CP/M-68K™
Operating System
System Guide

Copyright © 1983

Digital Research
P.0. Box 579
167 Central Avenue
Pacific Grove, CA 93950
(408) 649-3896
TWX 910 360 5001

[8

All Rights. Reserved

ot e —— gt s m———————

- COPYRIGHT

Copyright © 1983 by Digital Research. All rights
reserved. No part of this publication may be
reproduced, transmitted, transcribed, stored in a
retrieval system, or translated into any language or
computer language, in any form or by any means,
electronic, mechanical, magnetic, optical, chemical,
manual or otherwise, without the prior written
permission of Digital Research, Post Qffice Box 579,
Pacific Grove, California, 93950.

DISCLAIMER

Digital Research makes no representations or
warranties with respect to the contents hereof and
specifically disclaims any implied warranties of
merchantability or fitness for any particular
purpose. PFurther, Digital Research reserves the
right to revise this publicatica and to make changes
from time to time in the content hereof without
obligation of Digital Research to notify any person
of such revision or changes.

TRADEMARKS

CP/M and CP/M-86 are registered trademarks of
Digital Research. CP/M-80, CP/M-68K, DDT, and MP/M
are trademarks of Digital Research. Motorola
MC680Q00 is a registered trademark of Motorola,
Incorporated. EXORmacs, EXORterm, and MACSbug are
trademarks of Motorola, Inc. VAX/VMS is a trademark
of Digital Equipment Corporation. UNIX is a
trademark of Bell Laboratories. TI Silent 700
Terminal is a registered trademark of Texas
Instruments, Incorporated.

The CP/M-68K Operating System System Guide was
prepared using the Digital Research TEX Text
Formatter and printed in the United States of
America. C

PRRLERAR AR LER LRV LIRNARAARNR ARSI RRRRY

* Pirst Edition: January 1982 *

i i 2 s 2 sl 2l-2 222222 2222222222 2)

. .
[N :
AR . “ B
L amilees.s s tm&wmw-«oﬁw

-

CP/M-68K™™- QOperating System Release Notes
February 22, 1983

S-RECORD SYSTEMS
Either of the two S-record varsions of CP/M-68K included in this release
may be combined with a user-su:plied BICS in order to obtain a working
CP/M-68K operating system ac discussed in the System Guide. In addition to
the information given there, you need to know the size and entry points of
the S-record systems. The two S-record system files are discussed sepafately
in the following paragraphs. i, ,
SR400.SYS resides in memory locations 400H to SODFH. You should patch it
by placing the 32-bit address of your BIGS's _init entry point at memory loca-
tions4F98H to 4F9BH. Your BIOS can Warm Boot by jumping to 4F9CH.

—P= SR128K.SYS resides in memory locaticns 15000H to 1A9FFH. You should patch

it by placing the 32-bit address of your BIOS'S _init entry point at memory.
locations 19898H to 19B9BH. Your BIOS can Warm Boot by jumping to 19B9CH.

8UGS

0 The CPM.SYS file on disk 2 of the distribution system was intended to work
with a floppy disk EXCRmacs ™ system. In fact, it does not.
AS68 will not operate properly when the disk it is using is full. ‘
if you have trouble with AS68, it is likely that you'did not initialize
it. See the Programmer's Guide for more information.. _ T
] DDT sets up an inccrrect command tail when the program under test is
specified on the CCP command line invoking DDT rather than using the
E and I commands in DDT. '

CP/M-68K is a trademark of Digital Research.
EXORmacs is a trademark of Motorola.

- o e T Ly T b A b L T T e @ T ARRZNY
~ . - e e e 3 - m e - E

R i sl i db e dh L N S S

TN
)

-

Foreword

CP/M-68K™ is a single-user general purpose operating system.

It is designed for use with any disk-based computer using a Motorola®

MC68000 or compatible processor. CP/M-68K is modular in design, and
can be modified to suit the needs of a particular installation.

The hardware interface for a particular hardware environment is
supperted by the OEM or CP/M-68K distributor. Digital Research
sSupports the user interface to CP/M-68K as documented in the C2/M~
68K_Operating System User's Guide. Digital Research does not
Support any additions or modifications made to CP/M-68K by the OEM
or distributer.

Purpose and Audieace

This manual is intended to provide the information needed by a
Systems programmer in adapting CP/M-68K to a particular hardware
environment. A substantial degree of programming expertise is
assumed on the part of the reader, and it is not expected that
typical users of CP/M-68K will need or want to read this manual.

Prerequisites amd Related Publicatioms

In addition to this manual, the reader should be familiar with
the architecture of the Motorola MC68000 as described in the
Motorola l16-Bit Microprocessor User's Manual (third edition), the

"CP/M=-68R User's and Programmer's Guides, and, of course, the details

Oof the hardware environment where CP/M-68K is to be implemented.

Eow This Book is Organized

Section 1 presents an overview of CP/M-68K and describes its
major components. Section 2 discusses the adaptation of CP/M-=68K
for your specific hardware systam. Section 3 discusses bootstrap
procedures and related information. Saction 4 describas each BIOS
function including entry parameters and return values. Section 5
describes the process of creating a BIOS for a custom hardware
interface. Section 6 discusses how to get CP/M® working for the
first time on a new hardware environment. Section 7 describes a
procedure for causing a command to be automatically executed on cold
boot. Section 8 describes the PUTBOOT utility, which is useful in
generating a bootable disk.

Appendix A describes the contents of the CP/M=-68K distribution
disks. ' Appendixes B, C, and D are listings of various BIOSes.
Appendix E contains a listing of the PUTROOT utility program.
Appendix P describes the Motorola S-record representation for
prograns. i

iii

Table of Contents

1l System Overview

) 1.1 Introduction
1.2 CP/M-68K Organization
1.3 Memory Layout «
1.4 Console Command Processor . ; . . .
1.5 Basic Disk Operating System (BDOS) .
1.6 Basic I/0 System (BIOS)
(1.7 I/ODevices « ¢ v
1.7.1 Character Devices
1.7.2 Character Devices
1.8 System Generation and Cold Start Operation .
P 2 System Generation
k ' 2.1 Overview .'. © s e e o o o o o .

2.2° Creating CPM.SYS

2.3

Relocating Utilities . . .

3 Bootstrap Procedures

3.1 Bootstrapping Overview . .

3.2 Creating the Cold Boot Loader

3.2.1 Writing a Loader BIOS
3.2.2 Building CPMLDR.SYS °

4 BICS Puncticons

4.1 Introduction

.

U e W W

wn

10

10
11

13

| Table of Céntents

(continued)

Creating a BIOS
5 . l OVQIView L] L d Ll o L] . L] L] L]

5.2 Disk Definition Tables . .

5.2.1 Disk Parameter Hzader

5.2.2 Sector Translate Table

5.2.3 Disk Parameter Block
5.3 Disk Blocking Guide

A Simple Approach
Some Refinements .
Track Buffering .
LRU Replacement .
The New Block Flag

v onn
Wwwww
¢« o o s 8
Ul = W

¢ o o o o

o & e & o

L] ° L] [] L]

e & o o o

e o o o o

Installing and Adapting the Distributed BIOS

6.1l Overview . . o ¢ ¢ ¢ « o &

6.2 Booting on an EXORmacs . .

L

e * o o o
o & o o o
. L] [] . [
e & o o o
e & 9 * o
e« ® o o o
e & o o o

and CP/M=-68K

L4 Ll L] L2 . © L 4

6.3 Bringing up CP/M-68K Using S-record Files

Cold Boot Automatic Cosmand Execution

7.1l OVErview . ¢ ¢ ¢ o o o o o

3

L] . . o e . .

7.2 Setting up Cold Boot Automatic Command Execution . .

The PUTBOOT Utility

8 ° l PUTBOOT opera tion . [. . [[- e . . [[. L] . . ° .

8.2 Invoking PUTBOOT

vi

. . . L] . 3 .

49
49
50

51
51

53
s3

P

Appendixes

A Contents of Distribution Disks . . e e o o o o W

- B Sample BIOS Written in Assembly Language
C Sample Loader BIOS Written in Assembly Language

D EXORmacs BIOS Written in C e e o o

E PUTBOOT Utility Assembly Language Source . - .

P The Motorola S-record Format “ e e e

FP.l S-record Format « o o o

F.2 S-record Types e e e . W

G CP/M‘GSK EIL’OC Messages e & o & o & o o o e e e

vii

S5

59

67

73

101

107

107
108

109

et e o cmm—— e -

Tables and Figures

CP/M-68K Te tms L] . . o L L] L]

"BIOS Register Usage

BIOS Functions

CP/M-68K Logical Devzce Chacactetxstzcs

I/0 Byte Field Definitions .

L]

Disk Parameter Header Elements

Disk Parameter Block Fields
BSH and BIM Values
EXM Values . ¢ « o o ¢ o o o
Distribution Disk Contents .

S-Record Pield Contents . .
S-Record Types . . « ¢ « « o«

CP/M=-68K Error Messages . .

CpP/M-68K Interfaces

.

Typical CP/M-68K Memory Layout

Memory Region Table Format .
I/0 Byte Fields

Disk Parameter Header . .

Sample Sector Translate Table

Disk Parameter Block

S-Reference Pields

viii

.

* L] L]

©

L]

e o o o

¢ & o o

e © o ©

14
14
33
34

40
42
44
45
55

107
109

109

32
34

40

42
107

N

Section |
System Overview

1.1 Introductionm

CP/M-68K is a single-user, general purpose operating system
for microcomputers. based con the Motorola MC68000 or equivalent
microprocessor chip. It is designed to be adaptable to almost any
hardware environment, and can be readily customized for particular
hardware systems.

CP/M-68K is equivalent to other CP/M systems with changes.
dictated by the 68000 architecture. In particular, CP/M=-68K
supports the very large address space of the 68000 family. The
CP/M~-68K file system is upwardly compatible with CP/M-80™ version
2.2 and CP/M-86® Version l.l1. The CP/M-68K file structure allows
files of up to 32 megabytes per file. CP/M~-68K supports .from one
to sixteen disk drives with as many as 512 megabytes per drive.

The entire CP/M-68K operating system resides in memory at all
times, and is not reloaded at a warm start. CP/M-68K can be
configured to reside in any portion of memory above the 68000
exception vector area (0H to 3FFH). The remainder of the address
space is available for applications programs, and is called the
transient program area, TPA.

Several terms used’ throughout this manual are defined in
Table l-1.

g Table 1l-1l. CP/¥~-68K Terms

Ternm » Meaning

nibble 4-bit half-byte

byte 8-bit value

word 16-bit value

longword 32-bit value

address 32-bit identifier of a storage
location

offset a value dafining an address in
storage; a fixed displacement from
som: other address

All Information Presentad dere is Proprietary to Digital Researca

h /) b8 wwes w w wwese == -

Table 1-1. ({(continued)

Term ‘ Meaning

text segment ' program section containing machine '
instructions

data segment program section containing
initialized data

block .storage program section containing

segment (bss) uninitialized data

absolute describes a program which must reside

at a fixed memory address.

relocatable describes a program which includes
relocation information so it can be
loaded into memory at any address

The CP/M-68K programming model is described in detail in the

CP/M-68K Operating System Programmer's Guide. To summarize that
"model briefly, CP/M-68K supports four segments within a program: ,
text, data, block storage segment (bss), and stack. When a program)

is loaded, CP/M=-68K allocates space for all four segments in the
TPA, and loads the text and data segments. A transient program may
manage free memory using values stored by CP/M-68K in its base page.

CP/M~-68K System Guide 1.1 Introduction

USER

User Interface

(CCP)

Programming
Interface

(BDOS)

Hardware
Intecface

(BIOS)

HARDWARE ENVIRONMENT
Pigure 1l-1. CP/M~68K Iaterfaces

1.2 C?/M-68K Organizatiom

CP/M-68K comprises three system modules: the Console Command
Processor (CCP) the Basic Disk Operating System (BDOS) and the Basic
Input/Qutput System (BIOS). These modules are linked together to
form the operating system. They are discussed individually in this.
section.

1.3 Mesmory Layocut

The CP/M-68K operating system can reside anywhere in memory
except in the interrupt vector area (0H to 3FFH). The location of
CP/M-68K is defined during system generation. Usually, the CP/M-68K
operating system is placed at the top end (high address) of
available memory, and the TPA runs from 400H to the base of the

All Infcrmation Presenta2d Here is 2ropriecary o Digital Res=arch

3

S meen e v ——— . b ———— — o ————— e v v+ ——_t 1 -t e ———— - o — = —— - ia ememeim— e

operating systenm. It is possible, however, to have other
organizations for memory. For example, CP/M-68K could gc in the low
part of memory with the TPA above it. CP/M-68K could even be placed
in the middle of available memory.

However, because: the TPA must be one contiguous piece, part
of memory would be unavailable for transient programs in this case.
Usually this is wasteful, but such an organization might be useful
if an area of memory is to be used for a bit-mapped graphics device,
for example, or if there are ROM-resident routines. The BIOS and
specialized application programs might know this memory exists, but
it is not part of the TPA.

Top of -
Memory
CCP & BDOS & BIOS CP/M 68K
User Stack
Free Memory
bss TPA
Data
user
Text , pgm
005008 |
Base Page
00400H
Interrupt Vectors
00000H

Pigure 1l-2. Typical CP/M-68K Memocy Layout

l.4 Console Commsnd Processor (CCP)

The Console Command Processor, (CCP) provides the user
interface to CP/M-68K. It uses the BDOS to read user commands and
load programs, and provides several built-in user commands. It also
provides parsing of command lines entered at the console.

AllL Infcormacion 3resented Here is Proprietary to Digi:ai Researcn

4

————— v —

LN

“r/mTuon OYSTEm Quliae L.> Basic Di1skKk Operating System

1.5 Basic Disk Operating Syétén {(BDOS)

The Basic Disk Operating System (BDOS) provides operating
system services to applications programs and to the CCP. These
include character I/0, disk file I/O (the BDOS disk I/0 operations
comprise the CP/M-68K file system), program loading, and others.

1.6 Basic I/O System (BIOS)

The Basic Input OQutput System (BIOS) is the interface between
C?/M-68K and its hardware environment. All physical input and
output is done by the BIOS. It includes all physical device
drivers, tables defining disk characteristics, and other hardware
specific functions and tables. The CCP and BDOS do not change for
different hardware environments because all hardware dependencies

have been concentrated in the BIOS. Each hardware configuration .

needs its own BIOS. Section 4 describes the BIOS functions in
detail. Section 5 discusses how to write a custom BIOS. Sample
BIOSes are presented in the appendixes. ’

1.7 I/0 Devices

CP/M-68K recognizes two basic types of I/0 devices: character
devices and disk drives. Character devices are serial devices that
handle one character at a time. Disk devices handle data in units
of 128 bytes, called sectors, and provide a large number of sectors
which can be accessed in random, nonsequential, order. 1In fact,
real systems might have devices with characteristics different from
these. It is the BIOS's responsibility to resolve diffecrences
between the logical device mcdasls and the actual physical devices.

1.7.1 Chazactsrtnevices

Character devices are input output devices which accept or
supply streams of ASCII characters to the computer. Typical
character devices are consoles, printers, and modems. In CP/M-68K
operations on character devices are done one character at a time. A
character input device sends ASCII CTRL-Z (lAH) to indicate end-of-
file.

1.7.2 Character Devices

Disk devices are used for file storage. They are organized
into sectors and tracks. Each sector contains 128 bytes of data.
(If sector sizes other than 128 bytes are used on the actual disk,
then the BIOS must do a logical-to-physical mapping to simulate 128-
byte sectors to the rest of the system.) All disk I/O in CP/M-68K is

.done in one-sector units. A track is a group of sectors. The

number of sectors on a track is a constant depending on the
particular device. (The characteristics of a disk device are
specified in the Disk Parameter Block for that device. See

All Information 2Prasencad.Fere is 2rovristary %0 Zigital Researca

w

.

et VMM W M et WU AN e L/ WV UV ICEeDS

Section 5.) To locate a particular sector, the disk, track number,
and sector number must all be specified.

1.8 System Generation and Cold Start Operation

Generating a CP/M-68K system is done by linking together the
CCP, BDOS, and BIOS to create a file called CPM.SYS, which is the
operating system. Section 2 discusses how to create CPM.SYS.
CPM.SYS is brought into memory by a bootstrap loader which will
typically reside on the first two tracks of a system disk. (The
term system disk as used here simply means a disk with the file
CPM.SYS and a bootstrap loader.) Creation of a bootstrap loader is
discussed in Section 3.

End of Section 1

/

ALl Informaticn Presenced Here is Proprietary to Digital Researszh

6

- ——— - - e ———

o ;

Section 2
System Ceneration

2.1 Overview

' This section describes how to build a custom version of CP/M~-
68K by combining your BIOS with the CCP and BDOS supplied by Digital
Research to obtain a CP/M=-68K operating system suitable for your
specific hardware system. Section 5 describes how to Ccreate a BIOS.

In this section, we assume that you have access to an already
configured and executable CP/M-68K system. If you do not, you
should first read Section 6, which discusses how you can make your
first CP/M=-68K system work.

A CP/M-68K operating system is generated by using the linker,
LO68, to link together the system modules (CCP, BDOS, and BIOS).
Then the RELOC utility is used to bind the system to an absolute
memory location. The resulting file is the configured operating
system. It is named CPM.SYS.

2.2 Creating CPM.SYS"

. The CCP and BDOS for CP/M-68K are distributed in a library
file named CPMLIB. You must link your BIOS with CPMLIB using the
following command: - 4

A>LO68 -R -UCPH -O CPM.REL CPMLIB BIOS.O

where BIOS.0 is the compiled or assembled BIOS. This creates
CPM.REL, which is a relocatable version of your system. The cold
boot loader, however, can load only an absolute version of the
system, SO you must now create CPM.SYS, an absolute version of your
system. If you want your system to reside at the top of memory,
first find the size of the system with the following command:

A>SIZEG8 CPM.REL

~ This gives you the total size of the system in both decimal
and hex byte counts. Subtract this number from the highest memory
address in your system and add one to get the highest possible
address at which CPM.REL can be relocated. Assuming that the result
is aaaaaa, type this command: ’

A>RELOC -Baaaaaa CPM.REL CPM.SYS

The result is the CPM.SYS file, relocated to load at memory
address aaaaaa. If you want CPM.SYS to reside at some other memory
address, such as immediately above the exception vector area, you
can use RELCC to place the system at that address.

All Infcrmacicn Prasenzad Zerze Frogristary to Digi:dl Research

e 48 Wwes Wy weee e -

When you perform the relocation, verify that the resulting
system does not overlap the TPA as defined in the BIOS. The
boundaries of the system are determined by taking the relocation
address of CPM.SYS as the base, and adding the size of the system

- (use SIZE68 on CPM.SYS) to get the upper bound. This address range

must not overlap the TPA that the BIOS defines in the Memory Region :
Table. ' :)

2.3 Relocating Utilities

Once you have built CPM.SYS, it is advisable to relocate the
operating system utilities for your TPA using the RELOC utility.

RELOC is described in the CP/M-68K Operating System Programmecr's
Guide. This results in the utilities being absolute, rather than
felocatable, but they will occupy half the disk space and load into
memory twice as fast in their new form. You should also keep the

relocatable versions backed up in case you ever need to use them in
a different TPA.

End of Section 2

all Information Presented Here is Proprietary to Digital Research

- —— o o

R

e e e, . e @

e e

—

Section 3
Bootstrap Procedures

3.1 Becotstrapping Overview

Bootstrap loading is the process of bringing the CP/M-68K
cperating system into memory and passing control to it. Bootstrap
loading is necessarily hardware dependent, and it is not possible to
discuss all possible variations in this manual. However, the manual
presents a model of bootstrapping that is applicable to most
systems,

The mcdel of bootstrapping which we present assumes that the.
CP/M-68K operating system is to be loaded into memory from a disk in
which the first few tracks (typically the first two) are reserved
for the operating system and bootstrap routines, while the remainder
of the disk contains the file structure, consisting of a directory
and disk files. (The topic of disk organization and parameters is
discussed in Section 5.) In our model, the CP/M-68K operating
System resides in a disk file named CPM.SYS (described in Section
2), and the system tracks contain a bootstrap loader program
(CPMLDR.SYS) which knows how to read CPM.SYS into memory and
transfer control to it.

Most systems have a boot procedure similar to the following:

1) When you press reset, or execute a boot command from a
monitor ROM, the hardware loads one or more sectors
beginning at track 0, sector 1, into memory at a
predetermined address, and then jumps to that address.

