
reproduce the error. Indicate which
program was running at the time the
error occurred. If possible, you
should also provide a disk with a copy
of the progranm.

E.5 CCP Error Messages

of error messages at the console:

The CP/M-68K Console Command Processor, CCP, returns two types
diagnostic and internal logic

error messages.

E.5.1 Diagnostic Error Messages

The CCP error messages are listed below in alphabetic order

with explanations and suggested user responses.

Table E-6. CCP Diagnostic Error Messages

-

Message

Meaning

bad relocation

information bits

This message is a result of a BDOS Program
Load Function (59) error. It indicates
that the file specified in the command
line is not a valid executable command
file, or that the file has been corrupted.
Ensure that the file is a command file.
Section 3 of this manual describes the
format of a command file. If the file has
been corrupted, reassemble, or recompile
the source file, and relink the file
before you reenter the command line.

""\\

CP/M-68K Programmer's Guide E.5 CCP Error ﬁ:ésages

Table E-6. (continued)

Message Meaning

File already exists

This error occurs during a REN command.
The name specified in the command line as
the new filename already exists. Use the
ERA command to delete the existing file if
you wish to replace it with the new file.
If not, select another filename and
reenter the REN command line.

insufficient memory or bad file header

This error could result from one of three
causes:

1) The file is not a valid executable
command file. Ensure that you are
requesting the correct file. This
eérror can occur when you enter the
filename before you enter the command
for a utility. Check the appropriate
section of this manual or the CP/M=-68K

ting System User's Guide for the
correct command syntax before you
reenter the command line. If you are
trying to run a program when this
error occurs, the program file may
have been corrupted. Reassemble or
recompile the source file and relink
the file before you reenter the
command line.

2) The program is too large for the
available memory. Add more memory
boards to the system configuration, or
rewrite the program to use less
memory. .

3) The program is linked to an absolute
location in memory that cannot be
used. The program must be made
relocatable, or linked to a usable
memory location. The BDOS Get/Set TPA
Limits Punction (63) returns the high
and low boundaries of the memory space
that is available for loading
programs.

All Information Presented Here is Proprietary to Digital Research

177

CP/M-68K Programmer's Guide

E.5 CCP BError messages

Table E-G. (continued)

Message Meaning

No file

The filename specified in the command line
does not exist. Ensure that you use the
correct filename and reenter the command
line.

No wildcard filenames

The command specified in the command line
does not accept wildcards in file
specifications. Retype the command line
using a specific filename.

read error on program load

This message indicates a premature end-of-
file. The file is smaller than the header
in formation indicates. Either the file
header has been corrupted or the file was
only partially written. Reassemble, Or
recompile the source file, and relink the
file before you reenter the command line.

SuB file not found

The file requested either does not exist,
or does not have a filetype of SUB.
Ensure that you are requesting the correct
file. Refer to the section on SUBMIT in
the CP/M~-68K gerating System User's Guide
for information on creating and using
submit files.

Ssyntax: REN newfile=oldfile

The syntax of the REN command line is
incorrect. The correct syntax is given in
the error message. Enter the REN command
followed by a space, then the new
filename, followed immediately by an
equals sign (=) and the name of the file
you want to rename.

+
ja
’—
O
]
H
ot
yl
o]
[
‘g
r
11
0
(D
o |
ot
M
(o))
at
(1]
La]
1)
}.J
n
rd
"
0]
&}
"
H
M
B
(3]
o
ot
(e]
o
[WH
Vo]
...‘.
ct
W
Pt
v
wn
M
oY)
(a1
Q
o

.~

7™

CP/M-68K Programmer's Guide E.5 CCP Error Messages

Table E-6. (continued)

Message Meaning

Too many arguments: argument?

The command line contains too many
arguments. The extraneous arguments are
indicated by the variable "argument."
Refer to the CP/M-68K Operating System
User's Guide for the correct syntax for
the command. Specify only as many
arguments as the command syntax allows and
reenter the command line. Use a second
command line for the remaining arguments,
if appropriate.

User # range is [0-15]

The user number specified in the command
line is not supported by the BIOS. The
valid range is enclosed in the square
brackets in the error message. Specify a
user number between 0 and 15 (decimal)
when you reenter the command line.

)

E.5.2 CCP Internal Logic Error Messages

The following message indicates an undefined failure of the
BDOS Program Load Function (59).

Program Load Error
If you receive this message, contact the place you purchased your
system for assistance. You should provide the information below.
1) Indicate which version of the operating system you are
using. .
2) Describe your system's hardware configuration.
3) Provide sufficient information to reproduce the error.
Indicate which program was running at the time the error

occurred. If possible, you should also provide a disk with
a copy of the program.

()

etary to Digital Research

P

All Informacion Presentad Here is Proor

179

e .- vy —

CP/M-68K Programmer's Guide E.6 DDT-68K Error Messages

E.6 DDT-68K Error Messages
The CP/M-68K debugger, DDT-68K, returns two types of error

messages: nonfatal diagnostic error messages and fatal errors in the
internal logic of DDT-68K.