2) The code that came from track 0, sector 1, and is now
executing, is typically a small bootstrap routine that
loads the rest of the sectors on the system tracks
(containing CPMLDR) into another predetermined address in
memory, and then jumps to that address. Note that if your
hardware is smart enough, steps 1 and 2 can be combined
into one step. -

3) The code loaded in step 2, which is now executing, is the
CP/M Cold Boot Loader, CPMLDR, which is an abbreviated
version of CP/M-68K itself. CPMLDR now finds the file
CPM.5YS, loads it, and jumps to it. A copy of CPM.SYS is
now in memory, executing. This completas the bootstrapping
process.

In order to create a CP/M-68K diskette that can be booted, you
need to know how to create CPM.SYS (see Section 2.2), how to create
the Cold Boot Loader, CPMLDR, and how to put CPMLDR onto your system
tracks. You must also understand your hardware enough to be able to
design a method for bringing CPMLDR into memory and executing it.

"
0

All Information Presentad Jere is P Drietary to Digital Research
) 9

3.2 Creating the Coldisoot Loader

CPMLDR is a miniature version of CP/M-68K. It contains
stripped versions of the BDOS and BIOS, with only those functions
which are needed to open the CPM.SYS file and read it into memory.
CPMLDR will exist in at least two fcrms; one form is the information
in the system tracks, the other is a file named CPMLDR.SYS which is
created by the linker. The term CPMLDR is used to refer to either
of these forms, but CPMLDR.SYS only refers to the file.

CPMLDR.SYS is generated using a procedure similar to that used
in generating CPM.SYS. That is, a loader BIOS is linked with a

loader system library, named LDRLIB, to produce CPMLDR.SYS..

Additional modules may be linked in as required by your hardware.
The resulting file is then loaded onto the system tracks using a
utility program named PUTBOOT.

3.2.1 wWriting a Loader BIOS

The loader BIOS is very similar to your ordinary BIOS; it just
has fewer functions, and the entry convention-is slightly different.
The differences are itemized below.

1) Only one disk needs to be suppor ted. The loader system
selects only drive A. If you want to boot from a drive
other than A, your loader BIOS should be written to select

that other drive when it receives a request to select drive

A. B

2) The loader BIOS is not called through a trap; the loader

BDOS calls an entry point named _bios instead. The
parameters are still passed in registers, just as in the
normal BIOS. Thus, your Function 0 does not need to
initialize a trap, the code that in a normal BIOS would be
the Trap 3 handler should have the label _bios, and you
exit from your loader BIOS with an RTS instruction instead
of an RTE. .

3) Only the following BIOS functions need to be implemented:
0 (Init) Called just once, should initialize hardware
as necessary, no return value necessary. Note that
Function 0 is called via bios with the function number
equal to 0. You do not need a separate _init entry point.

4 (Conout) Used to print error messages during boot. If
you do not want error messages, this function sbould just
be an rts.

9 (Seldsk) Called just once, to select drive 2.

10 (Settrk)

o
n
Q
[X1
(4]
1
¢}
ol
"
"
W
G
m
a
7
(V]
[oV)
o]
1]
(3)
[
-
w
J
ot
O
o
(2
.»‘.
11
o
W
(2}
~3
9]
'—4»
Vo]
.-—l.
'3}
(4]
[
2
(1
n
®
[\
"
€)
ISt

b etmmee s

N

CE/UITVOR JYO LTI U LU J.4< Lleating uwne Coia Boot Loader

11l (Setsec)
12 (Setdma)
13 (Read)

16 (Sectran)

18 (Get MRT) Not used now, but may be used in future
releases.

22 (Set exception)

4) You do not need to include an allocation vector or a check
vector, and the Disk Parameter Header values that point to
these can be anything. However, you still need a Disk
Parameter Header, Disk Parameter Block, and directory
buffer.

It is possible to use the same source code for both your normal
BIOS and your loader BIOS if you use conditional compilation or
assembly to distinguish the two. We have done this in our example
BIOS for the EXORmacs.

3.2.2 Building CPMLDR.SYS

Once you have written and compiled (or assembled) a loader
BIOS, you can build CPMLDR.SYS in a manner very similar to building
CPM.SY¥S. There is one additional complication here: the result of
this step is placed on the system tracks. So, if you need a small
prebooter to bring in the bulk of CPMLDR, the prebooter must also be
included in the link you are about to do. The details of what must
be done are hardware dependent, but the following example should
help to clarify the concepts involved.

Suppcose that your hardware reads track 0, sector 1, into memory
at location 400H when reset is pressed, then jump to 400H. Then
your boot disk must have a small program in that sector that can
load the rest of the system tracks into memory and execute the code
that they contain. Suppose that you have written such a program,
assembled it, and the assembler output is in BOOT.O. Also assume
that your loader BIOS object code is in the file LDRBIOS.O0. Then
the following command links together the code that must go on the
system tracks.

A>1o88 -s -T400 —-uldr -o cpmldr.sys boot.o ldrlib ldrbios.o

Once you have created CPMLDR.SYS in this way, you can use the

‘ PUTHOOT utility to place it on the system tracks. PUTBOOT is

described in Section 8. The command to place CPMLDR on the system
tracks of drive A is: '

A>putboot cpmldr.sys a

17}
(2}
[¢)
el
(2}
t
[1")
&
(A1
L]
o
Q
(W)
-
[Te]
]
(4]
1
]
J
1
)]
1]
W
2
0
3

All Indormacion Presented Hera s

T e e - e e @ ——— 0 = ————— -t =+ s v o —— o S——————

CP/M=68K System wuliqae ST Jd.4 Lreatiny wie LOLG DUVUL Luader

PUTBOOT reads the file CPMLDR.SYS, strips off the 28-byte
command file header, and puts the result on the specified drive.
You can now boot from this disk, assuming that CPM.SYS is on the
disk. \

End of Section 3

All Inforpation Presented Here is Proprietary to Digital Research

¢ —— ——— ey = - S— o — S < 2 e e .

I’ A

Section 4
BIOS Functions

4.1 Introdoction

All CP/M-68K hardware dependencies are concentrated in
subroutines that are collectively referred to as the Basic I/0
System (BIOS). A CP/M-68K system implementor can tailor CP/M-68K to
fit nearly any 68000 operating environment. This section describes
each BIOS function: its calling conventions, parameters, and the
actions it must perform. The discussion of Disk Definition Tables
is treated separately in Section 5.

When the BDOS calls a BIOS function, it places the function
number in register D0.W, and function parameters in registecs D1 and
D2. It then executes a TRAP 3 instruction. DO0.W is always needed
to specify the function, but each function has its own requirements
for other parameters, which are described in the section describing
the particular function. The BIOS returns results, if any, in
register DO. The size of the result depends on the particular
function.

Hote: the BIOS does not need to preserve the contents of registers.
That is, any register contents which were valid on entry to the BICS
may be destroyed by the BIOS on exit. The BDOS does not depend on
the BIOS to preserve the contents of data or address registers. Of
course, if the BIOS uses interrupts to service I/0, the interrupt
handlers will need to preserve registers.

Usually, user applications do not need to make direct use of
BIOS functions. However, when access to the BIOS is required by
user software, it should use the BDOS Direct BIOS Function, Call 50,
instead of calling the BIOS with a TRAP 3 instruction. This rule
ensures that applications remain compatible with future systems.

. The Disk Parameter Header (DPH) and Disk Parameter Block (DFB)
formats have changed slightly from previous CP/M versions to
accommnodate the 68000's 32-bit addresses. The formats are described
in Section 5.

13

Table 4-1. BIOS Register Usage

Entry Parameters:

DO.W = function code -
pl.x = first parameter e
D2.x = Second parameter

Return Values:

D0.B = byte values (8 bits)
DO.W = word values (16 bits)
DO.L = longword values (32 bits)

The decimal BIOS function numbers and the functions they
cortespond to are listed in Table 4-2.

fable 4-2. BIOS Punctions

Function

Initialization (called for cold boot)
Warm Boot (called for warm start)
Console Status (check for console
character ready) ..
Read Console Character In] f:)
Write Console Character Out "
List (write listing character out)
Auxiliary Output (write character to
auxiliary output device)

Auxiliary Input (read from auxiliary
input) :)
Home (move to track 00)

Select Disk Drive

Set Track Numberg

Set Sector Number

Set DMA Address

Read Selected Sector

Write Selected Sector

Return List Status

Sector Translate

Get Memory Region Table Address

Get I/0 Mapping Byte

Set I/0 Mapping Byte

Flush Buffecs

Set Exception Handler Address

AL> Informacion 2rasented Jera is Proprietary to Digital Research |

14

S/ AT UUR PYICTIE WU LU runction U: Initialization

FUNCTION 0: INITIALIZATION

Entry Parameters:
Register DO.W: OQOH

Returned Value:
Register DO.W: User/Disk Numbers

This routine is entered on cold boot and must initialize the
BIOS. Punction 0 is unique, in that it is not entered with a TRAP 3
instruction. Instead, the BIOS has a global label, init, which is
the entry to this routine. On cold boot, Function 0”is called by a
jsr _init. When initialization is done, exit is through an rts
instruction. Function 0 is responsible for initializing hardware if
necessary, initializing BIOS internal variables (such as IOBYTE) as
needed, setting up register DO as described below, setting the Trap

3 vector to point to the main BIOS entry point, and then exiting
with an rts.

Function 0 returns a longword value. The CCP uses this value
to set the initial user number and the initial default disk drive.
The least significant byte of DO is the disk number (0 for drive a,
1 for drive B, and so on). The next most significant byte is the
user number. The high-order bytes should be zecro.

The entry point to this function must be named _init and must
be declared global. This function is called only once from the
system at system initialization. o

Following is an example of skeletal code:

.globl _init :bios init entry point

_init:

* do any initialization here
move.l $ traphndl,$8c ;Set trap 3 handler
clr.l do ;login drive A, user 0
rts

All Information 2resenced Hera is ?reprietary <o digital Research

CP/M-68K System Guide Function 1l: Warm Boot

FUNCTION 1l: WARM BOOT

Entry Parameters:
Register DO.W: 01H ‘

Returned Value: None

This function is called whenever a program terminates. Some
reinitialization of the hardware or software might occur. When this
function completes, it jumps directly to the entry point of the CCP,
named _ccp. Note that _CCp must be declared as a global.

Following is an example of skeletal code for this BIOS

function:
.3lobl _ccp
wboot:
* do any reinitialization here if necessary
jmp _ccp

/

All Information 2rasentaed dere 1is

16

e ———— - vy e e e . L [

ey tm e mme e e wwew wm m—-e ORVY VIR PR T Y B WISV LE DCaluy

FONCTION 2: CONSOLE STATUS

Entry Parameters:
Register DO.W: 024

Returned Value:
Register DO.W: OQFFH if ready
Register DO0.W: 000CH if not ready

This function returns the status of the currently assigned
console device. It returns QOFFH in register DO when a character is

ready to be read, or 0000H in register DO when no console characters
are ready. :

All Informacion Prasenctad Here is Propristarzy o Digital Research

17

FUNCTION 3: READ CONSOLE CHARACTER

Entry Parameters: ' :)
Register DO.W: 03H

Returned Value:
Register DO.W: Character

This function reads the next console character into register
DO.W. If no console character is ready, it waxts until a character
is typed before returning.

All Information Presented Here is Propriecary to Digital Research

18

- v e e e — - - e me - w——— = e tvem mwwe PN S N g e WA L N ‘Y

FUNCTION 4: WRITE CONSOLE CHARACTER

Entry Parameters:
Register DO.W: 04H
Register D1l.W: Character

Returned Value: None

This funrnction sends the character from register Dl to the
console cutput device. The character is in ASCII. You might want
to include a delay or filler characters for a line-feed or carriage
return, if your console device requires some time interval at the
end of the line (such as a TI Silent 700 Terminal®). You can
also filter out control characters which have undesirable effects on
the console device.

All Information Presentzd Here is Proprietarv to Digital Research

19

e ——— - - - - o —— " ——

cp/M-68K System Guide “CFURNCTION 23 LISGC Ularauicsli vuLpus

FUNCTION 5: LIST CHARACTER OUTPUT

Entry Parameters: t)
Register DO.W: 05H ’
Register Dl.W: Character

Returned Value: None

This function sends an ASCII character from register D1 to the
currently assigned listing device. If your list device requires
some communication protocol, it must be handled here.

All Information Presented dere is Proprietary to Digital Reseazch

20

- e o et e e e —— .

l" "\

—~—

——r cm cmer w e weus W awS cuacLion o3

AuXiliary Output

FUNCTION 6: AUXILIARY OUTPUT

Entry Parameters:
Register DO.W: 06H
Register D1.W: Character

Returned Value:
Register DO.W: Character

This function sends an ASCII character from-register D1 to the

currently assigned auxiliary output device.

All Informaticn Prasented Here is 2rovorietary to Digital Research

W&/ ST VWAL W wmeat wie e

FUNCTION 7: AUXILIARY INPUT

Entry Parameters: .)
Register DO.W: 07H -

Returned Value:
Register DO.W: Character

This function reads the next character from the currently
assigned auxiliary input device into register DO. It reports an
end-of-file condition by returning an ASCIT CTRL-2 (1AH) .

taformation Presented dere is Proprietary to Digital Research

b
Al

22

——— e we—a

\ .
Tt

,

CP/M-68K System Guide . Function ¥: dome

FUNCTION 8: HOME N

Entry Parameters:
Register DO.W: O08H

Returned Value: None

This function returns the disk head of the currently selected
disk to the track 00 position. If your controller does not have a
special feature for finding track 00, you can translate the call to
a SETTRK function with a parameter of 0.

All Information Presented Here is 2ropriecarzy %3 Digital Research

23

CP/M=68K ay'm:em Guiae . runction ¥: Select UlsSK urive

FUNCTION 9: SELECT DISK DRIVE

Entry Parameters:
Register DO.W: 09H
Register Dl.B: Disk Drive
Register D2.B: Logged in Flag

Returned Value: _
Register DO0.L: Address of Selected
Drive's DPH

This function selects the disk drive specified in register D1
or further operations. Register D1 contains 0 for drive A, 1 for
drive B, up to 15 for drive P.

On each disk select, this function returns the address of the
selected drive's Disk Parameter Header in register DO.L. See
Section 5 for a discussion of the Disk Parameter Header.

If there is an attempt to select a nonexistent drive, this
function returns 00000000H in register DO.L as an error indicator.
Although the function must return the header address on each call,
it may be advisable to postpone the actual physical disk select
operation until an I/O function (seek, read, or write) is performed.
Disk select operations can occur without a subsequent disk
operation. Thus, doing a physical select each time this function is
called may be wasteful of time.

On entry to the Select Disk Drive function, if the least
significant bit in register D2 is zero, the disk is not currently
logged in. If the disk drive is capable of handling varying-media
.such as single- and double-sided disks, single- and double-density,
"and so on), the BIOS should check the type of media currently

installed and set up the Disk Parameter Block accordingly at this
time. ’ : -

ALl Information 2r2sentad Here is Proprietary to Digital Research

24

et cemm e i me e e im e st s eeem e e w—ees A - e - e+ e e mpee v mem e mmee— oo

et v g Bt s+ i &

wa s e Ww et W] &8s s - h WMAEW Wl WS o o LAY Ao de B v LYND A S b

FUNCTION 10: SET TRACK NUMBER

Entry Parameters:
Register DO.W: OAH
Register Dl1.W: Disk track number

Returned Value: None

This function specifies in register DO.W the disk track number
for use in subsequent disk accesses. The track number remains valid
until either another Function 10 or a Function 8 (Home) |is
performed.

You can choose to physically seek to the selected track at this
time, or delay the physical seek until the next read or write
actually occurs.

The track number can range from 0 to the maximum track number
suppor ted by the physical drive. However, the maximum track numbecr
is limited to 65535 by the fact that it is being passed as a l6-bit
quantity. Standard floppy disks have tracks numbered from 0 to 76.

AlL Znfcrmation Zra2senczed Here i1s 2roorietary o Jdigital Researzch

ey e wwes W W wsas ww wwe - WEENW WM WEE MmO D W WS W s N AT G e

FONCTION ll: SET SECTOR NUMBER

Entry Parameters: >
Register DO.W: OBH
Register Dl.W: Sector Number

Returned Value: None

This function specifies in register D1.W the sector number for
subsequent disk accesses. This number remains in effect until
either another Function 11 is performed.

The function selects actual (unskewed) sector numbers. If
skewing .is appropriate, it will have previously been done by a call
to Function 1l6. You can send this information to the controller at
this point or delay sector selection until a read or write operation
occurs.

All Information Presented Here is Proprietary to Digital Research

26

el . -t

“s/m—von Jysiom wulde Function 12: Set DMA Address

FUNCTION 12: SET DMA ADDRESS

L Entry Parameters:
Register DO.W: OCH
Register D1l.L: DMA Address

Returned Value: None

This function contains the DMA (disk memory access) address in
register D1 for subsequent read or write operations. Note that the
controller need not actually support DMA (direct memory access).
The BIOS will use the 128-byte area starting at the selected DMA
address for the memory buffer during the following read or write
operations. This function can be called with either an even or an
cdd address for a DMA buffer.

N

//"\

All Information Presented Here is Proprietary to Digital Research

27

L/ M=ooNn DysLem suiae ' TullCLaVll LJI3 neau ove vl

FUNCTION 13: READ SECTOR

Entry Parameters:
Register DO.W: ODH

Returned Value:
Register DO.W: 0 if no error
Register DO.W: 1 if physical error

After the drive has been selected, the track has been set, the
sector has been set, and the DMA address has been specified, the
read function uses' these parameters to read one sector and returns
the error code in register DO.

Currently, CP/M-68K responds only to a zero or nonzero return
code value. Thus, if the value in register DO is zero, CP/M=-68K
assumes that the disk operation completed properly. If an error
occurs however, the BIOS should attempt at least ten retries to see
if the error is recoverable.

—

All information Presented Here is Proprietary to Digital Research

28

~——

o BAlVe waLL L't WL L oG LUl

c = e — g e w e ——

FUNCTION 14 WRITE SECTOR

Entry Parameters:
Register DO.W: OEH
Register D1.W: O=normal write
l=write to a directory
sector
2=write to first sector
of new block

'Returned Value:
Register DO.W: O0=no error
l=physical error

This function is used to write 128 bytes of data from the
currently selected DMA buffer to the currently selected sector,
track, and disk. The value in register D1.W indicates whether the
write 1is an ordinary write operation or whether the there are
special considerations.

If register D1.W=0, this is an ordinary write operation. If
DL.W=1l, this is a write to a directory sector, and the write should
be physically completed immediately. If D1.W=2, this is a write to
the first sector of a newly allocated block of the disk. The
significance of this value is discussed in Section 5 under Disk
Buffering.

ALl Infcrmation Presented dere is Propristary =0 Digizal

29

. e . S cm—— - s . = e mese—e -t = ——a ter e emn - s m—— = = = ==

FONCTION 15: RETURN LIST STATUS

Entry Parameters: : ’j)
Register DO.W: OFH

Returned Value:
Register DO: 0Q0FFH=device ready
Register DO: 0000H=device not ready

This function returns the status of the list device. Register
DO contains either 0000H when the list device is not ready to accept
a character or 0QOFFHE when a character can be sent to the list
device.

All Information Presented Here is Proprietary to Digital Research

30

e e e == = -——— - - e e — ———

FUNCTION 16: SECTOR TRANSLATE

~

Entry Parameters:
Register DO.W: 1l0H
Register Dl.W: Logical Sector Number
Register D2.L: Address of Translate
Table

Returned Value: .
Register DO.W: Physical Sector Number

This function performs logical-to-physical sector translation,
as discussed in Section S5.2.2. The Sector Translate function
receives a logical sector number from register Dl.W. The logical
sector number can range from 0 to the number of sectors per track-l.
Sector Translate also receives the address of the translate table in
register D2.L. The logical sector number is used as an index into
the translate table. The resulting physical sector number is
returned in DO.W.

If register D2.L = 00000000BE, implying that there is no
translate table, register Dl is copied to register DO before
returning. Note that other algorithms are possible; in particular,
is is common to increment the logical sector number in order to
convert the logical range of 0 to n-l into the physical range of 1
to n. Sector Translate is always called by the BDOS, whether the
translate table address in the Disk Parameter Header is zero or
nonzero.