E.6.1 Diagnostic Error Messages
Diagnostic error messages are returned at the console as the

error occurs., The DDT-68K error messages are listed below in
alphabetic order with explanations and suggested user responses.

Table E-7. DDT-68K Diagnostic Error Messages

Message Mean ing

Bad or nonexistent RAM at HEX no.

This error occurs in response to a Set
(S), Set Wword (SW), or Set Longword (SL)
command. The message indicates one of two
things.

"1) The memory location at "HEX no." is
read-only, an I/0 port, or
nonexistent. Use another location.

2) The memory location is damaged. Check
the hardware.

Bad relocation bits

This message is returned from the BDOS
Program Load Function (59), and means one
of two things:

l) The command file has been corrupted.
Rebuild the file. Reassemble or
recompile the source file, and relink
the file before you reenter the DDT-
68K command line. :

h g £ - - =y - - 3 . - 3
All Information Presented Hers 1s Propriecary tc Digital Research

- - - § = ——— - -— ——— —- - - — - Twes e w wm cow Yy W

Table B-7. (continued)

Message Meaning

2) The file is linked to an absolute
location ih memory that is already
occupied by DDT-68K. Link the file to
another location: DDT-68K occupies
approximately 20K of memory, and
resides at the highest addresses
within the TPA. The recommended
location for linking your file is the
base address of the TPA + 100E. BDOS
Function 63, Get/Set TPA Limits,
returns the high and low boundaries of
the TPA. '

Cannot create file

This error occurs during a Write (W)
command. The disk to which DDT-68K is
writing has no more directory space
available: in effect, the disk is full.
If you have another drive available,
reenter the Write (W) command and direct
the file to the disk on that drive. 1If
you do not have another drive available,
you must exit DDT-68K (and lose the
contents of memory). Erase unnecessary
files, if any, or insert a new disk.

Cannot open file

This error occurs during a Read (R)
command. It indicates an incorrect user
number, drive code, or filename. Check
the user number, drive code, and filename
before you reenter the command line.

Cannot open program file

This message occurs in response to a Load
for Execution (E) command. It indicates
an incorrect user number, drive code, or
filename. Check the user number, drive
code, and filename before you reenter the
command line.

All Information 2resentad Here 15 Proorietary to Digital Research

181

CP/M-68K Programmer's Guide E.6 DDT-68K Error Messages

Table E~-7. (continued)

Message Meaning

ERROR, no program or file loaded

This error message occurs in response to a
Value (V) command when you specify the
command but no file is loaded. Load a
file before you reenter the V command.
The file can be loaded with a ILoad for
Execution (E) or Read (R) command, or by
specifying the filename when you invoke
DDT-68K.

File too big -- read truncated

This message occurs during a Read (R)
command when the file being read is too
large to fit in memory. DDT-68K reads
only the portion of the file that can be
read into the existing memory. To debug
this program, additional memory boards
must be added to the system configuration.

File write error

The disk to which DDT-68K is writing is
full or the disk contains a bad sector.
Retry the command. If the error persists,
and you have another disk drive available,
redirect the output to the disk on that
drive. If you do not have another drive
available, you must exit DDT-68K. Use the
STAT command to check the space on the
disk. If it is full, erase unnecessary
files, if any, or insert a new disk.
Because the contents of memory are lost
when you exit DDT-68K, you must reload the
file in memory. If the disk was not full,
it has a bad sector. You should replace
the disk.

A1l Information Presented

Y

CP/M-68K Programmer's Guide E.6 DDT-68K Error Messages

Table E-7. (continued)

Message Meaning

**jllegal size field -

, This error occurs during a List (L)
- command. The size field of the
instruction being disassembled has an
illegal value. Use a Display (D) command
to display the location of the error.
This error could be caused by one of three
things:

1) The memory location being disassembled
does not contain an instruction.
Ensure that the area selected is an
instruction. If not, reenter the L

. command with a correct location.

2) The size field of the instruction has
been corrupted. Use the debugging
commands in DDT-68K to look for an
error that causes the program to
overwrite itself. Refer to the
section in this manual on DDT-68K for
a complete description of the DDT-68K

C. commands and options.

3) An invalid instruction was generated by
the compiler or assembler used to
create the progranm. Recompile or
reassemble the source file before you
reinvoke DDT-68K.

Insufficient memory or bad file header

This message occurs in response to a Load
for Execution (E) command. The error
could be caused by one of three things:

)

All Information Presented Here is Proprisctary Lo Jigital Research

CP/M-68K Programmer's Guide E.6 DDT-68K Error Messages

Table E~7. (continued)

Message Meaning

1) The system you are using does not have
enough memory available. Ensure that
the program and DDT-68K £it into the
TPA. Exit DDT-68K. Use the SIZE68
Utility to display the amount of space
your program occupies in memory. DDT-
68K is approximately 20K bytes. The
BDOS Get/Set TPA Limits FPunction (63)
returns the high and low boundaries of
the TPA. If you do not have
sufficient space in the TPA to execute
your command £file and DDT-68K
simultaneously, additional memory
boards must be added to the system
configuration.

2) The file is not a command file or has a
corrupted header. If the command file
does not run, but you are sure that
your memory space is adequate, use the
R command to look at the file and
check the format. You may be trying
to debug a file that is not a command
file. If it is a command file, the

header may have been corrupted.
Reassemble or recompile the source
file before you reenter the E command
line. If the error persists, it may
be caused by an error in the internal
logic of DDT-68K. Contact the place
you purchased your system for
assistance. You should provide the
information below. o

7N

a. Indicate which version of the
operating system you are using.

b. Describe your system's hardware
configuration.

c. Provide sufficient information to
reproduce the error. Indicate
which program was running at the
time the error occurred. If
possible, you should also provide a
disk with a copy of the program.

VN

All Informac.on Presented Here ic Proprietarcy to Digital Research

184

s ——— i e minn o o ———— -

O

CP/M-68K Programmer's Guide

Table E-7. (coantinued)

E.6 DDT-68K Error Messages

Message

Meaning

3) The command file you are debugging is
linked to an absolute location in
memory that is already occupied by
DDT-68K. DDT-68K is approximately 20K
bytes, and usually resides in the
highest addresses of the TPA. The
recommended location for linking your
file is the base address of the TPA +
100H. The BDOS Get/Set TPA Limits
Function (63) returns the high and low
boundaries of the TPA. '

Read error

This message may indicate one of three
things. Try the operation again. If the
error persists, try the responses
indicated:

‘1) A write error at the time the file was

Created. You must recreate the file.
If the error reoccurs, or if you
cannot write to the disk, the disk is
bad. ’ '

- 2) A bad disk. Use PIP or COPY to copy

the file from the bad disk to a new
disk. Any files that cannot be copied
must be recreated or replaced from
backup files. Discard the damaged
disk.

3) A hardware error. If the error
persists, check' your hardware.

unknown opcode

This error occurs in response to a List
(L) command if the memory location being
disassembled does not contain a valid
instruction. The error may have been
caused by one of three things:

185

CP/M-68K Programmer's Guide E.6 DDT-68K Error Messages

Table E-7. (continued)

Message Meaning

1) You gave the L command the wrong
address. Reenter the L command with
the correct address. ’

2) The file is not a command file. Ensure
that the file you specify is a command
file and reenter the L command.

3) The command file has been corrupted.
Reassemble or recompile the source
file before you reread it into memory
with a Load for Execution (E) or Read
(R) command, as appropriate. If the
problem persists, use the debugging
commands in DDT-68K to look for an
error in the program that causes it to
overwrite itself. Refer to the
section in this manual on DDT-68K for
a complete description of the DDT-68K
commands and options.

B.6.2 DDT-68K Intermal Logic Error Messages
This section lists fatal errors in the internal logic of DDT-
68K. If you receive one of these messages, contact the place you

purchased your system for assistance. You should provide the
information below.

1) Indicate which version of the operating system you are
using. .

2) Describe your system's hardware configuration.

3) Provide sufficient information to reproduce the error.
Indicate which program was running at the time the error
occurred. If possible, you should also provide a disk with
a copy of the program.

Errors:

illegallinstruction format #

Unknown program load error

LY 1 T & - T 5 ; 3 iy
1l Iinformecion Pressnted Here it Proprietary to Digital Research

LN

9

&

CP/M-68K Programmer's Guide E.7 DUMP Error Messages

E.7 DUMP Error Messages
DUMP returns fatal, diagnostic error messages at the console.

The DUMP error messages are listed below in alphabetic order with
explanations and suggested user responses.

Table E-3. DUMP Error Messages

Me ssage Meaning

Unable to open filename

Either the drive code for the input file
indicated by the variable "filename"™ is
incorrect, or the filename is misspelled.
Check the filename and drive code before
You reenter the DUMP command line.

Usage: dump [-shhhhhh] file

The command line syntax is incorrect. The
- correct syntax is given in the error
message. Specify the DUMP command and the
- filename. - If -you want to ‘display the
contents of the file from a specific
address in the file, specify the =S option
followed by the address. Refer to the
section in-this manual on the DUMP Utility
for a discussion of the DUMP command line

and options.

E.8 LO68 Error Messages

The CP/M-68K Linker, LO68, returns two types of fatal error
messages: diagnostic and logic. Both types of fatal error messages
have the following format:

¢ error message text

The colon (:) indicates that the error message comes from LO68. The
"error message text" describes the error.