All Infornmacion Pra2sentad Here is Proprietary t©o Zigital Research

1

—— —— = d— - — - —— " —— - — - — e

»»»»» - - WA W IEE e W W ST NAM W R Wan Laavs

WE/ AT VONR D YOSLS NI oD

FUNCTION 18: GET ADDRESS OF MEMORY
REGION TABLE

1
v

Entry Parameters:
Register DO.W: 12H

Returned Value: .
Register DO.L: Memory Region
Table Address

This function returns the address of the Memory Region Table
(MRT) in register DO. For compatibility with othecr CP/M systemns,
~p/M-68K maintains a Memory Region Table. However, it contains only
one region, the Transient Program Area (TPA). The format of the MRT

is shown below:

Entry Count = 1| 16 bits

Base address of first region 32 bits

Length of first region 32 bits -)

Figure 4-1. Memory Region Table Format

The memory region table must begin on an even address, and must
be implemented. '

ALl Informazion Presented Here is Proprietary to Digital Researc<a

32

L e e e e e —— — —o-na oot * i ———

“r/m—oon dyStem Gulae Function 19: Get I/O Byte

FONCTION 19: GET I/O BYTE

/\ .
Entry Parameters:
- Register DO.W: 13H

Returned Value:
Register DO.W: I/O Byte Current
Value

This function returns the current value of the logical to
physical input/output device byt= (I/0 byte) in register DO.W. This
-bit value associates physical devices with CP/M-68K's four logical
devices as noted below. Note that even though this is a byte value,
we are using word references. The upper byte should be zero.

Peripheral devices other than disks are seen by CP/M-68K as

logical devices, and are assigned to physical devices within the
BIOS. Device characteristics are defined in Table 4-3 below.

Table 4-3. CP/M-68K Logical Device Characteristics

W Device Name - Characteristics

CONSOLE . The interactive console that you use
to communicate with the system is
accessed through functions 2, 3 and
4. Typically, the console is a CRT
or other terminal device.

LIST The listing device is a hard-copy
device, usually a printer.

AUXILIARY OOUTPUT An optional serial output device.
AUXILIARY INPUT An optional serial input device.

Note that a single peripheral can be assigned as the LIST,

AUXILIARY INPUT, and AUXILIARY OUTPUT device Simultaneously. If no
peripheral device is assigned as the LIST, AUXILIARY INPUT, or
AUXILIARY QUTPUT device, your BIOS should give an appropriate error

o~ message so that the system does not hang if the device is accessed
T by PIP or some other transient program. Alternatively, the
T AUXILIARY OUTPUT and LIST functions can simply do nothing except
return to the caller, and the AUXILIARY INPUT function can return

with a-lAH (CTRL-Z) in register DO.W to indicate immediate end-of-
file.

all Informazion Pr2sented Hera is Proprietary to D:

Y8}
[
(g
W
}4
V]
11
W
17
W
[a)
(2]
o)

33

—— m— e mmeme rmm i te e m——————- = e s s mee s ame e

The I/O byte is split into four 2-bit fields called CONSOLE,
AUXILIARY INPUT, AUXILIARY OUTPUT, and LIST, as shown in Figure 4-2.

most significant least significant
AUXILIARY AUXILIARY)
I/0 Byte LIST QUTPUT INPUT CONSOLE
bits 7,6 5,4 3,2 1,0

Pigure 4-3. I/0 Byte

The value in each field can be in the range 0-3, defining the
assigned source or destination of each logical device. The values
' aich can be assigned to each field are given in Table 4-4.

Table 4-4. I/O Byte Pield Definitioms
 CONSOLE field (bits 1,0)

Bit . . Definition
0 console is assigned to the console printer (TTY:) ’i:>
1 console is assigned to the CRT device (CRT:) '
2

batch mode: use the AUXILIARY INPUT as the CONSOLE

input, and the LIST device as the CONSOLE output
(BAT:)

3 user defined console device (UCl:)

AUXILIARY INPUT field (bits 3,2)

Bit Definition

0 AUXILIARY INPUT is the Teletype device (TTY¥:)

1 AUXILIARY INPUT is the high-speed reader device
(PTR:)

2 user defined reader #1 (URl:)

3

user defined reader #2 (UR2:)

All Information Presented Here is Proprietary to Digital Research

34

N S VS U

CP/M-68K System Guide Function 19: Get I/0O Byte

Pable 4-4. (continued)

AUXILIARY OUTPUT field (bits 5,4)

Bit ‘ Definition

0 PUXILIARY QUTPUT is the Teletype device (TTY:)

1 AUXILIARY OUTPUT is the high-speed punch device (PTP:)
2 user defined punch 1 (UPl:)

3 user defined punch $#2 (UP2:)

LIST field (bits 7,6)

Bit Definition

0 LIST is the Teletype device (TTY:)

1 LIST is the CRT device (CRT:)

2 LIST is the line printer device (LPT:)
3 user defined list device (ULl:)

Note that the implementation of the I/Q byte is optional, and
affects only the organization of your BIOS. No CP/M-68K utilities
use the I/0 byte except for PIP, which allows access to the physiczal
devices, and STAT, which allows logical-physical assignments to be
madeé- and displayed. It is a good idea to first implement and test
~your BIOS without the IOBYTE functions, then add the I/O byte

function. ;

~

All Information Presented EBera is Prcprietary to Digital Research

35

————— vy + ——

e memems i e weiene 4 e e . e C e mm see e o e

WE/ITUON IYILSU TULUT cungLivn <Vl o et 1L/VU byte

FUNCTION 20: SET I/O BYTE

Entry Parameters:)
Register DO.W: 1l4H
Register D1.W: Desired

Returned Value: None

This function uses the value in register Dl to set the value of
the I/0 byte that is stored in the BIOS. See Table 4-4 for the I/0
byte field definitions. Note that even though this is a byte value,
we are using word references. The upper byte should be zero.

All Informacion Presented Here is Proprieta:') to Digital Research

36

L e ——" ———— . et - o = e ——— —— ————.

— o ——— ————— e o —— .

e e b e eer o

CP/M=-68K System Guide Function 21: Flush Buffers

FUNCTION 21: FLUSH BUFFERS

Entry Parameters:
Register DO.W: 15H

Returned Value:
Register DO.W: 0000H=successful write
Register D0.W: FFFFH=unsuccessful write

This function forces the contents of any disk buffers that have
been modified to be written. That is, after this function has been
performed, all disk writes have been physically completed. After
the buffers are written, this function returns a zero in register
DO0.W. However, if the buffers cannot be written or an error occurs,
the function returns a value of FFFFH in register DO.W.

)

All Infcrmaticn Presented Here is 2roprietary %o Digital Research

37

—— —— - Ce e —

FONCTION 22: SET EXCEPTION HANDLER ADDRESS

Entry Parameters:)
Register DO.W: 16H
Register D1.W: Exception Vector Number
Register D2.L: Exception Vector Address

Returned Value:
Register DO.L: Previous Vector Contents

This function sets the exception vector indicated in register

Dl.W to the value specified in register D2.L. The previous vector

_value is returned in register DO.L. Unlike the BDOS Set Exception

Jector Function (61), this BIOS function sets any exception vector.

Note that register D1.W contains the exception vector number. Thus,

to set exception 2, bus error, this register contains a 2, and the
vector value goes to memory locations 08H to 0BH.

BEnd of Section 4

All Information Presented Here is Proprietary to Digital Research

38

- N e e vh e e - -t e ———— e - s . -
——- e opo— B T p———

B e L

———AP g, o e s <+ S5 B —
. -~ PR,

B T T T T PR PR -

Section 5
Creating a BIOS

5.1 Overview

The BIOS provides a standard interface to the physical
input/cutput devices in your system. The BIOS interface is defined
by the functions described in Section 4. Those functions, taken
together, constitute a model of the hardware environment. Each BIOS
is responsible for mapping that model onto the real hardware.

In addition, the BIOS contains disk definition tables which
define the characteristics of the disk devices which are present,
and provides some storage for use by the BDOS in maintaining disk
directory information.

Section 4 describes the functions which must be performed by
the BIOS, and the external interface to those functions. This
Section contains additional information describing the structure and
significance of the disk definition tables and information about
sector blocking and deblocking. Careful choices of disk parameters
and disk buffering methods are necessary if you are to achieve the
best possible performance from CP/M-68K. Therefore, this section
should be read thoroughly before writing a custom BIOS.

CP/4-68K, as distributed by Digital Research, is configured to
run on the Motorola EXORmacs development system with Universal Disk
Controller. The sample BIOS in Appendix D is the BIOS used in the
distributed system, and is written in C language. A sample BIOS for
an Empirical Research Group (ERG) 68000 based microcomputer with
Tarbell floppy disk controller is also included in Appendix B, and
is written in assembly language. These examplas should assist the
rez:der in understanding how to construct his own BIOS.

5.2 Disk Definition Tables
As in other CP/M systems, CP/M-68K uses a set of tabhles to

define disk device characteristics. This section describes each of
these tables and discusses choices of certain parameters.

All Information Presented Here is Proprietary to Digital Research

39

CF/M—=08K System Guide D.4 UV1SK VEerlnition rapLes

5.2.1 Disk Parameter Header

Each disk drive has an associated 26-byte Disk Parameter Header
(DPH) which both contains information about the disk drive and
provides a scratchpad area for certain BDOS operations. Each drive
mist have its own unique DPH. The format of a Disk Parameter Header -
is shown in Figure 5-1. . :)

—

7oy 7 N A S SR L B P T

XLT 0000 0000 0000 |DIRBUF DPB c3v ALV

32b 16b 16b 1l6b 32b 32b. 32b 32b

Pigure 5-1. Disk Parameter Header

Each element of the DPH is either a word (l6-bit) or longword
(32-bit) value. The meanings of the Disk Parameter Header (DPH)
elements are given in Table 5-1.

Table 5-1. Disk Parameter Header Elements

Element Description
XLT Address of the logical-to-physical sector {j>‘-
translation table, if used for this particular -.

drive, or the value 0 if there is no translation
table for this drive (i.e, the physical and
logical sector numbers are the same). Disk
drives with identical sector translation may
share the same translate table. The sector
translation table is described in Section 5.2.2.

0000 Three scratchpad words for use within the BDOS.

DIRBUF Address of a l28-byte scratchpad area for
directory operations within BDOS. All DPHs
address the same scratchpad area.

"DPB Address of a disk parameter block for this drive.
Drives with identical disk characteristics may
address the same disk parameter block.

ALl Information Presented Here is Proprietary to Digital Research

40

. 4 —- o> b o - cmmm isre me————
5 . - [P — e —— A "y p————

Cr/M-oBK System Gulde 5.2 Disk Definition Tables

Table 5-1. (continued)

Element Description

csv Address of a checksum vector. The BDOS uses this
area to maintain a vector of directory checksums
for the disk. These checksums are used in
detecting when the disk in a drive has been
changed. If the disk is not removable, then it
is not necessary to have a checksum vector. Each
DPFH must point tc a unique checksum vector. The
checksum vector should contain 1 byte for every
four directory entries (or 128 bytes of
directory). In other words: length (CSV) =

(DRM+1) / 4. (DRM is discussed in Section
50203-) *
ALV Address of a scratchpad area used by the BDOS to

keep disk storage allocation information.” The
area must be different for each DPH. There must
be 1 bit for each allocation block on the drive,
requiring the following: length (ALV) = (DSM/8) +
l. (DsM is discussed below.)

5.2.2 ~ Sector Translate Table

Sector .translation in CP/M-68K is a method of logically
renumbering the sactors on each disk track to improve disk I/0
performance. A frequent situation is that a program needs to access
disk sectors sequentially. However, in reading sectors
sequentially, most programs lose a full disk revolution between

‘Sectors because there is not enough time between adjacent sectors to

begin a new disk operation. To alleviate this problem, the
traditional CP/M solution is to create a logical sector numbering
scheme in which logically sequential sectors are physically
separated. Thus, between two logically contiguous sectors, therce is
a Several sector rotational delay. The sector translate table
defines the logical-to-physical mapping in use for a pacticular
drive, if a mapping is used.

Sector translate tables are used only within the BIOS. Thus
the table may have any convenient format. (Although the BDOS is
aware of the sector translate table, its only interaction with the
table is to get the address of the sector translate table from the
DPH and to pass that address to the Sector Translate Function of the
BIOS.) The most common form for a sector translate table is an n-
byte (or n-word) array of physical sector numbers, where n is the
number of sectors per disk track. Indexing into the table with the
logical sector number yields the corresponding physical sector
number.

LT - = P -~ -, ' - -~ . Y 9 1 v
Ass .nIdrmacion Prasenczad Here is Proorisczary so Digi=al Resaasch

———————— s —t . v s w— e .e .. e m seee - me e e —-— — ———— - e —— i . —————— 2 aes

Although you may choose any convenient logical-to-physical
mapping, there is a nearly universal mapping used in the CP/M
community for single-sided, single-density, 8-inch diskettes. That
mapping is shown in Figure 5-2. Because your choice of mapping
affects diskette compatibility between different systems, the
mapping of Figure 5-2 is strongly recommended.)

Logical Sector 0 1L 2 3 4 5 6 7 8 9 10 11 12
Physical Sector 1 7131925 51117 23 3 9 15 21

Logical Sector| 13 14 15 16 17 18 19 20 21 22 23 24 25
Physical Sector 2 8 14 20 26 6 12 18 24 4 10 16 22

Pigure 5-2. Sample Sector Tramslate Table

5.2.3 Disk Parameter Block

A Disk Parameter Block (DPB) defines several characteristics
associated with a particular disk drive. Among them are the size of
the drive, the number of sectors per track, the amount of directory
space, and others.

_ A Disk Parameter Block can be used in one or more DPH's if the
disks are identical in definition. A discussion.of the fields of)
the DPB follows the format description. The format of the DPB is :

shown in Figure 5-3.

SPT BSH BLM EXM Q DSM DRM Reserved CKS QOFF

16b 8b 8b 8b 8b 1l6b 16b - 16b 16b 16b
Pigure 5-3. Disk Parameter Block

Bach field is a word (16 bit) or a byte (8 bit) value. The
description of each field is given in Table 5-2.

Pable 5-2. Disk Parameter Block Fields

Field Definition)
SPT Number of 128-byte logical sectors per track. '
BSH Tt.e block shift factor, determined by the data

block allocation size, as shown in Table 5-3.

All Information Presented Here is Proprietary to Digital Research

42

. T—— —— v o -t Som .+ tiee s e < mamm = e v———— s et el W —aie e tie e

—mh v e m e vwim ww asee Jek WiIA vTLLINDLTLION lTaples

Table 5-2. (continued)

Field Definition

BLM The block mask which is determined by the data
block allocation size, as shown in Table 5-3.

EXM The extent mask, determined by the data block
allocation size and the number of disk blocks, as
shown in Table 5-4.

0 Reserved byte.

DSM Determines the total storage capacity of the disk
drive and is the number of the last block,
counting from 0. That is, the disk contains
DSM+1 blocks.

DRM Determines the total number of directory entries
which can be stored on this drive. DRM is the
number of the last directory entry, counting from
0. That is, the disk contains DRM+1 directory
entries. Each directory entry requires 32 bytes,
and for maximum efficiency, the value of DRM
should be chosen so that the directory entries
exactly £ill an integral number of allocation
units.. :

CXs The size of the directory check vector, which is
zero if the disk is permanently mounted, or
length (CSV) = (DRM—&}/ 4 £} for removable media.

OFF The number of reserved tracks at the beginning of
a logical disk. This is the number of the track
on which the directory begins.

To chocse appropriate values for the Disk Parameter Block
elements, you must understand how disk space is organized in CP/M-
68K. A.CP/M-68K disk has two major ar@as: the boot or system
tracks, and the file system tracks. The boot tracks are usually
"used to hold a machine-dependent bootstrap loader for the operating
system. They consist of tracks 0 to OFF-l. Zero is a legal value
for OFF, and in that case, there are no boot tracks. The usual
value of OFF for 8-inch floppy disks is two. .

The tracks after the boot tracks (beginning with track number
CFP) are used for the disk directory and disk files. Disk space in
this area is grouped into units called allocation units or blocks.
The block size for a particular disk is a constant, called BLS. BLS
may take on any one of these values: 1024, 2048, 4096, 8192, or
16384 bytes. No other values for BLS are alloved. (Note that BLS
does not appear explicitly in any BIOS table. However, it
determines the values of a number of other parameters.) The DSM
. field in the Disk Parameter Block is one less than the number of

ALl Information Przesentad Ferz is 2roprietary to Digital Research

43

- - - - et AVNe B Wmes A I AW ST

blocks on the disk. Space is allocated to a file or to the
directory in whole blocks. No fraction of a block can be allocated.
block size

The choice of BLS, is very important, because it effects the
efficiency of disk space utilization, and because for any disk size
there is a minimum value of BLS that allows the entire disk to be
used. BEach block on the disk has a block number ranging from 0 to
DSM. The largest block number allowed is 32767. Therefore, the
largest number of bytes that can be addressed in the file system
space is 32768 * BLS. Because the largest allowable value for BLS
is 16384, the biggest disk that can be accessed by CP/M-68K is
16384* 32768 = 512 Mbytes.

Each directory entry may contain either 8 block numbers (if DM
>= 256) cr 16 block numbers (if DSM < 256). Each file needs enough
directory entries to hold the block numbers of all blocks allocated
to the file. Thus a large value for BLS implies that fewer
directory entries are needed. Since fewer directory entries are
«sed, the directory search time is decreased.

The disadvantage of a large value for BLS is that since files
are allocated BLS bytes at a time, there is potentially a large
unused por tion of a block at the end of the file. If there are many
small files on a disk, the waste can be very significant.

The BSH and BLM parameters in the DPB are functions of BLS.
Once you have chosen BLS, you should use Table 5-3 to determine BSH
and BIM. The EXM parameter of the DPB is a function of BLS and DSM.
You should use Table 5-4 to find the value of EXM for your disk.

Table 5-3. BSE amd BIM Values

BLS BSH BLM
1024 3 7
2048 4 15
4096 5 31
8192 6 63
16384 7 127

All InZormation Presented Here is Proprietarv to Digital Ressarch

44

LR S—— .
——— —— - ae e s —

"

CP/M-68K System Guide 5.2 Disk Definition Tables

Table 5-4. EXM Values

BLS DSM <= 255 DSM > 255

1024
2048
4096
8192
16384 1

A

newro
3
NWwHOoON

The DRM entry in the DPB is one less than the total number of
directory entries. DRM should be chosen large enough so that you do
not run out of directory entries before running out of disk space.
It i3 not .possible to give an exact rule for determining DRM, since
the number of directory entries needed will depend on the number and
sizes of the files present on the disk.

The CKS entry in the DPB is the number of bytes in the CSV
(checksum vector) which was pointed to by the DPH. If the disk is
not removable, a checksum vector is not needed, and this value may
be zero. ’ :

5.3 Disk Blocking

When the BDOS does a disk read or write operation using the
BIOS, the.unit of information read or written is a 128-byte sector.
This may or may not correspond to the actual physical sector size of
the disk. If not, the BIOS must implement a method of representing
the 128-byte sectors used by CP/M-68K on the actual device. Usually
if the physical sectors are not 128 bytes long, they will be some
multiple of 128 bytes. Thus, one physical sector can hold some
integer number of 128-byte CP/M sec:ors. In this case, any disk I/0
will actually consist of transferring several CP/M sectors at once.

It might also be desirable to do disk I/O in units of several
128-byte sectors in order to increase disk throughput by decreasing
rotational latency. (Rotational latency is the average time it
takes for the desired position on a disk to rotate around to the
read/write head. Generally this averages 1/2 disk revolution per
transfer.) Since a great deal of disk I/O is sequential, rotational
latency can be greatly reduced by reading several sectors at a time,
and saving them for future use.

In both the cases above, the point of interest is that physical
I/0 occurs in units larger than the expected sector size of 128
bytes. Some of the problems in doing disk I/O in this manner are
discussed below.

All InZformation Presentad derz 1s Pzopriecary £o Digizal Reseassh

45

T e e e e e ———— © a——— - —= .+ = m——— oo cmm -+ e n ot meme wew e e e eee . -

CF/M=0BK DYSTEm Gulide 5.3 Disk Blocking

5.3.1 A Simple Approach

This section presents a simple approach to handling a physical
sector size larger than the 1logical sector size. The method
discussed in this section is not recommended for use in a real BIOS.
Rather, it is given as a starting point for refinements discussed in
the following sections. 1Its simplicity also makes it a logical
choice for a first BIOS on new hardware. However, the disk
throughput that you can achieve with this method is poor, and the
refinements discussed later give dramatic improvements.

Probably the easiest method for handling a physical sector size
which is a multiple of 128 bytes is to have a single buffer the size
of the physical sector internal to the BIOS. Then, when a disk read
is to be done, the physical sector containing the desired 128-byte
logical sector is read into the buffer, and the appropriate 128
bytes are copied to the DMA address. Writing is a little more
complicated. You only want to put data into a 128-byte portion of
the physical sector, but you can only write a whole physical sector.
Therefore, you must first read the physical sector into the BIOS's
buffer; copy the 128 bytes of output data into the proper l28-byte
piece of the physical sector in the buffer; and finally write the
entire physical sector back to disk.

Note: this operation involves two rotational latency delays in
addition to the time needed to copy the 128 bytes of data. In fact,
the second rotational wait is probably nearly a full disk
revolution, since the copying is usually much faster than a disk
revolution.

5.3.2 Some Refinements

There are some easy things that can be done to the algorithmof

Section 5.2.1 to improve its performance. The first is based on the
fact that disk accesses are usually done sequentially. Thus, if
data from a certain physical sector is needed, it is likely that
another piece of that sector will be needed on the next disk
operation. To take advantage of this fact, the BIOS can keep
information with its physical sector buffer as to which disk, track,
and physical sector (if any) is represented in the buffer. Then,
when reading, the BIOS need only do physical disk reads when the
information needed is not in the buffer.

On writes, the BIOS still needs to preread the physical sSector
for the same reasons discussed in Section 5.2.1, but once the
physical sector is in the buffer, subsequent writes into that
physical sector do not require additional prereads. An additional
saving of disk accesses can be gained by not writing the sector to
the disk until absolutely necessary. The conditions under which the
physical sector must be written are discussed in Section 5.3.4.

oprietary to Digital Research

e
'..
;
rt
o]
n
]
[a]
3]
o]
it
]
O
o]
nJ
"
iy
w0
1]
o]
or
1
(o}
oY
1
(R
(1)
‘.4
n
e
2
'O

J

X

-~

()

Lr/m-von dystem wulae 5.3 Disk Blocking

5.3.3 Track Buffering ‘

Track buffering is a special case of disk buffering where the
I/0 is done a full track at a time. When sufficient memory for
several full track buffers is available, this method is quite good.
The method is essentially the same as discussed in Section 5.3.2,
but there are some interesting features. First, transferring an
entire track is much more efficient than transferring a single
sector. The rotational latency is incurred only once for the entire
track, whereas if the track is transferred one sector at a 'time, the
rotational latency occurs once per sector. On a typical diskette
with 26 sectors per track, rotating at 6 revolutions per second, the
difference in rotational latency per track is about 2 seconds versus
a twelfth of a second. Of course, in applications where the disk is
accessed purely randomly, there is no advantage because there is a
low probability that more than one sector will be used from a given
track. However, such applications are extremely rare.

5.3.4 LBU Replacement

With any method of disk buffering using more than one buffer,
it is necessary to have some algorithm for managing the buffers.
That is, when should buffers be filled, and when should they be
written back to disk. The first question is simple, a buffer should
be filled when there is a request for a disk sector that is not
presently in memory. The second issue, when to write a buffer back
to disk, is more complicated.

Generally, it is desirable to defer writing a buffer until it
becomes necessary. Thus, several transfers can be done to a buffer
for the cost of only one disk access, two accesses if the buffer had
to be preread. However, there are several reasons why buffers must
be written. The following list describes the reasons:

1) A BIOS Write operation with modesl (write to directory
sector). To maintain the integrity of CP/M-68K's file
system, it is very important that directory information on
the disk is kept up to date. Therefore, all directory
writes should be performed immediately.

2) A BIOS Flush Buffers operation. This BIOS function is
explicitly intended to force all disk buffers to be
written. After performing a Flush Buffers, it.is safe to
remove a disk from its drive.

3) A disk buffer is needed, but all buffers are full.
Therefore some buffer must be emptied to make it available
for reuse.)

4) A Warm Boot occurs. This is similar to number 2 above.

All Informaticn Prasented Here is Proprietary to Digisfal Research

47

a

Case three above is the only one in which the BIOS writer has
any discretion as to which buffer should be written. Probably the
best strategy is to write out the buffer which has been least
recently used. The fact that an area of disk has not been accessed
for some time is a fairly gcod indication that it will not be needed
again soon. '

5.3.5 The New Block Flag

AS explained in Section 5.2.2, the BDOS allocates disk space to
files in blocks of BLS bytes. When such a block is first allocated
to a file, the information previously in that block need not be
preserved. To enable the BIOS to take advantage of this fact, the
BDOS uses a special parameter in calling the BIOS Write Function.
If register D1.W contains the value 2 on a BIOS Write call, then the
write being done is to the first sector of a newly allocated disk
block. Therefore, the BIOS need not preread any Ssector of that
block. If the BIOS does disk buffering in units of BLS bytes, it
can simply mark any free buffer as corresponding to the disk address
specified in this write, because the contents of the newly allocated
block are not important. If the BIOS uses a buffer size other than
BLS, then the algorithm for taking full advantage of this
information is more complicated.

This information is extremely valuable in reducing disk delays.
Consider the case where one file is read sequentially and copied to
a newly created file. Without the information about newly allccated
disk blocks, every physical write would require a preread. With the

information, no physical write requires a preread. Thus, the number

of physical disk operations is reduced by one third.

End of Section 5

All Information Presented Here is Proprietary to Digital Research

48

e - —

L I

C

Section 6
Installing and Adapting
the Distributed BIOS and CP/M-68K

6.1 Overview

The process of bringing up your first running CP/M-68K system
is either trivial or involved, depending on your hardware
environment. Digital Research supplies CP/M-68K in a form suitable
for booting on a Motorola EXORmacs development system. If you have
an EXCRmacs, you can read Section 6.1 which tells how to load the
distributed system. Similarly, you can buy or lease some other
machine which already runs CP/M-68K. -

If you do not have an EXORmacs, you can use the S-record files
supplied with your distribution disks to bring up your first CP/M-
68K system. This process is discussed in Section 6.2.

6.2 Booting on an EXORmacs

The CP/M-68K disk set distributed by Digital Research includes
disks boot and run CP/M-68K on the Motorola EXORmacs. You can use
the distribution system boot disk without modification if you have a
Motorola EXORmacs system and the following configuration:

1) 128K memory (minimum)

2) a Universal Disk Controller (UDC) or Floppy Disk Controller
(FDC) - ,

3) a single-density, IBM 3740 compatible floppy disk drive

4) an EXORterm
To. load CP/M568K, do the following:

1) Place the disk in the first floppy drive (#FD04 with the UDC
or #FD00 with the FDC). -

2) Press SYSTEM RESET (front panel) and RETURN (this brings in
MACSbug) .

3) Type "BO 4" if you are using the UODC, "BO 0" if you are

using the 'FDC, and RETURN. CP/M-68K boots and begins
running. -)

M
All Information Presentad Hera iz ’ropriecary =0 Digital Xesearch

49

—— e . e et e n

6.3 Bringing Up CP/M-68K Using the S—-cecord Piles

The CP/M- 68K distribution disks contain two copies of the CP/M-
68K operating system in Motorola S-record form, for use in getting
your first CP/M-68K system running. S-records (described in detail
in Appendix F) are a simple ASCII representation for absolute
programs. The two S-record systems contain the CCP and BDOS, but no
BIOS. One of the S-record systems resides at locations 400H and up,
the other is configured to occupy the top of a 128K memory space.
(The exact bounds of the S-record systems may vary from release to
release. There will be release notes and/or a file named README
describing the exact characteristics of the S-record systems
distributed on your disks.) To bring up CP/M-68K using the S—-record
files, you need: :

1) some method of down-loading absolute data into your target
system

2) a computer capable of reading the distribution disks (a
CP/M-based computer that supports standard CP/M 8-inch
diskettes)

3) a BIOS for your target computer

Given the above items, you can use the following procedure to
bring a working version of CP/M-68K into your target system:

~1) You must patch one location in the S-record system to link
it to your BIOS's _init entry point. This location will be
specified in release notes and/or in a README f£ile on your
distribution disks. The patch simply consists of insecting
the address of the _init entry in your BIOS at one long
word location in the S-record system. This patching can be
done either before or after down-loading the system,
whichever is more convenient.

2) Your BIOS needs the address of the _ccp entry peint in the
§-record system. This can be obtained from the release
notes and/or the README file.

3) Down-load the S-record system into the memory of your target
computer. .-

4) Down-load your BIOS into the memory of your target computer.

5) Begin executing instructions at the first location of the
down-loaded S-record system.

Now that you have a working version of CP/M-68K, you can us:2
the tools provided with the digstribution system for <furthexr
development. .

End of Section 6

All Information Presented Here is Proprietary to Digital Research
50 :

—. o v —

<:?

Section 7
Cold Boot Automatic Command Execution

7.1 Overview

The Cold Boot Automatic Command Execution feature of CP/M=-68K
allows you to configure CP/M-68K so that the CCP will automatically
execute a predetermined command line on cold boot. This feature can
be used to start up turn-key systems, or to perform other desired
operations.

7.2 Setting up Cold Boot Automatic Command Execution

The CBACE feature uses two global symbols: _autost, and
_usercmd. These are both defined in the CCP, which uses them on
cold boot to determine whether this feature is enabled. If you want
to have a CCP command automatically executed on cold boot, you
should include code in your BIOS's _init routine (which is called at
cold boot) to do the following: - o o

£

l) The byte at _guéost must be set to the value 01H.

2) The command line to be executed must be placed in memory at
_-usercmd and subsequent locations. The command must be
" terminated with a NULL (00H) byte, and may not exceed 128

bytes in length. All alphabetic characters in the command
line should be upper-case.

Once you write a BIOS that performs these two functions, you
can build it into a CPM.SYS file as described in Section 2. This
system, when booted, will execute the command you have built into
it.

5

End of Section 7

ALl Information Presentad Hera is Proprietary o Digital Research

51

- e ——— e S —— . . W—— e o e e——

Section 8
The PUTBOOT Utility

8.1 PUTBOOT Operation

The PUTBOOT utility is used to copy information (usually a
bootstrap loader system) onto the system tracks of a disk. Although
PUTBOOT can copy any file to the system tracks, usually the file

*being written is a program (the bootstrap system).

8.2 Imnvoking PUTBOOT
Invoke PUTBOOT with a command of the form:
PUTBOOT ([-H] <filename> <drive>
where
@ -H is an optional flag discussed below;

@ <filename> is the name of the file to be written to the system
-tracks;

o <drive> is the drive specifier for the drive to which
° <filename> is to be written (letter in the range A-P.)

PUTBOOT writes the specified file to the system tracks of the
specified drive. Sector skewing is not used; the file is written to
the system tracks in physical sector number order.

Because the file that is written is normally in command file
format, PUTBOOT contains special logic to strip off the first 28
bytes of the file whenever the file begins with the number 601AH,
the magic number used in command files. If; by chance, the file to
be written begins with 601AH, but should not have its first 28 bytes
discarded, the -H flag should be specified in the PUTBOOT command
line. This flag tells PUTBOOT to write the file verbatim to the
system tracks.

- PUTBOOT uses BDOS calls to read <filename>, and used BIOS calls
to write <filename> to the system tracks. It refers to the OFF and
SPT parameters in the Disk Parameter Block to determine how large
the system track space is. The source and command files for PUTBOO
are supplied on the distribution disks for CP/M-68K.

End of Section 8

Appendix A
Contents of Distribution Disks

This appendix briefly describes the contents of the disks
that contain CP/M=-68K as distributed by Digital Research.

Table A-1l. Distribution Disk Contents

P DI

A caie e e .-

+ eerdiadbe s o M e dmvie s e

P N LT

)

®

Pile Contents

ARG8 .REL Relocatable version of ¢the
archiver/librarian.

AS68INIT Initialization file for assembler-—see
AS68 documentation in the CP/M-68K
Operating System Programmer's Guide.

AS68 .REL Relocatable version of the assembler.

ASM.SUB Submit file to assemble an assembly
program with file type .S, put the object:
code in filename.O, and a listing file in
filename.PRN.

BIOS.O Object file of BIOS for EXORmacs. _

_{ BIOsS.C C language source for the EXORmacs BIOS as

distributed with CP/M-68K.

BIOSA.O Object file for assembly portion of
EXORmacs BIOS.

BIOSA.S Source for the assembly langquage portion
of the EXORmacs BIOS as distributed with
CP/M-68K.

BIOSTYPS.H Include file for use with BIOS.C.

BOOTER.O Object for EXORmacs bootstrap.

BOOTER.S Assembly boot code for the EXORmacs.

C.SUB Submit file to do a C compilation.
Invokes all three passes of the C compiler
as well as the assembler. You can compile
a C program with the line: A>C filename.

C068 .REL Relocatable version of the C parser.

Cl68 .REL Relocatable version of the C code
generator. :

All

Information Presented :Ie_:e is Proprietary to Digital Research

55

CP/M-b8K System gulae

A Contents ot

Table A-1. (continued)
File Contents

CLIB The C run-time library.

CLINK.SUB Submit file for linking C object programs
with the C run-time library.

CP68 .REL Relocatable version of the C preprocessor.

CPM.H Include file with C definitions for Cp/M-
68K. See the C Programming Guide for
CP/M-68K for details.

CPM.REL Relocatable version of CPM.SYS.

CPM.SYS CP/M-68K operating system flle for the
EXORmacs.

CPMLIB Library of object files for CP/M-68K. See
Section 2.

CPMLDR.SYS The bootstrap loader for the EXORmacs. A

' copy of this was written to the system
tracks using PUTBOOT.

CTYPE.H . Same as above.

DDT.REL Relocatable version of the preloader for
pDT"™ (Loads DDT1l into the high end of
the TPA.)

DDT1l.68K This is the real DDT that gets loaded into
the top of the TPA. It is relocatable
even though the file type is .68K, because .
it must be relocated to the top of the TPA
each time it is used.

DUMP .REL Relocatable version of the DUMP utility.

ED.REL Relocatable version of the ED utility.

ELDBIOS.S -Assembly language source for the ERG
sample loader BIOS.

ERGBIOS.S Assembly language source for the ERG
sample BIOS. :

ERRNO .H Same as above.

FORMAT .REL Relocatable disk formatter for the

Motorola EXORmacs.

Information Presented Here is Prop

56

Distripoution Dl1sSKsS

“om

rietary to Digital Research

e e e e i A———- -t et o2+ —

————— g —

-

N

CP/M~68K System Guide

Table A-1l., (continued)

File Contents

FORMAT .S Assembly language source for the FORMAT
utility.

"INIT.REL Relocatable version of the INIT utility.

INIT.S Assembly language source, for the INIT
utility.

LCPM.SUB Submit file to create CPM.REL for
_EXORmacs.

LDBIOS.O Object file of loader BIOS for EXORmacs.

LDBIOSA.O Object file for assembly portion of
EXORmacs loader BIOS.

LDBIOSA.S - Source for the assembly language portion
of the EXORmacs loader BIOS as distributed
with Cp/M=-68K.

LDRLIB Library of ocbject files for creating a
Bootstrap Loader. See Section 3.

LO68 .REL Relocatable version of the linker.

LOADBIOS.H Include file for use with BIOS.C, to make
it into a loader BIOS.

LOADBIOS.SUB Submit file to create loader BIOS for
EXORmacs.

MAKELDR.SUB Submit file to create CPMLDR.SYS on
EXORmacs.

NORMBIOS .H Include file for use with BIOS.C, to make
it into a normal. BIOS

NORMBIOS .SUB Submit file to cteate normal BIOS for
EXORmacs.

NM68 .REL Relocatable version of the symbol table

: dump utility.

PIP.REL Relocatable version of the P1P utility.

PORTAB.H Same as above. 4

. PUTBOOT .REL Relocatable version of the PUTBOOT

utility.

A Contents of Distribution Disks

Informacicn Presentad Here is Propriasatary o Digital Research

57

eable A~l. (continued)

RELOCx.SUB b

S.0
SENDC68 .REL

SETJMP .H
SIGNAL.H
SIZE68 .REL
SR128K.SYS

SR400.SYS

STAT .REL
STDIO.H

Pile Contents

PUTBOOT.S Assembly language source for the PUTBOOT.
utility.

README . TXT ASCIi file containing information relevant
to this shipment of CP/M-68K. This file
might not be present.

RELCPM. SUB Submit file to relocate CPM.REL into
CPM.SYS.

RELOC.REL Relocatable version of the command file

. relocation utility.

This file is included on each disk that
contains .REL command files. (x is the
number of the distribution disk containing
the files). It is a submit file which

will relocate the .REL files for the-|

target system.

Startup routine for use with C programs--—
must be first object file linked.

Relocatable version of the S-record
creation utility.

Same as above.

Same as above.

Relocatable version of the SIZE68 utility.
s-record version of CP/M-68K. This
version has no BIOS, and is provided for
use in porting CP/M-68K to new hardware.
S-record’ version of CP/M-68K. This
version has no BIOS, and is provided for
use in porting CP/M-68K to new hardware.
Relocatable version of the STAT utility.
Include file with standard I/0 definitions
for use with C programs. See the C

Programming Guide for CP/M-68K for
details.

End of Appendix A

All Information Presented Here is Proprietary to Digital Research

58 :

P

e m—— e — —" ———— -

—~

()

ce/ % 68
Source Pile: a:ergbiocs.s

agg00000
0000000A
3000000C

00000002
00000012
00000014
00000016
0000001A

0000001C

0g000012
00000022
00000026
00000Q2A
00000022
00000032
00000036
0000003A
00000038
00000042
00000046
0000004A
00000048
00000052
00000058
030000SA

000

23PC000Q000E0000008C _init: move.l {traphndl,$8c
d0

4280 cle.l
4E7S res

traphndl:
0C400017 cmpi tnfuncs,do
6408 bee trapng
ES48 1sl 42,40
20780006 movea.l 6(pc,.d0),al
4E30 jse (a0)

trapngs
4273 cee

biosbase:
00000000 .de.l _init
0000007A .de.l wooot
00000080 .de.l constat
00000094 .dc.l conin
000000AS. .de.l conout
0000Q0BC .de.l 1lstout
goo000BE - .de.l pun
000000C0Q .de.l rdr
ggoo00Cs .de.l home
00000000 . - .de.l seldsk
¢o0000Ps .de.l settrk
00000100 .de.l setsec
00000114 .dc.l setdma
000001lC .de.l cead
00000158 .de.l write
ag¢oco0c2 .de.l liscse

Appendix B
Sample BIOS Written in Assembly Language

AsSseabdlec

Revision 02.01

Page 1

00 0CCPRRPROPRRTR0OPREREENOVORORCRCRERATTERICOCROIRETROIDRROODTOEPRORQRTS

*

. CP/M-68K 3108 .

. Basic Input/Output Subsystes .

. For ERG 68000 with Tarbell floppy disk controller .

* L]
(222222222 A2 R X A2 X2 AR R R X2 2 X2 R 2222 R R2 222222 SRR 203 -

.globl _init
.globl _ccp

*
L]

L 4

bios initialization entry point
ccp entry point

set up trap #3 handler

* log on disk A, user 0

.

aultiply biocs functioan by 4
get handler addtess
call handlec

Listing B~l. Sample Assembly Language BIOS

All Information Presented Hare

is Proprietary to Digital Research

59

-

CP/M-68K System Guide

55

00000052
00000062
00000066
QQ00006A
0000006E
90000072
Q0000076

0000007A

4 000000890

00000086

ceP/ M 63
Source Pile: a:ergbios.s

- ——

Al

— -

0000008A
0000008C
00000082

00000090
00000092

00000094
00000096
00000098
0000009%A
000000A0
2000Q0A6

000000A3
000000AE
00000082
0000008¢
000000BA
0000008C
000000BE
900000CO

Q0Q000C2
330000CS

1

-~ - -

00000108
00000114
0000029C
QQ0002A4¢
000002A6
20000298
000002A8

4EP900000000

103900FFFPOL
02400002 .

wboot:

constat:

go0o0 Assenbdlec

6704
7001
4ETS

4280
4B75

61EA

4A40

6TFPA >
103900PFFPO0
C08C0000007F
4875

10390Q0FFFPOL
co3icogolL
6794
L3CLO00FFFFO0
4ETS

4E7S

4875

4875

103C00FP
4B75

nocton:

conin:

conout:

lscouce:
puns
edes

lisese:

L]

.de.l
.de.l
.de.l
.de.l
.de.l
.dec.l
.de.l

B Sample Assembly Language BIOS

sectran
setdma
geatseqg
geciod
satiod
flusn
setexc

nfuncse (*-biocsbase)/4

jmp ccp

move.b SE£££01,d0 * get status byte

andi.w $2,d0 * data available bit on?