E.8.1 Fatal Diagnostic Error Messages

A fatal diagnostic error prevents your program from linking.
When the error is caused by a full disk, erase the partial file that
LO68 created on the disk that received the error to ensure that you
do not use the file. The LO68 diagnostic errors are listed below in
alphabetic order with explanations and suggested user responses.

All Information Presented Zere is Preoprietary =o Jigital Research

187

< ——————r— o —

CP/M-68K Programmer's Guide E.8 LO68 Error Messages

eable E-9. LO68 Fatal piagnostic Error Messages

Message Meaning

: duplicate definition in p,filename

The symbol indicated by the variable "p"
is defined twice. The variable "filename”
indicates the file in which the second
definition occurred. Rewrite the source
code. Provide a unique definition for
each symbol and reassemble or recompile
the source code before Yyou relink the
file.

(1]

file format error: filename

The file indicated by the variable
"filename" is either not an object file or
the file has been corrupted. Ensure that
the file is an object file, output by the
assembler or compiler. Reassemble oOr
recompile the file before you relink it.

(1]

Filg Format Error: Invalid symbol flags = flags

LO68 does not recognize the symbol flags
indicated by the variable "flags." The
file 1068 read is either not an object
file or it has been corrupted. Ensure
that the file is an object file, output by
the assembler or compiler. Reassemble or
recompile the file before you relink it.

: File Format Error: jnvalid relocation flag in filename

The contents of the file indicated by the
variable "filename®" are incorrectly
formatted. The file either is not an
object file or has been corrupted. Ensure
that the file is an object file, output by
the assembler or compiler. If the file is
an object file but this error occurs, the
file has been corrupted. Reassemble oOr
recompile the file before you relink it.

All Information presentel Here

.l
0w
rd
(R
[¢)
g
"
[
(1]
(1
fv
[a]

1]
or
(@]
(W)
(¥
1
[X3
(R}
fv
' '
i
n
(1]
[}
(A
0N
¥y

13

188

o o————— o — v

@

CP/M-68K Programmer's Guide E.8 LO68 Error Messages

Table E-3. (continued)

Message Meaning

: File Format Error: no relocation bits in filename

The file indicated by the variable
"filename"” either is not an object file or
has been corrupted. Ensure that the file
is an object file, output by the assembler
or compiler. If the file is an object
file but this error occurs, then the file
has been corrupted. Reassemble or
recompile the file before you relink it.

: Illegal option p

The option in the command line indicated
by the variable "p” is invalid. Supply a
valid option and relink.

Invalid 1068 argument list |

This message indicates format errors or
invalid options in the command line.
Examine the command line to locate the
error. Correct the error and relink.

: output file write error

The disk to which LO68 is writing is full.
Erase unnecessary files, if any, or insert
a new disk before you reenter the LO68
command line.

read error on file: filename

The object file indicated by the variable
"filename," does not have enough bytes.
The file either is incorrectly formatted
or has been corrupted. This error is
commonly caused when the input to LO68 is
a partially assembled or compiled object
file. The assembler, AS68, and some
compilers create partial object files when
they receive the "disk full abor t®" message
while assembling or compiling a file.
Ensure that the file is a complete object
file. Reassemble or recompile the file
before you relink it.

All Information Presented Here is Propriectary to Digital Research

189

CP/M-bBK Programmer-s uliae . £.5 LUOS LIIOr messayes

Table E-9. {continued)

Message Meaning

: symbol table overflow

The object code contains too many symbols
for the size of the symbol table. Rewrite
the source code to use fewer symbols.
Reassemble or recompile the source code
before you relink the file.

Unable to create filename

Either the output file indicated by
“filename"” has an invalid drive code, or
the disk to which LO68 is writing is full.
Check the drive code. If it is correct,
the disk is full. Erase unnecessary
files, if any, or insert a new disk before
you reenter the 1068 command line.

unable to open filename

The filename indicated by the variable
"filename"” is invalid, or the file does
not exist. Check the filename before you
reenter the.LO68 command line.

Unable to open temporary file: filename

Either the file, indicated by *filename"”,
has an invalid drive code, specified by
the "f" option, or the disk to which LO68
is writing is full. Check the drive code.
If it is correct, the disk is full. Erase
unnecessary files, if any, or insert a new
disk before you reenter the 1068 command
line. .

: Undefined symbol(s)

The symbol or symbols which are listed one
per line on the lines following the error
message are undefined. Provide a valid
definition and reassemble the source code
before you reenter the LO68 command line.

7 "

()

CP?/M-68K Programmer's Guide

E.8 LO68 Error Messages

2.8.2 LO68 Internal Logic Error Messages

This section lists messages indicating fatal errors in the
internal logic of LO68. If you receive one of these messages,
contact the place you purchased your system for assistance. You

should
1)

2)
3)

Errors:

(1)

.
-

.
.

provide the information below.

Indicate which version of the operating system you are
using.