Revision 02.01 Page 2

beq noton ® branch if not

moveq.l #51,d0 * get cesuylt to true

cts

clre.l do * sat cesult to false

cts

bsc constat * see if key pressed

tse do0

beq conin * wait until key pressed
move.b $EL£££00,d0 * get key

and.l #$7£,40 * cleacr all but low 7 bits
“cts

move.b S££££01,40 * get status

and.b #S1,d0 * check for transmitter buffer empty
beq conout * wait until ouc por: has aged...
sove.b dl,SEL£££00 * and output it

Tes * and exit

ces

cts

ces’ °

move.b $S££,d0

ccs

* Disk Yandlecs foc Tarbell 1793 floppy disk controllec
*

maxdsk
dphlen

iobase
demd

s 2
= 28

= $Q0f€¢

* this B8I0S suppocts 2 floppy drives
* length of disk pacamaczac headec

[444] ® Tacbell floppy disk port base addcess

= {obsse ® output poct foe command

Listing B-1l. (continued)

1 Information Presented Here is Proprietary to Digital Resea:zct

60

CP/M-68K System Guide) B Sample Assembly Language BIOS

93 dstac = jobase * input 3tacus poct
34 derk = iobase+l * disx track port
95 dsect = jobase+r2 ® disk sector poct
96 ddacta = jobase+] * disk daca pore
97 dwait = jobase+d * input pocrt to wait foc op finished
38 dentrl = jobase+d * output control port for drive selection
L 39
: 100 .
101 000000C8 423900000002 hore: clc.b track <
- 102 Q00000CE 4E7S cts
103
104 seldsk:
108 .- select disk given by register dl.b
106 000000D0 7000 moveq #0,d0 .
107 00000002 323C0002 cmp.bd $maxdsk,dl * valid drive number?
108 0000Q0D6 KALE bpl selcetn * if no, cteturn O in 40
: 109 00000008 13C100000000 xove.b dl,seldrv * else, save drive numbec
; 110 000000DE E£909 lsl.b 44,41
: cCeF/ N 6§ 383000 AsSssemblec Revision 02.01 Page 3
3 Source File: a:ergbios.s :
. 111 000Q00E0 L3CL0000000A move.b dl,selcode ¢ select code is 00 for dev 9, $10 for decv L
: 112 00000CES 103900000000 move.b selderv,do .
. 113 GGGQ0JEC COFCOOLA aulu #dpnlen,do .
114 0000CCF0 DOBCO0000CLE add.l #dph0, d0 * point d0 ac corcrect dpn
115 000000FS 4E7S selcetn: cts
116
: 117-0060000F8 13C100000002 settrk: move.b dl,track
! 118 000Q0CFE 4E7S ces
: 119
120 00000100 13Cl0000000% setsec: move.b dl,sacctoc
: 121 00000105 4E7S ces
. 122
. 123 sectran:
¢ 124 . translate sector in dl with translace table pointed to by d2
. 125 . cesult in dO
: 126 00000108 2042 movea.l d2,a0
N 127 0000010A 48Cl ext.l dl
‘ 128 Q0000Ll0C 10301000 move.b $0(ad,dl),do
129 00000110 48CO ext.l 0
- 130 00000LL2 4B7S cts
- 131 .
A 132 secdma: .
i \) 133 00000Ll4 23C100000006 move.l “dl,dma)
- et 134 00000LIA 4E7S . ces : -
R 135 :
136 cead: .
137 * Read one sector from cequested disk, track, sector 0 dma addcess
. 138 * Retry if anecessacy, cecuctn in d0 Q0 if ok, else non-zeco
: 139 0000011C 13FCO000A0Q00Q0008 move.b $10,ecrent * set up Cetcy countec
140 cretry: .
141 00000124 51000076 bse setup
142 00000128 00430088 : ori $#588,d3 * OR cead command with head load dit
143 0000012C l3CJI00FFPFPFS agve.b d3,demd ®* output .it to FOC
P Listing B-l. (continued)

1
1

A

)

All Informasicn Prasented Here 15 Prcoorietary Lo Digital Research

—— P —— o ——

CP/M-68K System Guide B Saiple Assembly Language BIOS

144 00000132 0839000700PPFFPPC tloop: best #7,dvait

143 00000L13A 6708 beq cdone * if end of cread, exit

146 0000013C lOoPOQQorerrrs sove.b ddata,(ad)+ * else, move next byte of data
147 00000142 60EE bra t loop

148 - cdone:

149 00000144 61000146 bse cstactus * get FOC status

150 00000148 6604 ! bne cecror

151 000C0L14A 4280 - cle.l 40

152 0000014C 4E7TS ces

1S3 0000014E 61000080 teccoc: bsc ecrchk ® go to error handler

154 00000152 5333900000008 subg.db ¢l,ecrenc

155 00000158 66CA one cretry

156 00Q00L1SA 70PP sove.l PSELELLLEL,d0

157 0000015C 3E7S ces

158

159 weites

160 * Weite one sector to requested disk, track, sectocr from dma address
161 * Retry if necessary, ceturn in d0 00 if ok, else non-zeco :
162 00000QL1SE l3FPCOGGAC000000B sove.b #10,accene * 3et up retry countet

163 weeery: -

164 00000166 6134 bse setup

165 00000163 004300A8 ocri $5ad,d3 * OR weite command with heed load bit
cep/ n 630600 Assenmablec Revision 02.01 Page 4

Source Pile: a:ergbios.s

166 0000016C L3C30QFFFFFS - aove.b d3,dced * output it to PDC

167 00000172 0839000700FFFFFC wloop: btst $7,dwa it

168 0000017A 6708 beq wdone ¢ if end of cead, exit

16% 00000L7C L3DB8QOFPFFFPB ~aove.b (al)e,ddata * else, move next byte of dacta
i70 00000182 60EE bca wloop

171 wdone:

172 00000134 61000106 bsc cstatus * get FDC status

173 00000188 6504 bane © wagroc

174 00000L8A 4280 clr.l d0

175 Q000QL8C 4E7S ces

176 00000182 6170 werrocr: bsc errchk * go to erroc handlec

177 00000190 533900000008 sudbgq.b ¢l,ercene .
178 00000196 66CE bne weetey)

179 00000198 70rPP sove.l JSELELELEf,d0

180 0000019A 4E?S ces

181

182 setup:

133 ¢ common read and wtite setup code

184 ® select disk, set track, set sector were all deferced until now
185 0000019C l3IPCOODOOOPFFFPS sove.b $$d40,dcmd ¢ cleac controller, Jet status
186 00000LA4 1613900000001 z0ve.b curdev,dl

187 0000CGLlAA 853900000000 cap.b seldcv,dl

138 00000180 BS1A bne newdc ive * if dcive not selected, do it
18% 00000182 1639060000002 sove.b track,d3

190 00000183 3613900000003 cup.d oldtek,d3

191 00000lBE 6820 bae newerk * {f not on right track, do it
192 000001CO 4283 ele.l d3 * if Read already loaded, no head load dalay
1323 000001C2 0819000500FFFFFS bese $S5.dscat ®* if nead unloaded, treat as new disk
194 G3Q001CA 6418 bae sanit

Listing B-1. (coantinued)

All Information Presented Here (s Proprietary to Digital Research

62

. —— o ——— e ¢ = . -
o cmmr ieme re ey —n ———

AR

a
.

CP/M-68K

198
196
197
198
199
200

- 201

202
203
- 204
205
206
207
208
209
210
211
212
213
214
15
216
217
218
219
220

gogoalce
Q0000106

000001E0
00000122

000001lE4
00000 1ER
000001F8
JooootLrz

66000200
Q0000204
003000206

00000208
0000020A

0000020C
00000214

cep/ n 63
Soucce File: a:ergbios.s

221

222

223

224

228

226

227

228

229

230

231

232

~ 213
/7 234
‘ 235
T - 236
7

2138

239

240

241

242

243

244

245

o

6000021C
0000021E
00000226
60000228

0000022A
00000230
0000023A
00000240
00000242
0000024C
00000254
000002sC
0aoga2se

00000264

00000266
00000268
00000274

0000027A
30000282

System Guide

13P9000000CAC0FPPPPC
13790000000000000001

6126
71604

L3P90000000400FFFFPA
13P90000000200FFFrFY

207900000006
4275

08070004
6602
4B7S

615C
6718

L3FC000800FFPPF8

0839Q000700FPFPFFC
000 AsSsembdblec

66F6

6
4283

13CI00FFPFPFI

13P90000000200000003

863900000002
6722

L3F90000000200FFFFFS
13FCO001300FFFFFS8
08139000700FFFFFC

6676
16 3900FFPFFS

4873

LIrcooc400rFrPFPS

Lg3900rrrPec
163900rrrrrs

670

0839000200PFFPFPS
1E4

0839000700FrPPrC
L]

B Sample Assembly Language BIOS
newdrive:
move.b selcode,dcnerl ¢ sglect the drive
sove.d seldcv,cuzdrv
newtrk:
bsr chksaek * seek to cocrrect track if required
=soveq $4,d43 * force nead load delay
sexit:
move.b sector,dsect * set up sectoc number
aove.b track,dtrk ® set up track numdec
aove.l dma,al * dma address to ad
cts
errchk:
bese 44,47
bne chkseek ® if cecord not found error, ceseek
ces
chkseek:
. check for correct track, seek if necessacy
bsc ceadid ¢ find out what track we're on
beq chksl ¢ if read id ok, skip restoce code
testoce:
b home the dcive and ceseek %o coccect track
move.b $$08,dcmd ¢ restore command to command poct
cstwait:
btst $7,dwait
Ravision 02.01 Page S
bne rstwait * loop until cestoce completed
best $2,dscac
cestoce * if not at track 0, try again
clr.l d3 ¢ track number ceturned in d3 from ceadid
chksl:
move.b d3,detrk * update track cegistez in FOC
move.b track,olderck * update oldtrk
cmp.b track,d3 * are we at cight track?
beq chkdone ¢ if 7es, exit
mve.b track,ddata ¢ else, puc desired track in data ceg of FOC
msove.b §S18,demd hd and i1sSsue a seek command
chks2: bese $7,.dwait
bne chks2 * loop until seek complete
sove.b dstae,d3 ® read status to clear FOC
chkdone:
cts
ceadid:
. tead track id, cetucn track mumper in d3
2ove.db {§Sc¢,domd ® issue read id command
move.d dwait,d? * wait foc intrq
move.b ddata,dl ¢ track bdyte to d3
cid2:
btse $7,dwait
beq tstatus * wait for intrq

Listing B-1l.

(continued)

-

All Information Presented Here is Proprietary to Digital Research

63

o —

Cp/M-68K

246
247
48
249
250
251
252
253
254
255
. 256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
74

00000284
0000028A

0000028C
00000292
00000296

00000298
0000029A

0000029C
000002A2

000002A4

000002A6

00C002A8
000002AE
00000280
00000282
000002B 4
00000286

S
~¢/ M 638
Source file: a:ecrgbios.s

276
17
2178
279
280
281
282
283
284
285
186
287
288
289
290
291
32
233
294
295
296

ALl

00000000

00000000
00000001

00000002
00000003

00000004
00000006
0000000A

00000008
0000000C

0Q00000E
00000012

System Guide

123900FPPFFS
60ZE

Lp3900rerer3
02070090
4278

4280
4875

203C0000000C
AB7S

4E7S

487S

02810000Q0FF
ES549
2041
2010
2082
4ETS

gae0 Asseabdlec

FFP
FF

L]
Q0

0000
00000000
Qo

ca
0colL

00000400
00017C00

Iaformaticn

. emim e e emmee o= ema aeer peana ——— —

move.d
bra
rstatust:
move.d
andi.b
ces

flush:
elr.l
cts

qetseq:
move.l
cts

gqetiot:
cts

setiob:
cts

setexc:
andi.l
1s1
movea.l
sove. l
move.l
noset: cts

&

.data

B Sample Assembly Language BIOS
ddata,d? * read anothec byte
cid2 * and loop
dscat,d?
$394,47 e get condition codes
a0 * return successful
$tmemrgn,do * return address of mem region table
see,dl * do only for exceptions 0 - 255
$2,4d1 * multiply exception nmbc by ¢
dl,a0
(ag),do0 ¢ cgturn old vector value
d2, (a0) * insert new vector

Revision 02.01

Page 6

seldcv: .de.b - SEf * drive cequested by seldsk
cucrdev: .de.b £1 44 * curcently selected drive
crcack: .dec.d [+] * rrack requested by settrk
oldeck: .de.b] * gtrack we wece on
sectoc: .dc.w]
dmas .de.l Q
selcode: .de.b 0 ® drive select code
erzent: .de.b 10 * retry countec
memegn: .dC.w 1 * | memory cegion
.de.l $400 ®* gcaces at 400 hex
.de.l $17c00 * goes until L8000 hex

* 4i{sk pacamstecr headecs

Listing B-1l.

64

e - ———w——— — i = e —— = . -

(continued)

Prasented Here is Proprietary to Digital Ressarch

CP/M-68K System Guide B Sample Assembly Language BIOS

! 297
298 00000016 0000005A dphl: .de.l xlt
299 00CCO0QLIA 0000 .dc.w’ O ¢ dusay
300 0000001C 0000 .de.v Q
301 000QCOLE 0000 .de.w 0
302 00000020 00000000 .de.l dirbuf * ptr to directory buffec
/-\ 303 00000024 000C004A .de.l dpb ® ger to disk parametec block
! 304 00000028 00000080 .de.l ckv0 ® pte to check vectol
N . 30S 0000002C G0Q00CAQ .de.l alvo ¢ per to allocation vector .
B - 306 .
: 307 00000030 QO0000SA dphl: .dc.l xlt
. 308 00000034 0000 .dec.w Q9 * dumwmy
P 309 00000036 Q000 .dc.w [}
i 310 00000038 0000 .dc.w [}
. 311 000Q003A 00000000 .de.l dirbuf ¢ ptr to directory buffer
312 000C003E2 0000004A .de.l dpb * per to disk parameter block
313 00000042 00000090 .de.l ckvl * ptr to check vectoc
H 314 00000046 000000CO .de.l alvl * ptr to allocation vector
< . 315
! 316 e disk parametec block
‘ 317
j 318 0000004A 001A dpbs .de.w 26 * sectocs per track
H 319 0000004C 03 .de.b 3 ¢ plock shift
1 320 0000004D 07 .de.b 7 * dlock mask
: 321 QUOO0GQGO4E 00 .de.bd Q * extant mask
i 322 0000004F 00 .de.b Q * dummy fill
: 323 0000005Q 00F2 .de.w 242 * disk size
] 324 00000052 0037 .do.w 63 ¢ 64 directocy entries
H 325 00000054 C00Q0 .dc.w $c000 * dicectory mask
: 326 00000036 0010 de.w 16 * directory check size
! 327 00000058 0002 .de.w 2 * track offset
328 .
! §23 * sectoc translate table
. 3
§ CP/ M 68000 AsSseabdblec Revision 02.01 Page 7
Soucce File: asergbios.s
i 331 000Q00SA 01070013 xlt: .de.b 1, 7,13,19
. 332 000CQ00SE L%0S081lL .de.b 28, S5,11,17 -
‘ 333 00000062 L703090F .de.b 23, 3, 9,15
H 334 00000066 LS02080QE .de.b 2L, 2, 8,14
“ 335 0C00006A L4 LAQG6CC .de.b 20,26, 6,12
i f.\ 336 0000006E L218040A .de.b 18,24, 4,10
i \ 337 00000072 1016 .de.bd 16,22 . N
3 ~- 338
: 3139 -
H 340 00000000 .bss
' 341
, 342 00000000 dicbuf: .ds.d 128 *® directocry buffer
343
B 344 00000080 ckvl: .ds.bd 16 ¢ check vector
§4$ 00000090 ckvl: .ds.d 16
(1
s 347 000000A0 alvO: .ds.d 32 * allocation vector
t
j Listing B-1. (continued)
!
1
4 -
Bl
4) .
[}
¥
3
i {
: \ .
N
4
b
1
i .
¢ i
¢
) .
1
’ Al Information Prasenced dere is Prcprietary o Digital Researcn
Al .

&/ mMTUoNn oYSLeER wulge

348 000000CO

3149

330 000000EO

cer/ N 6§ 8000
Source 7ile: asergbios.s
Syasbol Tabdle
cep Teveseee pPXP
Biosbase 0000001E TEXT
chkseek 00000208 TEXT
conout 000000A8 TEXT
dencrl OOFFFFPC ABS
dpbd 0000004A DATA
dsect OOFPFPFPA ABS
ecrchk 00000200 TEXT
getseg 0000029C TEXT
lscout 0000008C TEXT
newtck Q00001EQ TEXT
oldeer 00000003 DATA
cead 0000011C TEXT
£id2 0000027A TEXT
rstwait 00000214 TEXT
seldev 00000000 DATA
secexc 000002A8 TEXT
setup 9000019C TEXT
trapng 9000001C TEXT
wloop 00000172 TEXT

init
Shkdone
ckvo
constat
ddata
dpho
dstat
eccent
home
maxdsg
nfuncs

pua

readid
£ loop
sector
seldsk
setiob
sexit
wboot
weetry

alvl:

AssenmbdDlec

1]
00000000
00000264
00000080
00000080
QOFFPPFB
00000016
OOFPFFP8
00000008
0aoooocs
00000002
00000017
0oo0008E
00000266
00000132
00000004
00000000
000002A6
000001E4
00000Q7A
00000166

.ds.b
.end

DATA
TEXT
TEXT
TEXT
TEXT
TEXT

B8 Sample Assembly Language BIOS

12

Revision 02.01 Page 8
alv0 00000G0A0 B8S alvl
chksl 0000022A TEXT chksl
ckvl 00000090 BSS conin
cucdrv 00000001 DATA dcnd
dirbut 00000000 BSS dma
dphl 00000030 DATA dphlen
derk OOFFFFF9 ABS dwait
flush 00000298 TEXT getiob
iobase QOFFFFF§ ABS listse
memrgn G000000C DATA newdtive
noset 00000286 TEXT noton
rdone 00000144 TEXT cdr
cecroe 0000014E TEXT restore
ccetry 00000124 TEXT cscatus
sectran 00000108 TEXT? selcode
selrtn 000000P6 TEXT setdma
setsec 00000100 TEXT settrk
track 00000002 DATA ctraphndl
wdone 00000184 TEIXT wecroc
weite C000Q1SE TBXT xit

(continued)

Listing ‘B~1.

End of Appendix B

000000C0O
00000254
00000094
QOFFPFF8
00000006
0000001A
OOFFFPPC
000002A4
000000C2
Qooo00icC
00000090
000000C0O
00000 20C
0000028C
0000000A
00000114
000000F8
00000002
00000188
0000005A

8Ss
TEXT
TEXT
ABS
DATA
ABS

TEXT
TEXT
TEXT
TEXT
TEXT
TEXT

DATA

TEXT
TEXT

OATA

ALl Information Presented Here is Proprietary to Digital Research

66

e or + @ V———————————

aeea e e e e

C A e s

e s s ok pe—a

PRI RN PPN

R L

Gl e

//"‘\

S’

cP/ N 68

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
i1
32

33"

34
35
16
37
38
39
40
41
@2

All Information Presented Here is Proprietary to Digital Research

00000000
00000004
00000006
00000008
Q000000C

0000000

00000010
00000014
00000018
0000001C
00000020
00000024
00000028
0000002C
00000030

00000034

00000028
0000003C
¢0000040
C000004¢
00000048
0000004C
00000050
00000054
00000058
0000005C

000 Assenbdlaec
Source Pile: a:eldbios.s

0C400017
6C08
ES48
20780006
4E950

4E7S

0000000E
0000000E
0000006
00000080
00000094
00000002
0000000E
0000000
000000AS8
00000080
000000C4
gg0000cC
08000020
0GC000ES
0000000E
00000002
000000D 4
0000GOED
0goaooc2
00000008

Appendix C
Sample Loader BIOS Written in Assembly Language

Revision 02.01 Page 1

LA A A AR LA A A A A2 AR X 2 A L 2 A 2 2T 2 X YT R Y R TR R R W R TP r

* .
A C?/M-68K Loader BIOS .
. Basic Input/Output Subsystes .
. Focr ERG 63000 with Tacdell floppy disk controller .
- *
Q'.G"".l'.t"""."'.."t."""t'.C.'Q....'.0"..".'."."'.

.globl

_bios:

¥ cmpi
bge
1si

_bios * declace external entry point

tnfuncs, do
nogood
42,40 ¢ multiply bios function by 4

movea.l 6 (pc,dd),al * get handler address

isc
nogood:
tts

biosbase:
.de.l
.de.l
.de.l
.de.l
.de.l
- .de.l
.de.l
.de.l
.de.l
.de.l
.de.l
.de.l
.de.l
.de.l
.de.l
.de. 1
.de.l
.de.l
.de.l
.de.l

(a0) * call handler

nogood
noqood
constat
conin
conout
nogood
nogood
nogood
home
seldsk
sectck
setsec
setdma
tead
nogood
noqgood
sectran
setdma
nogood
nogood

Sample BIOS Loader

67

W&/ VAT U0ON IYySLEW

(4

43 00000060
44 00000064
45 00000068

S0 0000006C
S1 00000072
52 00000076
53 00000078
54 3000007A

nogood

.de.l nogood
.dc.1l setexc

afuncss(*-biosbase)/4

sJuiqge
20000002 .de.l
0000000R
00000222
103900rPProl

02400002
6704
7001
4E7S

cqnstat: move.b S££££01,d0

andi.w
begq
moveq.l
res

$2,4d0
noton
#s1,d40

C Sample Loader BIOS

jet status byte

daca available dit on?
bcanch if not

set result to true

P/ M §8000 AsSsenmblec Revision 02.01 Page 2
Soucce Pile: a:eldbios.s
56 0000007C 4280 noton: clr.l a0 * set cesult to false
57 0000007E 4E7S ces
sa
S9 00000080 6lEA conin: bsg constat * see 1f ey pressed
60 00000082 ¢«A40 tse 40
61 00000084 67PA beq conin * wait until key pressed
62 00000086 103900FFPPO0Q sove.b SEE££00,d0 * jet key)
63 0000008C COBC0000007P and. 1 #$7¢,40 ¢ cleac all but low 7 bits
64 00000092 4E7S tes
&5 :
66 00000094 103900FFPFPOL conout: aove.b S$EL££01,d0 * jet status
67 0000009A C03C0Q0L and.b #51,d0 * check for transmitter buffer empty
68 00000092 67P¢ beq concut ® wait until our port has aged...
69 00000GAC L3CLOOFFFFO0 move.b dl,SEL£££00 * and output it
70 000000A6 4E7S ces * and exit
71
72
73 v
74 * Disk Handlers for Tarbell 1793 floopy disk controller
78 .
7 maxdsk = 2 * this BIOS supports 2 floppy drives
77 dphlen = 26 * length of disk parameter header ®
78 -
79 iobase = S00ff££££3 * Tarbell floppy disk port base address
80 demd = jobase * output port for command
81 © dstat = iobase * input status port
82 derk = icbaseel * disk track port
83 dsect = {obase+2 * disk sector port
34 ddaca = jcbase+l * disk data pore
8s dwait = jobase+4 * input port to wait for op finished
B; dentrl = jcbase+d * output control port for drive salecticn
8
83
89 000000A8 €23900000002 home: clr.b track
30 00QO0QCAE 4B7S cts
91
92 seldsk:
93 . select disk A
94 000000B0 423900000000 clr.b seldzsy * select drive A

.ua
=
[
o

[x)

Listing C-1.

ormation Prasentsd Here

is Proprietary

68

(continued)

L0 Digital Research

7

CP/M~68K System Guide

95
956
97
38
99
100
101
1c2
103
104
105
106
107
108

00300086
0030008BC
000000C2

000000CH4
000000CA

900000CC
00000002

00000004
109 0060300006
10 coo0go0D8

cpPp/ M 68

Source File:

111
112
113
114
118
116
1.7
1.8
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146

000000DC
00000002

00000Q0EQ
QC00Q00ES

000000E8

00Q000F0
ocoooor2
00000Q0F6
000000QFC
00000104
00000106

00000108
00000112
00000114
00000116
00000118
00Q0011A
00000120
00000122
00000124

00000126
600c00L12s

\. -
e T N

42390000000A
203C0000000C
4E7S

13C100000002
4879

13C100000004
4875

2042
48CL
10301000
e00

48C0
AR7S

23C100000006
4875

L3FC000A00900008

6134

00430088
13C300FFFrFPS8
0839000700FFFFFC
6708
LOF900FFFFPB

0000010C 6QEE

61000106
6604

4280

4875

6170 -
$33900000008
66CE

1orr

4B873

LIPCOCDOOOQFPFFFS
163900000001

Assenblec
a:eldbios.s

C Sample Loader BIOS

clr.b selcode * select code is 00 for drv 0, $10 for
move.l {§dpno,do
selctn: cts
settrk: move.d dl,crack
ces
setsec: move.b dl,sector
cts
sectran:
. szanslate sector in dl with translace taole pointed to by d2
b cesult in 40
movea.l d2,a0
ext.l d1
move.b $0(ad,dl),do

ext.l

ces
setdmas

move.l

res
tead:

* Read one sectocr from requested disk, track,
¢ Retry if necessarcy,

move.b
creezy:
bse
ori
move.b
bese
beq
aove.b
bra

cloop:

cdones

bsc
bne
ele.l
tes
bsc
subg.b
bne
move.l
ces

cercot:

setupt

Revision 02.01

d0

dl,dma

$10,ecrcne

setup
588,43
d3,demd
$7,duait
rdone
ddaca,(ad)+
¢ loop

cstatus

cegcgor
dg

ercchk
#l,eccent

creery
$SELEELLLL, A0

»

Page 3

sector to dma address
cecurn in 40 00 if ok, else non-zero
* set up retry counter

dR tead command with head load bit

output it to FOC

if end of read, exit
-else, move next byte of data

get FDC status

éo to erroc handler

* comeon cead and write setup code

* select disk,
[0Ve.d
move.b

Listing C-l.

set track,

1840, dcad
cugdev,dd

is Prcpriecary to Digizal

69

(continne@)

sat sector were all deferced uncil now

* cleac controller, get status

-

xXesea

-
~

c

a

.

dgv L

.

A/ PAITVUN WYIE IULUE C sample Loader BIOS

147 00000134 B§3900000000 cmp.b seldrv,dl

148 0000013A 661A bne newdcive * {f drive not selected, do it

149 0000013C 1613900000002 move.b track,d3

150 00000142 8363900000003 cmp.d olderk,d3

151 00000148 6620 bne newttRk * {f not on right track, do it

152 0000014A 4233 cle.l 43 * {f head alceady loaded, no head icad delay

153 0000014C 0819000S00PFPPPS betse 15,dstac * {f head unloaded, treat as new disk

154 -00000154 6618 ,one sexit *

158 newdrive: %
156 00000156 13Fr90000000A00FPFPPIC move.b selcode,dcntrl * select the drive

137 00000160 13F90000000000000001 move.b seldecv,curdcv .
158 newtrks

153 0000016A 6126 bse chkseek * seek to corcect track if requiced

160 0000016C 7604 moveq $4,43 * force head load delay

161 . sexit:

162 0000016E 13P90000000400FFFPPA move.d sector,dsect ¢ set up sector number

163 00000178 13P90000000200FFFFFY move.b track,dtck ¢ set up track numbeg

164 00000182 207900000006 move.l dma,ald * dma address to aQ

165 00000188 4B7S ces
c?2/ 1 683000 Assendlec Revision 02.01 Page 4

Source FPile: ateldbios.s

166 .

167 ecechks

168 0000018A 08070904 best 44,47

169 00000182 65602 bne chkseek ®* if record not found erroc, cesaek

170 00000190 4B7S cts

171

172 chkseek:

173 . check for correct track, seek if necessarcy

174 ~"000192 615C bse ceadid * find out what track we're on

17¢ J00194 6718 beq chiksl * if read id ok, skip restore code

176 testote:

177 . home the drive and reseek to cocrect track

i;lg 00008196 13FCOOCBOOPPFFFS move.d $S0B,dcsd ¢ testore command to command port

cstwait:

130 00000192 0839000700PPFPPPC betst $7,3vait

181 000001A6 66F6 bne rstwait ¢ loop until restore completed

182 Q00001A8 0839000200PFFPF8 best $2,dstat

133 000001B0 6724 beq restore * if not at track O, try again

ig; 90000182 4283 cle.l a3 ? track number returned in d3 from readid

chksl:

186 00000184 13C300PPPPPFY move.b d3,dtck * update track cegister in FDC

187 0Q0001BA 13P90000000200000003 move.b track,olderk * update oldtrk ;
188 000001C4 B53900000002 cEpP.b track.d3 ® are we at right track? N
189 000001CA 6722 baq chkdone * if yes, exit ‘.
190 000001CC 13P90000000200PPFEPB move.b track,ddata * else, put desired track in data ceg of FOC

191 00000106 L3IFCOG18QOFFFPPS aove.b $5S18.dcwd b4 and issue a saek command i
132 000001DE 08390007 00PPFPFC chks2: bese 47,dwait . :
193 QCOO001ES- 6628 bne chies2 *® loop until seek complete

194 000001ES8 163300FFPPFPS move.b dstat,d3 * read status to clear FDC

195 chkdones

186 060001EE 4E7S ces

197

198 readids

Listing C-1. (continued)

All Information Presented Here is Propristary to Digital Research

70

®0 8 AR N w B4 edmec-inie -

e tons ARDLAMRSHNS wcd B Bin A b

Sar e e sibalbocdh ond imte wtels 48 20e 0

e WM et B et b

e imadh L@ do

-

e e

B i

. et reme A on ddhes brars s mmn -

——t

W&/ UATVGN W IOWwS UULAUWS

199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220

c?/ n

0Qgo0lro
0Qgoo0lrs
000001FE

00000204
0000020C
00000208
00000214

00000216
0000021C
Qoooo220

00000222
30000228
0000022A
0000022C
00000222
00000230
68

1IrCO0C400FFPPPS
LE1900FFPPPC
163300F7PPPEPFPS

0839000700FPPPFPFC
6708
LE3900FFFPPB
60EE

LE3900FFPPrs
02070090
4B7S

a281000000F?
£549
2041
2010
2082
4E7S
ego0o0

Source File: a:eldbios.s

221
222
223
224
225
226
227
228
229
230
231
2132
233
234
215
236
237
238
239
240
241
262
243
244
245
246
247
248
249
250

00000000

00000000
00000001

00000002
00000003

00000004
00000006
Q000000A

gcoQo0cs

0000000C
00000010
00000012
00000014
00000016
000Q00 1A
00000012
00000022

e
44

00
Q0

0000
00000000
90

a

00000036
0000
0000
0000
00000000
00000026
00000000
Q00U00000

Listing C-1l.

Assenabdblec

hd read tracx id,

2OVeE.Dd
move.d
moOve.Dd
cid2:
btst
beq
sove.b
bra
cstacuss
moOve.bd
andi.d
(43)

setexc:
andi.l
1sl
movea.l
move.l
move.l
£es

1Sce.demd
dwait,d?
ddaca,dl

§7,dwatt
r3catus
ddaca,d?
cid2

dsecat,d?
594,47

tsef,dl
$2,d1
d1.a0
(a0),d0
42, (a0)

Revision 02.01

.data

seldrv: .de.b SEf

curdev: .de.b sttt

track: .dc.$ Q

oldetrk: .de.d 0
sector: .dc.w Q0
dmas .de.l Q

selcode: .dc.b 0

ecrent: .de.b 10

* disk parameter headecs

dph0: .de.l
.de.vw
<dc.w
.de.w
.de.l
.de.l
.de.l

.de.l

¢ disk pacameter block

- SauplLe uoader bLud

tetucrn track numbec in d3

* issue resd id command
* wait for tnerq
® track Dyte to 43

* wvait for intrq
* cead another byte
®* and loop

* set condition codes

* do only for exceptions 0 - 255
* multiply exception numoer dy ¢

¢ return old vector value
* insert new vector

Page H

® drive requested by seldsk
* currently selected drive

® track requested by settrk
* track we wecre on

* drive select code

* retry counter

zlt

0 * dummy

0

']

dirbuf * ptr to dizectory buffer

dpb ®* ptr to disk pacrameter block

[} * ptr to check vector

0 * ptr to allccation vector
(continued)

All Information Presented Here is Proprietary to Digital Research

71

CP/M=-68K System

51

252 00000026 001A
253 00000028 03
254 00000029 Q7
255 0000002A 0C
256 00000028 00
257 0000002C o0FP2
258 00000022 0013F
259 000000130 CO00
260 00000032 0010
261 000000134 0002

262
263
264

265 00000036
266 0000003A
267 0000003
268 00000042
269 00000046
270 0000004A

271 0000004E 1016

272
273

274 00000000

278
ceP/ N

68000
Source File:

276 00000000

01070013
19050811
L703090P
1502080
141A060C
1218040A

TEXT
TEXT
TEXT
ABS

DATA
ABS

TEXT
TEXT
DATA
TEXT
TEXT
TEXT
TEXT
TEXT
DATA

277

278

279 00000080
cP/ M 68000
Source File:
Symbol Table
_bios 00000000
chks2 00000102
constat (0000006C
ddaca QOFFFFFB
dpho 0000000C
derk QOFFPFPQ
homa 000000A8
naweek 0000016A
oldezk 00000003
teccor 00000113
rcetey 000000PQ
sectran 00Q000D ¢
sealctn 300000C2
settrk ~ 000000C4
x1t 00000036
1%

S dde

O U

Information Presented Here is Proprietary to Digital Research

Guide
dpbs .dc.w 26
.de.b 3 -
.de.b 7
.de.d]
.de. b]
.dec.w 242
' .dc.w 63
.dCc.w $c000
.dc.w 16
.dc.w 2

Assenbdlecr
azeldbios.s

Assenblec
a:eldbios.s

biosbase
chkseek
curdev
dicbuf
dphlen
dwait
icbase
nfuncs
cdone
testoce
cstatus
se lcode
setdma
setup

C sample

® sectors per track

¢ block shift

* block

® extent mask

mask

¢ dummy fill

© e ¢ a0

* sector translate table

xlts .de.b
.de.b
.de.b
.de.b
.de.bd
.de.b
.de.b

.bss

dicbuf: .ds.b

.end

00000010 TEXT
00000192 TEXT
00000001 DATA
00000000 BSS
0000001A ABS
OQFFFPFC ABS
GOFFFPF8 ABS
06000017 ABS
00000102 TEXT
00000196 TEXT
00000216 TEXT

0000000A DATA

00000020 TEXT
00000126 TEXT

1, 7,13,19
25, S,11,17

23, 3,
, 2,
20,26,
18,24,
16,22

128

9,15
8,14
6,12
4,10

Revision 02.01

disk size
64 directocry encries
dicectory mask

dicectocy check size
track offset

Page [

* directory buffer

End of Appendix C

72

Revision 02.01 Page 7
chkdone 000001EE TEXT chksl
conin 00000080 TEXT conout
demd QOFFFFF8 ABS decnerl
dma 00000008 DATA dpb
dssct QOFFFFPA ABS dstag*
ercchik 0000018A TEXT ecrent
maxdsk 00000002 ABS newdr ive
ndgocd 00000002 TEXT noton
tead 000000E3 TEXT ceadid
£id2 00000204 TEXT cloop
cstwait G0O00019E TEXT sector
ssldze 00000000 DATA saldsk
setexc 00000222 TEXT setsec
sexit 0C00016B TEXT track

(continued)

. mae e - - o — -~ —— =i s s am e e e e s ee

000001B4
00000094
0QPFFPFC
00000026
(333224
00000008
Q0000156
0000007C
0000Q01F0
00g0000PC
00000004

90000080

000000CC
00000002

Loager nLUud

TEXT

-
1Y

ABS
DATA
TEXT

TEX?

DATA -

TEXT
DATA

- P ey w— ——— ——— O~ c———

e mn s msca st daeene.

O P

Appendix D
EXORmacs BIOS Written in C

This Appendix contains several files in addition to the C
BIOS proper. First, the C BIOS includes conditional compilation to
make it into either a loader BIOS or a normal BIOS, and there is an
include file for each possibility. One of these include files
should be renamed BIOSTYPE.H before compiling the BIOS. The choice
of which file is used as BIOSTYPE.H determines whether a normal or
loader BIOS is compiled. Both the normal and the loader BIOSes need

‘assembly language interfaces, and they are not the same. Both

assembly interface modules are given. Finally, there is an include
file that defines some standard variable types.

8108.C
This is the main text of the C language B'IOS for the EXORmacs.

/¥ izzzassrzamznsnnnsaivennns TR ANTETRBETEZITANASTISRISNTT iF¥xTrazzazusTnannl/
-/

e e ./
/7 (*/
/* CP/M-68K(tm) 3I0S for the IXORMACS ./
/. . ./
VA Copyrignt 1982, Digital Reseacch. */
Y */
/* Modified 9/ 7/82 wbe A
’* 10/ 3/82 woe <
/* 12/15/82 wbe) */
Vad 12/22/82 wbt : */
/* . -
/O m———aa - /*/
/"u--as.----."----c.-s-:-.. ssesan - &/

tinclude *biostype.h® /* defines IOADER : 0-> normal bios, l->loader bios */
/% also defines CTLTYPE 0 -> Universal Disk Caetrle ¢/
/* L -> Floppy Disk Controllec s/

tinclude *biostyps.h® /* defines poctable vaciable types */
char copyright{] = “Copyright 1982, Digital Research®;

sStruct memd { 8YTE bytes }; /* use for peeking and poking memory */
STTUCEt memw t WORD word: };
H

struct meml LONG lword;

/."...'"'.'.'."."""...'.'...'.'.".""'.."".'.'.'...".." .'...'/

’* 1/0 Device Definitions ./

Listing D-1. EXORmacs BIOS Written in G

A

All Information Pr2sented Hera is Propriecary to Digital Resaarch

73

tdefine NAK axls

tdefine PKXTSTX ax0 /® offsecs within a disk packet °*/
tdefine PXTID Qxl

tdefine PXTSZ 0x2

tdefine PXTDEV 0x3

tdefine PRKTCHCOM 0xé

fdefine PKTSTCOM xS -

tdefine PXTSTVAL ax6 , : *
fdefine PXTSTPRM 0x8 '

édefine STPKTSZ oxt

.

/"'.""'.".."'...'."."'O'.""'."‘I..Q..'.'.'."'."'.O."".I.'.'/

/°® BIOS Table Definitions LY

/.0...."."'."‘..'.'I"..."".C."'.'..'."""".."."."'."...'.../

/® Disk Pacrameter Block Structuce °*/
?:zuc: dpbd

WORD spt;
BYTE bsh;
BYTE blas
8YTE exm;
BYTE dpbjunk;
WORD dsas
WORD drag
3YTE all:
BYTE all;
WORD ckss
WORD off;

/* Disk Parameter Header Structure */

Ttr uct dph
3YTE *xltps
WORD dphscr(3];
BYTE *dicbufp:

stzuct dpbd *dpbp;

BYTE *e3vps

| BYTB *2lvps
H

-,

/"”.’Q.Q""'.ﬁ’."".......'."."...C."_..Q'.."""".....‘.."."..'/
/* Dicectory Buffeg for use by the BDOS */

/QQG.'."'Q"""'"""'.""."".""".O"'..'.'.."‘.".."'..'..."/
BYTE dirbuf(l128];

Listing D-1. (continued)

- eewe v e - - —— -

All Information Presented Here is Proprietary to Digital Research

74

-~

CP/M~68K System Guide D EXORmacs BIOS

$1f | LOADER

/'I....""...Q'.'...‘.'.'...'".I".'...Q'..'..."..'.....I.'.."'....../
’* Csv's */
/I'.."I".Q.Q.'".."'."'..'.....Q..'.'...."'.'...."..'Q.-.'-.-.'.'.'/
BYTE csvO(1l6];

8YTE csvli[1l6];

BYTE csv2(2561;

BYTE csvl(256]);

/..."'...'...0'".".‘....'Q.l"...."""'..""".'.'."-..'...'."'../

/* ALV's */

/.'QI."'"...."'I'.'."."Q""..'..'.."..'.'...."".."."'.""."./
.