Describe your system's hardware configuration.
Provide sufficient information to reproduce the error.
Indicate which program was running at the time the error

occurred. If possible, you should also provide a disk with
a copy of the program.

asgnext botch

finalwr: text size error

relative address ove;flqwhat_lx in sn

seek error on file filename
short addréés overflow in filename

unable to reopen filename

BE.9 HNHM68 Error Messages

NM68 returns fatal diagnostic error messages at the console.
The NM68 error messages are listed below in alphabetic order with
explanations and suggested user responses.

Aill Incfcrmation Present2d Here i3 2ropriecarv o Digital Research

CP/M=-0BK Programmer's Guiae L.¥Y DNMOY LIIOI MEeSsages

Table E-10. RKM68 Error Messages

Message Meaning

file format error: filename

The input file indicated by the variable
"filename" is neither an object file nor a
command file. This message can also
indicate a corrupted file. NM68 prints
the symbol table of an object file or a
command file. Ensure that the file is one
of these types of file. If the file is an
object or command file and you receive
this message, the £file is corrupted.
Rebuild the file with the compiler or
assembler. If the file is a command file,
relink it. Reenter the NM68 command line.

read error on file: filename

The input file indicated by the variable
"filename" is truncated. Rebuild the file
with the compiler or assembler. If the
file is a command file, relink it.
Reenter the NM68 command line.

unable to open filename

The filename indicated by the variable
"filename"™ is incorrect. Check the
spelling of the filename and reenter the
command line.

Usage: nmé68 objectfile

The command line syntax is incorrect. Use
the syntax given in the error message and
reenter the command line.

E.10 RELOC Error Messages -

The Relocation Utility (RELOC) returns fatal error messages at
the console. RELOC error messages are listed below in alphabetic
order with explanations and suggested user responses. s

Paun

~ 3

All Information Presented

Lr/MmToon rrogrammer-s wulae k.LU RELOC Error Messages

Table E-11. RELOC Error Messages

Message Meaning

create filename

Either the drive code for the output file
indicated by the variable "filehame" is
incorrect, or the disk to which RELOC is
writing is full. Check the drive code.

. If it is correct, the disk is full. Erase
unnecessary files, if any, or insert a new
disk before you reenter the RELOC command
line. «

Cannot open filename

The input file indicated by the variable
“filename"” does not exist. Ensure that
you type the correct filename when you
reenter the RELOC command line.

Cannot re-open filename

This error message indicates a hardware
error. Check the hardware for errors.
This error most often occurs in the disk,
disk drive, or memory. :

File format error: filename

This error occurs because the first word
in the header record of the command file
must contain the value 601AH and the file
must contain relocation bits. If your
file does not meet these criteria, you
cannot use RELOC.

1) The file indicated by the variable
"filename” is not a command file with
contiguous program segments (the first
word in the header record is 601AH).
If the file is an object file, link it
before you reenter the RELOC command
line.

2) The file does not have relocation bits
because it is already linked to an
absolute location. Use the original
source file that contains relocation
bits with RELOC.

All
< el

Infcrnation Presented Fere I3 Propriezazy i3 Digital Research

193

- — e g < o S e m———

CP/M-68K Programmer's Guide E.10 RELOC Error Messages

Table E-11. {continued)

Message Meaning

Illegal base address=hex no.

The odd base address indicated by the
variable "hex no." is invalid under CP/M-
68K. Base addresses must be even.
Specify an even base address and reenter
the RELOC command line.

Illegal option: X

The option specified for the RELOC command
must be -b. The invalid option is
indicated by the variable "x". Replace
the invalid option with -b and reenter the,
RELOC command line.

Illegal reloc = x at address

This message may indicate one of two -
things:

1) The command file is truncated or
corrupted. RELOC recognized the error -
because the relocation value indicated
by the variable "x" is invalid. The
variable "address" indicates the
location in memory of the invalid
relocation value. Rebuild the file.
Reassemble, or recompile, and relink
the file before you reenter the RELOC
command line. ~

2) The file has no relocation bits. Use
the original source code with
relocation bits and try again.

Read error on filename

The input file indicated by the variable

"filename® is truncated or corrupted..
Rebuild the file. Reassemble, or

recompile, and relink the file before you -
reenter the RELOC command line.

CP/M-68K Programmer's Guide E.1l0 RELCC Error Messages

Table E-11. (continued)

Message Meaning

l6-bit overflow at address

L The address indicated by the variable
"address"™ cannot contain a l6-bit
quantity. Source code that uses 1l6-bit
offsets must fit in the first 64K bytes of
memory. BDOS Function 63, Get/Set TPA
Limits, returns the high and low
boundaries of -the memory available for
loading programs. SIZE68 displays the
amount of memory space a program occupies.
Use the Get/Set TPA Limits Function and
SIZE68 to ensure that the program fits in
the first 64K of memory. If the program
does not fit, you must rewrite the source
code to use 32-bit offsets.