3yTe 21v0(32]; /% (dsa0 / 3) + */
ayrte alvl{l2l; /* (dsml / 8) + 1 */
3YTE aiv2(4L2]; /* (dsm2 / 8) + 1 */
BYTE alv3i(412}; /® (dsm2 / 8) ¢ 1 */
fendif

/Q."'Qt'Q.'.".'.."."'.t'.""‘.'Q".'.""."'."'.""'.'."""""/

/* Disk Parameter Blocks ./
/0'00".".""'..""".""Q.'.'.."Q"".""Q't"".."'.""""'..'/

/* The following dpb definitions express the intent of the writer, 174
/* unforturately, due to a compiler bug, these lines cannot be used. ./
/* Therefore, the obscucre code following them has been insercted. */
VAMAAAAAAALL L spt, bsh, bla, exm, jink, dsm, dcm, al0, all, cks, off

struct dpp dpbo-t 2, 3, 71, 0, 9, 242, 63, 0xCoO, 0, 'is, Zi;
struct dpd dpblw 32, s, 11, 1, 0, 3288, 1023, OxfP, 0, 258, 44

ercenweees ond of readable definitions ¢*eescevecerny

/* The Alcyon C compiler assumes all structures ace arrays of int, so ./
/* in the following definitions, adjacent pairs of chacs have been 74
/* combined into int constants -——= what a kludge! teccstcsereccoevtesece,

struce dpb dpb0 = 1 26, 775, O, 242, 63, -16384, 16, 2 l;
struct dpb dpbl = 32, 1311, 256, 3288, 1023, OxFPOO, 256, 4 |;

/..'.'...'..'Q" m oc kluw. '.......'..'."'./

/"'..'..0..'...".."'..'......'....""..""..'..Q..""."""..""./

/* Sector Translate Table for Floppy Disks */ 4
/"""."'.'."'.".".".""""".'""""."'...'."'..Q'.."".."/

BYTE xlt(26) = { 1, 7, 13, 19, 25, S, 11, 17, 23, 13, 9, 1S, 21,

Listing D-1. (continued)

All Information Presented Here is Proprietary to Digital Research.

75

2, 8, !4, 20, 26, 6, 12, 18, 24, &, 10, 6, 22 |

/..'.""""'.'."'".'Q.'......'."'.'Q'l.'.."'.""...".'""'."'.'/

/® Disk Parametec Readets */
/* * */
/* Pour disks are defined : 3dsk a: Hisknos=0, (Motorola's ?#£d04) ./
Vad dsk b: diskno=l, (Motorola's #£305) */
VA dsk c: diskno=2, {(Motorola's #1hd00) */
/® dsx d: disknos=l, (Motorola's #hnhdOl) o/

/."'Q...'......".'..."'."..'...'...l""'...."!"."'..".Q"Q.""./
$if ! LOADER
/* D13k Parametec Headers */

struct dph dphtab(4] =
{ ‘exit, 0, 0, 0, &dirduf, &dpbd, scsvl, &alvl}, /*dsk a*/
¢xle, 0, 0, 0, &dirbuf, adpp0, scsvl, saivl}, /*dsk b*/
oL, 0, 0, O, &dirouf, &dpn2, scsv2, salvl}, /*dsk c*/
¢L, 0, 0, 0, sdicbuf, &dpb2, scsvl, salvi}, ,/*dsk d*/
'

telse

stzuct dph dphtab(4] =
{ jexlt, 0, 0, 0, edirduf, &dpdd, oL, 0L}, /*dsk a*/

sxlt, 0, 0, O, sdicbuf, &dpbl, oL, 0L}, /°dsk o*/
oL, 0, 0, 0, &dirdbuf, &dpb2, oL, 0L}, /*dsk c*/
oL, 0, 0, 0, sdirbuf, &dpb2, oL, oL, /*dsx d¢/

pendif

/.'....'."."'."""."'.".Q.""".."'""'.."."""'."'".""Q'/

/* Memory Region Table . */

/.'.’...'...'."'.""....""""."'t".."'.".'“.."...""""".'./

struct mre | WORD count;
LONG tpalows
} LONG tpalen:

memtab = { 1, 0x0400L, 0x14cO0L };

$if ! LOADER -

/O' PESVPNCIEC PO P RTCORO VORI OONVOVLONEAENESTCESICOPRNOOOCORETYD ’.'."'..../

Vi I0BYTE */

/ it 22 X 1] t-.vm'-oo-cmt‘.ccm..&-ntctocoooomo.--.t....otaoo.”'./

WORD iobyctes /* The [/0 Byte is defined, but not used */
tendif

Listing D-1. (continued)

ALl Infcrmacion Pra2sentad Here

76

S — o o v - wama—- —— -

is Proprietary to Digital Research

o

N

;4

CP/M=-68K System Guide D EXORmacs BIOS

/00".t".."".I...".QQ.'..O"".".'."'..‘..'.Q.'Q."'.....'."'O".'/

/* Cucrently Selected Disk Stuff .

/'."""..'Q-'QI"!"'.-..."'..l.'.'..'."".."'.O"O..I...Q""'Q'Q"/

WORD settrk, sezsecC, setdsk: /¢ Currenctly set track, sector, disk */
BYTE °*setdma;s /*®* Cuzcently set dma address */

/."'.."..'.'Q..Q"Q..".'.Ot"'..0"'."'-'""."."Q.'l"'0'.0..'.'.'/
/* Track Buffering Definitions and Variabples .y

/'..itl'.I..""t."'."'.."""-"'.'."Q0..Il'Ql.0'..'.'0".'0.'.'0"'/
$if ! LOADER

tdefine NUMTB 4 /® Number of track buffers -~ must be at least 3 ./
/* for the algorithms in this BIOS to work properly ./

/* Define the track buffer structucre */

struct tbser |

struct thstr “*nextbuf: /* form linked list for LRU ¢/
3YTE buf(32*128]; /* big enough for L/4 nd trk */
WORD dsk; /* disk for this buffer ¢/
WORD trk: /* track for this buffer ¢/
BYTE valid; /* bSuffer valid flag \74
8YTE diceys /" true if a BIOS write has ./

/* put data in this buffer, e/
/* but the buffer hasn't Deea */
| /* flushed yet. v/

struct tbser *firstbuf; /* head of linked list of track buffecs o/
struct bstr *lastbuf; /* tail of ditto ¢/

struct tbstr tbuf(NUMTB|; /* array of track buffers */
telse

/* the loader bDios uses only Ll track ouffer */

BYTE bufltrk{32°128}; /* big enough for 1l/4 hd tck ¢/

BYTE bufvalid;

WORD buftek: -
tendif

/.'.."'.."'.'..."..""...'.'"...’.".".'.'.'.Q""'.."'.".."".'/
-

/* Oisk I/0 Packets for the UDC and other Disk /0 Vaciadles */
/"'.'Q'."'t.'t.IQ'OQ..'...Q"""'Q'.I'..""t".'.t."""0'..0'."..'/

/® Home disk packet */

Listing D=~1. (continued)

$-
' -
rt
D
40
(8
4
]
T
'A

.on 2r2sented Here is Proprietary £o Digital Research

’
-

77 .

- e — — - b

struct hopkst |

3YTE als
BYTE a2
BYTE als

3YTE dsknos

SYTE conl;

BYTE com2;

3YTE aés

3YTE al; '

}
nmpack = { 512, 1792, 0, 768 !; /* kludge init by words */

/® Read/write disk packet ¢/

struct cwpkst |

3YTE stxche;
BYTE pktid;
3YTE pktsize:
BYTE dskno;
BYTE chcemd;
BYTE deverd:
“*ORD numblkss
wWORD blksizes;
LONG iob€;
~ORD cksum;
LONG lsecet;
BYTE etxche;

| 3YTE swpads;

’

ct twpkst cwpack = { '512, 5376, 4097, 13, 256, G0, 0, O, O, O, 768 bs
¢if ! LOADER
/* tormat disk packet */
struct fmtpkst {
3YTE fmesex:
3YTE fmeid;
3YTE fntsizes
3YTZ2 {aedskno:
BYTE fatchomds .
BYTE fntdvend;
BYTE fmeeex:
BYTE frmzpad;
struct fmtpkst fmcpack = { 512, 1792, 0x4002, 0x0380 }; — -
tendif
/QQ""'O...Q.O".'QQ.."Q"".'Q'!QQ""""0.'90"'.".'..'.'Q""O.."/

/* Define the number of disks supported and other disk stuff 4

/"'..Q00‘""'."..'0.""'."".".."ﬂ"""..'."'B."."'..."Q'...'/

Listing D-1. (continued)

All Information Presented Here is Proprietary to Digital Reseacch

78

.

N b (e Do ini s .

v oo Ao na

racmde s o e Bl S -

CE L HIO T N el W e

Avtba

s b B

— co el - WA .V odt "R

e e S She - e MR Be® S T~ -

Pl

e’

o

= ve wees wlwwlid TULUT

/0""""0'..'.'0'......'Q"".'.....'.""'...'...0'0...'.'...Q.O'.".'/
/* Generic serial poct input */
/'0"".....nat...'.'.t.."..'.'t..0.0".0""..".'Q"t'.."'.Q".'I..../
3YTE portin(pore)
‘REG BYTE °®*pore;
while (! portstat(port)) ; /* wait for input \74
ceturn (*(port + PORTRDR)); /* got some, retucn it ¢/

/.'".'.'.".'.."'.'."."‘..'..'..'.'"..'".."'..""'.""""."."
/* Gener1c serial port output v/

/."'.l""Q'."'II'.'0.0"'."".'.0'..".'0".""..'.0'."'.'Q'Q'...../

portout{poret, ch)

REG BYTE *poct;

REG BYTE ch:

{

while (! (*(port + PORTSTAT) & PORTTDRE)) : /* wait for ok to send ¢/
(port + PORTTDR) = ch; / then send character ¢/

/"Ql'!QQC"'""'Q."..".'.".‘.'.'OC".'."Q.."".'..'.."".'."""/

/* Ercoc proceduce for BIOS : WA
/"'....0"...'.".'."...."l".'.'..'..".."'"'."".'.""'."".'.'/

¢1f ! LOADER

bioserr(ecrrasg)
;(u-x: BYTE ‘*erzmsqg;

prineste(°nr8I0S ERROR - %) ;
pcintstri{ercusg);
printstr(®.nc®);

}

printstr(s) /® used by bioserr ¢/
i(\BG BYTE °s;

while (*3) [poctout(PORTL,*s); s += 1; };

!

felze

bioserc() /* minimal error procedure for loader BIOS */
{ 1l : gow 1; '

}

fendig

Listing D-1. (continued)

D EXORmacs BIOS

All Information Presented HJere is Proprietary to Digital Research

79

CP/M=b6UK System Guige ‘U LAVINRACS DiIUD

/"'0'."'0.'l'....."""'t'lt.t'.."..."'..'..'QC"..'...GO..'."..'../

VA Jisk /0 Procedures’ */

/'..'.'..'.."".'."...'.Qﬁ.ﬂ'.I'..".'0"0'.'00.'.'."'...'..'0'9....../

EXTERN dsxia(): /* extecnal interrupt handler -- calls dskic e/
EXTERN setimask(); /% use tO set 1ntecrupt Mask -- cetucrns ol.d'rrau */
H .
dskic() ')
/¢ Disk Interrupt Handler -~ C Language Portion */ .

REG B8YTE workbyte:
BYTE STPKkt(STPKTSZ];

workbyte = (DSKIPC + ACKFMIPC)->byte:
if ((workbyte == ACK) || (workbyte == NAK))

if (ipcstate == ACTIVE) intcount += I;
else (DSKIPC + ACKFMIPC)->byte = 0: /e 222 %/

I

workbyte s (DSKIPC + MSGEMIPC)->byte; *
i’.t (workbyte & J3x30)

Jezstpke(stpke);
i.t { stpht{ZXTID] == 0xFF)
/* unsolicited ¢/

unsolst(stpkt);
sendack ()

else
/* solicited */
if (ipcstate == ACTIVE) intcount += 1;
} else sendack();
} .
} /* end of dskic */ - >
/g.."..'."."""‘..'."."'.."'....."t"00.'...."."'..'....'.Q"'./ »
/® Read status packet from I[PC ./

/""".'.'.-‘..'."..'.’..‘.-O'..'.'.."'Q"’.'.t.....'..QQ....'."'..'./

gecstpke(stpktp)
?m 8YTE *stpkeps

REG 8YTE *p, *q;
REG WORD i;

Listing D-1. (continued)

ALl Information Presented Here i3 Proprietary to Digital Research

80

St w emmem s tee e e ceme mmee et e . - — —— ———

. - B e L e —

L~

-~

C¥/M~08K System Guide D EXORmacs BIOS

p = stpxtpy
q = (DSKIPC » PKTFMIPC):

ltct(i‘Sl‘PKTSZ:i:L"'l)

'p - Cq’

p e 1;

q *= 2;
| b
/‘."'..."'.."."....."Q.'.'""'.".".".."".'."."..Q.""...."./
/* Handle Unsolicited Stactus from IPC ¢/

/t.o"t"tt..o'-.."'.'tto'-o.tttttntt'."'t.'..'t'tt.QO(Q..O.."'Q.'O'.Q/

unsolsc(stprtp)
?EG 3YTE *stpktp;

REG WORD dev;
REG WORD ready:
REG struct dskst *dsps

dev = rcavdsk((stpktp+PKTDEV)->byte |;
teady = ((Stpktp+PKTSTPRM)->byte & 0x80) == 0x0;
dsp » ¢ dskstate{dev);
1€ ((ready & !(dsp->ready)) 1
(lready) & (dsp->ready)) dsp->change = 1;
dsp->cready * ceady;
¢if ! LOADER

L (! ceady) setinvld(dev); /* Disk is not ready, mack buffers L4
:endit .

$if ! LOADER
/'C...Qtt."'."t'."'.""0'."".'.".""'Q"".Q""QQ""""Q.'Q"Q/
/® Mark all buffers for a disk as not valid ¢/

/.".'QI"'.".""'..""."'.C'..'.-...""'.'.'...""""".'."'""/

setinvld{(dsk)
?Eﬁ WORD dsk; .

REG struct tbstr *tbps

tbp = firstbuf;
Thilc (tbp)

1f (tbp->dsk == dsk) tbp->valid = 03
tbp = tbp=>nextbuf;

tondif

Listing D-1. (continued)

All Information Presentad Here is Proprietary. to Digital Researczh

81

— e o e = - W e e e — ——— - o — e .

PR A —

iopackp = (DSKIPC+PXTTOIPC);

do [*icpackp = *pktadress {opackp +e 2; pktsize -= 1;} while(pktsize);
(DSKIPC+MSGTOIPC)~->byte = 0x80;s

imsave = setimask(7);

dskstate{actvdsk].state = ACTIVE;

ipcstate = ACTIVE;

intcount = 0OLg »
(OSKIPC+INTTOLPC) ->byte = 03

setimask(imsave); !
waitack();

/.."'..""."Q"’."Q'.Q'..'.I"Q"'"'Q'l."'."'.'ﬁ’.ﬁ.""'.'t""Q'/
/* Wait for a Disk Operation o0 Pinish v/

/"'.'.".'.'.'."."'.."'...Q"""'".".'.'.'.'.."'.9"'.."."""'/

WORD dskwait(dsk, stcom, stval)
REG WORD dsk;
BYTE stcom;
'.laoan scval;
REG WORD imsaves
BYTE stpkt(STPKTSZ]:

imsave = setimask(7);

while ((! intcount) &b ' .

dskstace{dsk] .ready & (! dskstate{dsk].change))

{
}

if (intcount)

sSecizask(imsave); imsave = setimask(?);

intcount -a 1;
{.l (((DSKIPC + MSGFMIPC)->byte & 0x80) == 0x80)

getstpkt(stpkt);
secimasgk(imsave);
if ((stpkt{PKXTSTCOM]| == stcom) &é
((3cpkt+PXTSTVAL)}~->word == stval)) ceturn (1l);
| else R return (QG);
]
setimask(imsave);
ceturn(0) ;

/"'l0'."'.".'0O.'."';."Q'.QQ".."'."""'0"0"'0""..Q"'O.Q.'QQI
/® Do a3 Disk Read or Write v/

/"."Q...'...'."‘U"'Qﬁ.‘..""""."'..“."0.."".."'Q"."."'..'/

dskxfer(dsk, trk, bufp, cmd)
REGC WORD dsk, trk, cmd:
REG BYTE °bufps

{

Listing D-1. (continued)

A WANHGAW D P L\ST

11 Infermation Prasented Here is Proprietary to Digital Research

82

e e

..

- -

c o re et bl N s v A ® el §

avd ..

el

el e nd

-

ST SR AAES S R A AR b i m b behe b et TR - ety

(-

Nel

~

CP/M-68K System Guide

/* build packet */

REG WORD sectmnt;
REG WORD result;

¢i€ CcTLTYPE
LONG bytecnt; /*® only needed foc FDC ¢/
WORD chek sums

tendif
twpack.dskno = cnvdsk(dsk];
rvpack. iodf = bufps
sectcnt = (dphtab(dsk] .dpbp) ->spe;
rwpack.lsect = trk * (sectecnt >> 1)
twpack.chcemd = cmd;
twpack.nusblks = (sectent >> 1);
$if CTLTYPE
cheksum = 0; /* FOC needs checksum */
bytecnt = ((LONG) sectcnt) << 7;
while (bytscnt-—) cheksum += (" (*bufp++)) & Oxff;
CWPACK.CXSUm = cheksuas :
tendif
actvdsk = dsk;
dskstate{dsk].change = Qg
sendpkt(&cwpack, 21);
result » dskwait(dsk, Ox70, O0x0);
sendack():
dskstace{dsk].state = IDLE;
ipcstate = IDLE;~ .
return(result);
}
$if | LOADER

/..0.'..""'.."".'.".'.'."Q'."".'...."...""..Q.".."'.'...'..'/

VA Write one disk buffer ¢/
/.'.'..".""'.’...""".'.""...'.""'.'...'""'..'..".""'.'..",

€lushl{tbp)
?truc t tbstr *tbps

REG WORD ok:
if (top~>valid s& tbp->direy)

ok = dskxfec(tbp->dsk, tbp=>trk, tbp=>buf, DSKWRITE):
else ok = 1; .

thp->dicty = 03 /* even if ecrroc, mack not direy ¢/
ttp~>valid &= ok; /* othervise system has trouble */
/*® coatinuing. 174

tegucn(ok);

Listing D-1. (continued)

All Information Presented Here is Propriatary %o Digital Research

83

D EXORmacs BIOS

TS eam ey ot e = o 50

- — el d A U LT LT By W QWIS)

/..'.'......"'."..".'.'.".'...‘.l.."."'.'.0'.'..."'..I"......'Q../

/* Weite all disk buffers oy
/'."."...".Q""...Q..""'..'Q'."...'.......'0"'0'0"..'.'.0.'..."/

ltluun()

REG struct tbstr *tbpp - *
REG WORD ok !

ok = 1;
tbp = firstbuf;
rm.lc (tbp)

if (! flushl(tbp)) ok = 0:
tbhp = tbp->nextbuf;

ceturn(ok) ;

/...'....'Q"""""".."...""...'.'".."‘i'."."."".".'..-0..'.'/

/® ?i11 the indicated disk buffer with the current track and sector */
/QQ.."""'Q"'Q..Q"'tt'.""""...'0."""".'."""....'Q".O."'Q'/

£111(tbp) .
REG scruct tbstr *tdp;

REG WORD ok:

if (tbp=>valid && tbp->dizty) ok = flushl(tbp);
else ok = I3

if (ok) ok = dskxfer(setdsk, settrk, tbp->buf, DSKREAD);
tbp=>valid = ok;

tbp->direy = 0:

tEpe>trk = settrk;

tbp~>dsk = setdsk;

ceturn(ok);

/"".....'.'.Q""'.".".Q.'."'."'.".'..."."."".""'."..'.."./

/® Return the address of a track buffer structure containing the ./
*

/* currently set track of the cucrrently set disk.
/t..t"'..".0"..'.."'0."0"'-t'.".."...'.ttt.t‘...t.'..'.'.0"""'/

Struct thser *gettrk()

REG struct thsts *tbps
REG struct tbstr *ltbps
REG struct tbstr *wmtbp;

Listing D-l. (coantinued)

All Information Presented Here is Proprietary to Digital Research

84

CP/M~-68K System Guide

REG WORD {msavejs
/* Check for disk on-liﬁc — i{f not, ceturn ecrcoc */

insave = setimask(7);
1f (! dskstate(setdsk].ceady)

setinask(imsave);
thp = 0L;
ceturn (thp):

}

/* Search through buffers to see if the cequired stuff ¢/
/* is already in a buffer 4

tbp = firscbuf;
itbp = 03

mebp = 03

while (tbp)

if ((tbp->valid) && (tbp~>dsk == setdsk)
&6 (tbp=->trk == settrk))

{
(it (1tbp) /* found it -~ cearrange LRU links */
ltbp=>nextbuf = tbp~>nextbuf;
thp=>nextbuf s firstbuf;
firsedbut = tbp?
setimask(imsave);
teturn (tbp);
else
atbp = ltbps /* move along to next buffer */
ltbp = tbp;

thp = tbp->nexthbuf;
}
/¢ The stuff we need is not in a buffer, we mist make a buffer ¢/
/* available, and fill it with the desired track v/

if (mebp) mtbp=>nextbuf = 0 /* detach lru buffer */
ltbp=>nextbuf = firstbuf;

firstbuf = ltbps

setimask(imsave);

if (flushl(lebp) s& £i1l(ltbp)) =mtbp = ltbpr /* success */
else . atbp = 0L ; /* tailucre ¢/
ceturn (ALdP);

Listing D-1. (continued)

D EXORmacs BIOS

informacion Prasented Jeze is Proorietary to Cigital Research

85

/'..'.'.'...'.'O...'Q'l".