Usage: reloc -bhhhhhh input output
-where: hhhhhh is new base address
input is relocatable file
output is absolute file

4 This message indicates a syntax error in
e the RELOC command line. The correct
syntax is given in the error message.
Retype the command line with the correct
syntax. Refer to the section in this
manual on the RELOC Utility for more
detailed information on the command line
syntax.

Write error on filename Offset = x data = x error = x

The disk to which RELOC is writing is
full. Erase unnecessary files, if any, or
insert a new disk before you reenter the
RELOC command line.

E.1ll1 SENDC68 Error Messages

SENDC68 returns two types of fatal error messages: diagnostic
N and internal logic error messages.

N

All Information Prasentad Hers i3 Proprietarv 0 DJigital Research

195

e ————— e e e g ————

CP/M-68K Programmer's Guide E.1l1 SENDC68 Error Messages

E.1l1.1 Diagnostic Error Messages

The SENDC68 diagnostic error messages are listed below in

alphabetic order with explanations and suggested user responses.

Table E-12. SENDC68 Diagnostic Error Messages

Message Meaning

file format error: filename

The file indicated by the variable
"filename" is not a command file. The
file input to SENDC68 must be a command
file, output by the linker (LO68). Ensure
that the file specified is a command file.

read error on file: £filename

The file indicated by the variable
"filename” is truncated. Rebuild the file
by recompiling or reassembling, and relink
it before you reenter the SENDC68 command
line.

" unable to create filename

This message indicates an invalid drive
code for the output file indicated by the
variable "“filename". It can also mean
that the disk to which SENDC68 is writing
js full. Check the drive code. If it is
correct, the disk is full. Erase
unnecessary files, if any, or insert a new
disk before you reenter the SENDC68
command line.

unable to open filename

The input file indicated by the variable
“filename® does not exist. Check the
filename and retype the SENDC68 command
line.

Usage: sendc68 [-] commandfile [outputfile]

This message indicates a syntax error in
the SENDC68 command line. The correct
- syntax is given in the error message.
Retype the command line using the correct
syntax.

A1l Information Presented Here is Proprietary to Digital Research

196

7N

{

C

CP/M-68K Programmer's Guide E.11 SENDC68 Error Messages

E.1l.2 SEHDCG8 Internal Logic Error Messages

The following is a fatal error in the internal logic of
SENDCS68.

INTERNAL LOGIC ERROR: seek error on file filename

If you receive this message, contact the place you purchased your
system for assistance. You should provide the information below.

1) Indicate which version of the operating system you are
using.

2) Describe your system's hardware configuration.

3) Provide sufficient information to reproduce the error.
Indicate which program was running at the time the error

occurred. If possible, you should also provide a disk with
a copy of the program.

E.12 SIZE68 Error Messages
SIZE68 returns fatal, diagnostic error messages at the console.

The SI ZE68 error messages are listed below in alphabetic order with
explanations and suggested user responses. , ’

Table E~13. SIZE68 Error Messages

Message Meaning

File format error: filename

The file indicated by the variable
"filename" is neither an object file nor a
command file. SIZE68 requires either an
object file, output by the assembler or
the compiler, or a command file, output by
the 1linker. Ensure that the file
specified is one of these and reenter the
SIZ2E68 command line.

read error on filename

The file indicated by the variable
“filename™ is truncated. Rebuild the
file. Reassemble or recompile, and relink
the source file before you reenter the
SIZE68 command line. .

All Information Presented Here is Proprietary to Digital Research

197

CP/M=-o0BK rProgrammer-s suiae Dedd DilblLOO DilVL MEDdDIAYTS

Table E-13. (continued)

Message

Meaning

unable to open filename

Either the drive code is incorrect, or the
file indicated by the variable "filename"”
does not exist. Check the drive code and
filename. Reenter the SIZE68 command

line.

End of Appendix E

(

functions and additional

. Appendix F
New Functions and Implementation Changes

CP/M-68K has six new Basic Disk Operating System
implementation changes in the BDOS

(BDOS)

functions and data structures that differ from other CP/M systems.

Table P-1. New BDOS Functioas

Function Number
Get Free Disk Space 46
Chain to Program 47
Flush Buffers 48
Set Exception Vector 61
Set Supervisor State 62
Get/Set TPA Limits 63

F.1l BDOS Function and Data Structure Changes

Implementation changes in CP/M-68K BDOS functions and
data structures are described in the following table:

Table P-2. BDOS Punction Implementation Changes

Implementation
Change

BDOS Function Number
Return Version Number 12
Reset Disk System 14
Open File 15

Get Disk Parameters 31

Contains the version
number 2022H indicating
CP/M-68K Version 1l.1l.

Does not log in disk drive
A when it resets the disk
system.

Opens a file only at
extent 0, the base
extent.- -

Returns a copy of the Disk
Parameter Block (DPB).

All

Informaticon Presentad Here 1is

wr/m=oon rroyrammer - -S suliae

Table F-3.

el

pUUS function cnanges

BDOS Data Structure Implementation Changes

Structure Implementation

Change

Base Page

File Control Block

Additional information has been

added. The base page is no
longer located at a fixed
address. Appendix C outlines the
structure of the base page.

The byte sequence for the Random

Record Field has changed. The
most significant byte (r0) 1is
first and the least significant
byte (r2) is last.

F.2 BDOS FPunctions Not Supported By cP/M~-68K

The list below contains function
by other CP/M systems, but that are no

s and commands suppor ted
t supported by CP/M-68K.

Table F-4. BDOS Functiomns Not Supported by CP/M-68K
BDOS Function Number
Get Address of Allocation Vector 27
Set DMA Base+ 51
Get DMA Base+ 52
Get Maximum Mémo:y* 53
Get Absolute Memory* 54
Allocate Absolute Memory* 55
Free Memory* 56
Free All Memory* 57

The 68000 microprocessor

does not have a segmented

architecture. Therefore, functions involving segment
registers are not relevant to CP/M-68K.

* CP/M-68K does not have memory management functions.

DDT-68K does not support the Assemble (A) command.

End of Appendix F

srmation Presented Here s Propriezary zc Digital Research

200

‘-._,/v

Index

A

A command (AR68), 117
a user stack, 10
absolute file, 122
absolute origin directive
(org): 102
access operating system, 2
additional serial I/0
functions, 72
address, 7
address errors, 89
AR68, 3, 113
commands, 115
error messages, 157
errors, 122
archive utility (AR68), 3, 113
AS68, 3
assembly language, 104
error messages, l61
instruction set, 153
invoking, 95, 104
assembler (AS68) operation,
” 95 7
assemgly language directives,
9

assembly language extensions,
106

auxiliary input, 72, 141
auxiliary output, 73, 141

-Baddress (L068), 113
bad vector error, 89
base page, 2, 10, 87, 151
Basic Disk Operating System
(BDOS), 1, 12
Basic I/0 System (BIOS), 1, 12
.bass directive, 108
BDOS, 1
functions, 23
direct console I/0, 66
error messages, 171
invoking, 24
organization of, 25
output console function, 2S
parameters, 24

system reset function, (0), 12

201

BIOS, 1
error messages, 175
functions, 141.
parameter block (BPB), 84
return code, 84
block storage segment (bss), 7
branch instructions, 108
bsr instruction, 108
bss, 7
bss directive, 98
built-in commands,” 9
bus errors, 89

Cc
ccp, 1, 86
CDPB, 59

chain to program function, 82
character I/O functions, 62
close file function, 32, 43
cold start loader, 1
command file format, 2, 15
command tail, 11 :
common directive (comm), 98, 107
compute file size function, 48
conditional directives, 101
Conin function, 141
Conout function, 141
console buffer, 69
Console Command Processor
(Ccp), 1, 12
console I/0 functions, 64-65
Const function, 141
CP/M-68K,
architecture, 1
commands, 3, 4
default memory model, 13
file specification, 5
operating system, 1
terminology, 7
- text editor, 4
CPM.SYS file, 1
CPU, state of, 139
current default disk numbers,
56

D
D (Display) command (DDT-68K),

131
D command (AR68), 115

~Daddress (L068), 113
data directive, 98, 108
data segment, 7
DDT-68K, 3
command conventions,
command summary, 130
error messages, 180
operation, 129
terminating, 130
define constant directive
(dec), 98
define storage directive (ds),
99
delete file function, 35
delimiter characters, 5
DIR*, 4
direct BIOS call function, 84
diregt console 1I/0 function,
6
DIRS*, 4
disk
change error, 28, 57
directory, 33
file error, 28, 30
read error, 28
select error, 28
write error, 28
DMA buffer, 41
DPB, 59
drive functions, 52
drive select code, 5
DUMP, 3, 113, 120
DUMP :
error messages, 187
invoking, 120
output, 121

129

E (Load for Execution) command
(DDT-68K), 132 ‘
editing control functions, 69

end directive, 100

endc directive, 100

equate directive (equ), 100

ERA*, 4

error messages
AR68 fatal,
AS68, 161
BDOS, 171
BIOS, 175
DUMP, 187
LO68, 187
NM68, 191

157

180

202

RELOC, 192
SENDC68, 195
SIZE 68, 197
errors,
address, 89 o
AR68, 120 7
bus, 89 ‘)
even directive, 102, 100
exception functions, 87
exception handler, 88, 89
exception parameter block
(EPB), 88
exception vectors, 1, 12, 88
exiting transient programs, 1ll

F

F (Fill) command (DDT-68K),
132

-F option (L068), 1lll

file access functions, 25

file attributes, 43

File Control Block (FCB), 26

file processing errors, 28

file size, 48

file structure, 1
file system access, 2
file loading, 10

O

filetype fields, 5 .
141

flush buffers function, 83,
free sector count, 62
function code, 85
functions-

‘BDOS, 23

console, 63

G

G (Go) command (DDT-68K), 133

get address of disk parameter
block, 60

get console status function, 71

get disk free space function, 62

get disk parameters function, 59

get I/0 byte function, 76, 141

get memory region table
address function, 141

get or set user code, 81 ..

get Read-Only vector function, A;“>
58 ‘

get/set TPA limits, 92
.globl directive, 108

H

H (Hexadecimal Math) command
(DDT-68K), 133

header, 15

home function, 141

I

I (Input Command Tail) command
(DDT-68K), 133

'I/0 byte functions, 74

I/0 functions

character, 62

direct console, 66
-I option (L068), 112
init function, 141
initial stack pointer, 87
instruction set summary,
’ (AS68), 153
invoking AR68, 113
invoking ASé68, 104
invoking BDOS functions, 25
invoking DUMP, 120
invoking RELOC, 122
invoking SIZE68, 124
IOBYTE, 74

J
jsr instruction, 108
L

L (List) command (DDT-68K),
134, 141
line editing controls, 70
linker (L068) operation, 109
List
function, 141
output function, 74
Listst function, 141
Lo68, 3
error messages, 187
load parameter block (LPB),
85, 86
loading a program in memory,
0 ,

logical console device, 64,
69, 89

logical list device (LIST), 74

login vector, 55

longword, 7

203

M (Move) command (DDT-68K),
134

make file function, 39

message filename (L068), 114

multiple programs, loading, 10

nibble, 7

NM68
error messages, 191
utility, 3

o
object filename option (L068),
111 -

offset directive, 7, 102
-0 option (L068), 112

open file function, 31, 43
operating system access, 2
options, AR68, 117

P

page directive, 102
physical file size, 48
PIP, 4 ‘ o
print string function, 68
printer switch, 65
program control functions, 77
program counter (PC), 133,
138
program execution
tracing of, 136
program load function, 85, 87
program load parameter block
(LPB), 20
program segments, 10, 15 .
program
loading, 10
programming tools and
commands, 2
programming utilities, 113

R

R (Read) command (DDT-68K),
135

R command (AR68), 116

random record field and
number, 44, 49

read console buffer function,
69
read error, 28
Read function, 141
read random function, 44
read sequential function, 36
read-only bit, 58
register mask directive, 103
RELOC error messages, 192
relocation information, 19
relocation utility (RELOC)
invoking, 4, 124, 113, 122
relocation words, 20
REN*, 4
rename file function, 40
reset disk system function, 53
reset drive function, 61
resident system extensions
(RSXs), 89
return current disk function, 56
return from subroutine (RTS), 86
return login vector function, 55
return version number function,
79
-R option (L068), 1lll
RSX, 89

S

S (Set) command (DDT-68K), 135
search for first function, 33
search for next function, 34
section directive, 103
Sectran function, 141
segment
block, 7
data, 7
text, 7 .
Seldsk function, 141
select disk function, 54
SENDC68
error messages, 195
utility, 4, 113, 126
gerial I/0 functions, 72
set direct memory access (DMA)
address function, 41
set exception vector function,
88, 141
set file attributes function,
42, 43
set I/0 byte function, 77, 141
set random record function,
49, 50
set supervisor state, 91
Set/Get user code, 81

204

Setdma function, 141
Setsec function, 141
Settrk function, 141
shift instruction, 108
SIZE68
error messages, 197
output, 124
utility, 4, 126
-S option (LO068), 1lll
sparse files, 48
start scroll, 65
status register, 138
stop scroll, 65
SUBMIT*, 4
supervisor stack and state, 91
symbol table, 15, 17
printing, 19
symbol type, 18
system control functions, 77
system reset function, 78
system stack pointer, 138
system state, 89
system/program control
functions, 77

T

-Taddress (L068), 113

T (Trace) command (DDT-68K),
136

T command (AR68), 118

tab characters, 64

terminating DDT-68K, 130

text directive, 108

text directive, 103

text segment, 7

TPAB parameters field, 93

transient command, 9

transient program area
(TPA), 92

transient programs, 2

exiting, 11 -
Trap 2 instruction, 25
TYPE*, 4

1]

-Umodname option (L068), 112

U (Untrace) command (DDT-68K),
136 :

user number, 81

user stack pointer, 138

USER*, 4

-

v

V (Value) command (DDT-68K),
137

V option (AR68), 115, 118-121

vector number and values, 88

version dependent programming,
79

version numbers, 79

return, 80
virtual file size, 48

W

W (Write) command (DDT-68K),
137
W command (AR68), 119
warm boot function, 141
wildcards, 6, 31
word, 7
write
error, 28
function, 141
protect disk function, 57
random function, 46
sequential function, 37, 38

X

X (Examine CPU State) command
(DDT-68K), 139

X command (AR68), 122

-X option (L068), 112

2

-Zaddress (L068), 113

205