- .- - LaviuIacs 04WVo

..'"."..""."......."...'..O.'..C."...'/

VAd 8tos READ Punction -=- read one sectoc . */
/'.Q."QO.'Q..'.'Q.....'..'.Q.0.0't."00'0".""..0"'..."'0...0.0"..'/
i“d“

REG BYTR Rl "

REG BYTE *q: . .

REG WORD ! :

i
REG struct tbstr *tbp;

thp = gettrk();

/* locate track buffer with sector */

if (t thp) creturn(l); /* failure */

/* locate sector in buffer and COopy contents to user area */

P = (tbp=>buf) + (setsec << 7); /* multiply by shifeing */

q * setdma;
i = 128

do {*qe+ = *pess i -e 1;}| while (i); /* this generates good code */

ceturn(0);

/."'..""".'Q""""O"""ﬁ...'.""'..."Q'."D'.""..'Q....'....'/

VAd BIOS WRITE Punction -- write one sectog ¢/
/""."'Q'.."..'t."’.t".'.'""".'Q..G'G.'.ﬁ"ﬁ"."'.ﬁ."".t.."'v/

we i te(mode)

?rn modes
REG BYTE o3
REG BYTE *q:
REG WORD iz

REG struct tbser *tbp;

/* locate track buffecr containing sector to be writtesm ¢/

thp = gettrk();

if (! tbp) zeturn (l); /* failure A4

/* locate desired

sector and do copy the data from the user acea */

P = (thp->buf) + (setsec << 7); /°» sultiply by shifting ¢/

q = sectdmag
i = 128;

do {*pe+ = *qes; | == 1;] while (i); /* this generates good code */

tbp=>direy s 1; /* the duffer is now “dicey® */

/* The track must

be written if this is a directory write ¢/

if (mode =0 1){if (flushl(zbp)) ceturn(0); else cetucn(l);}

else return(0);

All Information Pr

Listing D-1. (continued)

esented Here is Proprietary to Digital Research

86

b e & -

CP/M-68K System Guide

}

telse

/.'.0...'.".'.'.'.'."'..'.."..'Q"'..'..'..0.'.""Q"..."'.'..'.'.../

/® Read and Weite functions for the Loader 8108 v/
/".".'..Q"'..'.I.....'.'.".'."."""."Q'...Q..'.""....'O""""/

:end()

REG BYTE *ps
REG BYTZ *q;
REG WORD i;

i€ 0 (! bufvalid) || (buftrk != settrk)) &k
(! dskxfer(setdsk, sectrk, bufltrk, OSKREAD))) [ceturn(l);}
bufvalid =];
buftrk = setetrk:
P * buflirk + (setsec << 7)

do [*qes = *pee; i-al; | wnile(i);
ceturn(0);

}
tendif

/'."Q..."l'.'."'".".""'Q.".‘.....""O."""""'.".".'......./

/® 8I0S Sector Translate Function */
/O'I'".Q"'l'..".'..'.Q.'Q."...Q.'..".."'Q"'Q..0'.0"'0'.."0.'.."/

WORD sectran(s, xp)
REG WORD s ’
i(tEG BYTE *xps

if (xp) return (WORD)xp(s];
else cecurn (s+l);

/'."'..'..'.."'."t".'.'."...'..""'..'.."Q""""".""'.'."'Q'/

/® BIOS Set Exception Vector Punction 4
/.'0"."..""...'.'...""."..".."...'QQ'.".'..""'""""".""/

LOKG setxvest(vnum, vval)
WORD vnunms
i.oxc vval; -

REG LONG oldval;
REG BYTE °*vloe;

vice = ((long)vnum) << 2;

oldval = vloc->lword;
vioc=>lword = vval;

Listing D-1l. (continued) -

All Information Presented Here is Proprietary to

87

D EXCORmacs BIOS

Digital Research -

cetuctn(oldval);

/..t.i't000..0".".'.".0.'Q""...'."'Q'Ot...."."'.O.".t".t't'tt../
/* 8108 Select Disk Puanction ./
/ll"""...."'.""'QO'.""""..'.'Q..".'...0'0.".Q..'.Q'.O"..t"'/

LONG slctdsk(dsk, logged)
REG BYTE dsk;
BYTE loggedr

REG struct dph *dphp:
REG BYTE sel, se2;
BYTE stpkt{STPKTSZ]; .

"setdsk = dsk: /® Record the selected disk number */

$if ! LOADER

/* Special Code to disable drive C. On the EXORmacs, drive C */
/* is the non-removable hard disk. */

%t((asx>mxosx) [l (dsk == 2))

printser(®°neBlOS ERROR -- DISK °);
portout (PORT1, 'A'+dsk); :
printser(® NOT SUPPORTEDnc®);
tecurn(0L);

endif

dphp = wdphtab{dsk];
{i! (! (logged & Oxl))

hmpack.dskno = cnvdsk(setdsk];
hmpack.coml = 0x30;
hmpack.com2 = 0x02;

actvdsk = dsk;

dskstate{dsk] .change = O3
sendpkt(&hmpack, 7);

{.t (! dskwait(dsk, 0x72, 0x0))

sendack():
ipcstate = IDLE;
ceturn (OL);

getscpht(stpkt) s /* determine disk type and size */
sendack();

ipestate = IDLE;

stl = stpkt(PRTSTPRM];

st2 = stpkt(PEKTSTPRH+l];

Listing D-1. (continued)

All Information Presented Here is Proprietary to Digital Research

CP/M-68K System Guide D EXORmacs BIOS

t‘: (stl & Ox80) /* not ready / teady °/ i

dskscate{dsk] .ceady = 0O
tecurn(0L);

}
else
dsxstate(dsk] .ceady = 1;
S~ switch (stl & 7)
case 1 : /* floppy disk */
dphp->dpbp = &dpbl;
break;
case 2 : /* hard disk */
dphp->dpbp = &dpb2;
break;
default : biosecc(“Invalid Disk Status®);
dohp = OL;
bceak;
I
ceticn(dphp):

¢if ! LOADER
VAMAAMA AL A A A A A L AR LR A R L Y

VA */
/* This function is included as an undocumented, ./
/* unsupported method for ZXORmacs users to format */
/* disks. [t is not a part of CP/M-68K proper, and v/
/* is only included here for convenience, since the */
/* Motorola disk controller is somewhat complex to v/
’* program, and the 3I0S contains supporting coutines. */
/. -
/t"'Qt"."'"QQt""".'t"'C..""...I"""'O..."Q"t‘t.""/
format(dsk)
REG WORD dsk:

7 >

[REG “ORD cetval;

N L€ (t slcedsk((BYTE)dsk, (BYTE) 1)) return;

fmepack.dskno = cnvdsk{ secdsk]; .

actvdsk = secdsk:

dskstace(setdsk].cnange = 03

sandpkt(sfmtpack, 7);

if (! dskwait(setdsk, 0x70, 0x0)) cetval = Q; -
else cetval = 1;°

Listing D-1l. (continued)

All Information Presented Here is Propriecary to Digital Researcch

89

sendack();
ipcstate ¢ IDLE;
cetucn(cetval);

}

fendif

/'.O..."..'..O'..Q..'...."""'.OIC.'-'.O..0""'...'."'.'."..'.'.'.'/

/* . r ey

/® 3ios initialization. Must be'done before any cequlac BIOS ¢/

V&d calls ace performed. :/
*

/"'...."'...'.'"0'.'..""..".."""".Q."".'.O.".""."O'...Q'./

biosinit()

initpres(); .
initdsks();

!
iniepees()

Portinit (20RTL);
portinit(PORT2);

t

initdsks()

REG WORD i
REG WORD iasaves

€ ! LOADER ’
for(1-0:i<wm: i)

tbuff{il.valid = 0¢
eouf(i].dircy = 0s
if ((i*l) < NOMTB) tbuf{i]).nextbuf = stbuflisll;
} else touf(i] .nextbuf = 03
tirstbuf = sebufl0l;
lastbuf = Gtbuf{NUMTB~-l];
telse
bufvalid = 03
tendif

fnz (i= 03 i <= MAXDSX; i +e])
dskstate{i] .state = IDLE:
dskstace{i] .ceady = 1;
| dskstate{i] .change = 0;
imsave = setimask(7): /* turn off interrupts */

inccount = Q3
ipcstate = [DLE;

Listing D-1. (continued)

All Information Presented Here is Proprietary to Digital Research

90

B . L I e I T R b

o o ot e it S i e

- Cw A, i e

T e I

r e e b aa bt o e

CP/M-68K System Guide

*/
¢/

| setimask({msave); /® tuzn on interrupts */
/0'.'..l""..t'...O..'."'...Q-Q"'.'...Q."'".Q.'Q.C".."'.."O""'.’
/'
/* 3108 MAIN ENTRY -~ Branch out to the various functions.

L]

*/

/".'."."".'..'..'..."QI'""..'.'."""'.'...'."""'l'.""'.'."/

- LONG cbios(d0, 41, d42)
REG WORD d0;

i{tm LONG dl, 423
?w'.t.ch(dﬂ)

case Q: biosinit():
breaks

$if ! LOMOER
case l: flush();
initdsks():
wboot():
/* breaks ¢/
tendif
case 2: return(portstat(PORTL));
/* breaks */

case Jl:° ceturn{portin(PORTL));
/* Screak;. */

case 4: portout(PORTL, (char)dl):
break;

case 5: ;
case 6: portout(PORT2, (char)dl);
break;
case 7: return(poczin(PORT2));
/* break; */

/\' case 8: settrk = O3

- break:

— case 9: return(slctdsk((char)dl,
/* break; ¢/

case 10: settrk = (int)dl;
break;

case ll: satsec = ((int)di-l);
break;

Listing D-1l.

(

All Information Presentad Here is Proprietary to Digital Research

/* INIT o/
/* WBOOT e/
/* CONST o
/* CONIN o/
/* coNOUT .y
/* LIST o
/* PUNCH o
/® READER e/
/* BOME ./
(chac)d2)): /®* SELDSK ¢/
/% SETTRR o
/* sersec o
(continued)

91

D EXORmacs BIOS

442 | LOAOER

fendif

t1f ! LOADER

lendif

$if ! LOADER

tendif

case 12: setdma - 41 /*® SETDMA */
breaks

case 13: retuen(czead())s ' /* READ ¢/
/* breans */

case l4: creturn(write((chac)dl)); /® WRITE */
/® breaksy */ .
case 1S: {f (*(BYTE J)(PORT! + PORTSTAT) & PORTTDRE |}
ceeurn (Ox0ff)3
else ceturn (0x000);
/* break; */

case 16: return(sectran((int)dl, d2)): /* SECTRAN ./
/% break; */
case l8: return(imenmtabd); /* GMRTA */
/* breaks */
case 19: return(iobyte)s /* GETIOB ./
/* break; */
case 20: iobyte = (int)dl; /* SETIOB ./
break;
case 21: if (flusn()) ceturn(OL); /* FLUSHE */
else tecurn (OxE£LLL)

/® bgeak; */

case 22: return(setxvect((int)dl,d2)); /* SETXVECT */
/* breaks */

/""'""..."Q-C..'.'."'...."'.'.'.'."'..'."'.."."./

/* This function is not part of a standard BIOS. v/
/* It is included only for convenience, and will */
/* not be supported in any way, nor vill it ./
/* necessarily be included in future versions of */
/* CP/M=68K *

/""".'..'"'.'.'"..C""."...‘......."."."'.""...’

case 63: recurn(! format((int)dl))3 /® Disk Pormacter */
/* break; */

default: return{OL);
breaks

} /% end seiten */

} /¢ =D oP BICS ¢/

Listing D=1. (continued)

All Information Presented Here is Proprietary to Digital Research

92

- —_———— A ——— = v C——

B R LI T

o s

v e ihes oewet el o

vl e

PRI G

b e n

et —

[N

L P N

e e - B g — 8 o

o

()

CP/M~-68K System Guide

/®* End of C Bios */

NORMBIOS.H

This 3hould be ceriamed “"BIOSTYPE.H® 1f you are comoiling a

normai 3(0S.

$define LOADER 0
tdefine CTLTYPE 0

LOADBIOS.H

This snould Se renamed "3IOSTYPE.H" if you acte compiling a

loader 310S.

tdefine LOADER 1
tdefine CTLTYPE 0

BIQSA.E

This 13 the assembly langquage interface needed by the normal

BIOS.

.text

Listing D-1.

AlL Information Prasentad Here

(continued)

D EXORmacs BIOS

is Propriecary to Digital Research

93

.globl _init
.globl _biosinit
.globl _flush
.globl _wboot
.3lobl _cdios
.qglobl _dskia
.globl _dskic
.jlobl _setimask .
.globl _ccp '
L]
L
init: lea entry,al
: move.l a0,$8C
lea _dskia,ad
aove.l ad,$3fc
nove $$2000,sc
js¢ _diosunit
clc.l a0
cts
[]
_wboot: clc.l d0
jmp L 4
*
entry: move.,l d2,-(a7)
move.l dl,-(a7)
move.w d0,-~(a7) .
jse _cbios
. add $10,a7
cce
*
dskia: link aé,40 . i
mover.l d0-47/a0-35,~-(a7)
jst _dskic
movex.!l (a?)+,d0-d7/2a0-a3
unlk asé
cce
*
_setimask: move sr,d0
Lst $8,d0
and. ! $7,40
nove sc,dl
toc.w $8,dl
and, w $S€££8,dL -
add.w 4(a?),dl
toc.w t3,4l
move dl, st
ces -
L
.end

Listing D-1l.

(continued)

All Informacion Presen:aed Here is Proprietary to Digital Research

94

- V.

o anloled me

PR U N R

L bmmema e W aime e

CP/M=-68K System Guide

BIOS.

8 e o

_bios:

.

.text

.3lool
.glool
.3lool
.globl
.3lool
.glool

link
nove. L
move. L
nove. ¢
move
ilea
move. Ll
)sc
unlx
cts

_dskia: link

*

movem. L
isc
movem. 1
un Lk
cte

_3@zimas¢: aove

8

.—.4

I

Lse
and.l
nove
€OC.w
and.w
add. «#
-1
move
ces

.end

LDBIOSA.S

bios
biosinit
cdios
_dsxia
_dskic
_Setimask

-

aé, 10
d2,-(a7)
dl,~-(a7)
40, -(a7)
#52000,sc
_dski13.a0
ad,5 lfc

a6,40
40-47/20-a5,-(a7)
_dsk:ic | .
(a7)+,d30-d7/ad~-as
as

5z,430
$3,30
$7,40

sc, 3l
#3.dl
$SEESA, 4L
4(a7),31
8,41

41, 3¢

Listing D-l.

This (s the assemdbly language intecrface used by the loadec

(continued)

Information Presented Here is Proprietary to Digital Research

95

D EXORmacs BIOS

CP/M-68K System Gulide

These type definitions acre needed by the C BIOS.

BIOSTYPS.A

/....'.'.'.'.'..."'..'.....".'.""..'.."...'./

/'
/'
/*
/'

¢/

Portable type definitions for use */
with the C B3I0S according tp e/
CP/M-68K (tm) standacd usage. ./
*/

/"".'.""."'.."..'....Q'.'G....'t'.'."f.."/

tdefine
tdefine
tdefine
tdefine
$define
tdefine
jdefine

tdefine
{define
tdefine
tdefine
tdefine

LONG long

ULONG unsigned long
WORD short int
UWORD unsigned short
3YTE chag

vayTe unsigned chac

voID

REG register
LOCAL auto
MLOCAL static

GLOBAL extscn
ZXTEZRN extern

/.0.0."00"'."'0."‘...0'."Q..."Q.O"'.""../

Listing D-1.

End of Appendix D

(continued)

v

sBaUKmacs bivd

All lnformation Presented Here is Proprietary to Digital Research

we

- —

cep/ M 638

Appendix E

Putboot Utility Assembly Language Source

Qa0

Source File: putdoot.s

WO AR NS

28 00000000

38 00000000
31 000004004
32 00000008
33 go0goaac
34 J0000012
35 0gQcoo01l3
36 000000LC
37 00000020
318 00000022
39 QG000024
40 00000026
41 0000002A
42 000Q002E

4E560000
206£0008
43E803sC
23C900004030
423900004094
00FCO031L
0C180020
STFA

51A8

L0
§70001A%
0c130020
5626

Listing E-1l.

Asseabdblec

Revision 02.01 Page 1

NPT ITRCETRAOT LSS P EON AN OO ERUCTPOOUTCRAOPOIRTICEIRACROETROESN

Program to Write 3oot Tracks for CP/M-68K (tm)

Copycight Digital Research 1982

¢ & ® 0 @

-
-«
-
.
L]
*®

NS NC O VP C PR RERNC PO IR INCOC OO N L P ROTREONCRT RV ERTIROPQOCETITTS
.

L 3

-

prntses = 9 BDOS Punctions
dsaidsk = 14
open = 15
ceadsey = 20
dsetdma = 26
L
seldsk = 9 8I0S Func:tions .
segtrk = 10
setsec = 11l
isetdma = 12
Jrice = 14
sectcan = 16
flusa = 21
L]
bufcne = $30
bufsize = $80*bufente
.
. text
L 3
stace: link a6, 40
amove.l 8(aé),ald base page address

lea $Sc(ad),al
move.l al,fcd.
clc.b nflag

add ¢s3L,20 first charactec of command tail
scan: cmpi.D #$20,(ad)+ skip over blanxs

beq scan

sub.l tLl.a0
scanl: tst.d (ad)

beq erxit

cmpi.b ¥S2d, (a0)+ check foc -H (lag

bne aohyph

PUTBOQT Assembly Language Source

97

—

-~y oo

43 00000030
44 00000034
45 00000038
46 0000003E
47 00030042
48 0000004A
49 00000054
50 00000056
S1 000000SA
$2 0000005C
$3 00000060
54 00000062
55 00000066
cep/ M 6 3

- - e

0C130048
§6000196
4A 3900004094
6600018C

L3FCO0PP00004094
04890000002400004080

60C6
0C100020
66C8
0C180020
§7FA
0C200061
6D04
00

Soucce File: putdoot.s

$6 30000068
$7 0000006C
S8 00000070
$9 00000074
60 00000078
61 0000007C
62 000000Q7E
63 00000080
64 00000084

68 0000008A
§9 00000082
70 00000094
71 00000096
72 Q000009
73 0000009C
74 000000A2
75 000000A3
76 000000AE

80 00000082
81 00000088
82 000000BE
83 000000C2
84 000000C+4
35 000000C6

" 8§ 000000CA
87 00000000
83 00000902
89 000000D4
30 00000006
31 0000000C
92 00000082
93 000C00EA
94 00000QEE

All Information Presented

04500020
0Cl00041
6D000QLSA
0C100050
68000152
1010

4880
907C0041
33C00000408A

30 3Cooo®
223900004080
4E42
oc4Q00rF?
§60C
22300000034
4EF9000001D2
207900004080
42280020

243C00000000
42790000408€E
3J03C001A
2202

iE42
1gX00l4
223900004080
EL2

4a40

66 LA
048C00000080
$2790000408E

0C79008000004G8E

6E0000FE
80CE

- ———

aohiyph:

scan:

Asseablec

upper:

cpenok:

[N]

rloop:

copi.bd
bne
tse.b
bne
nove.bd
sub.l
bea
cmpi.b
bne
cmpi.b
beq
cmpi.b
ble

648, (a0)+
erxit
hflag
ecxit
¥set,nflag
$$24, tcd
scan

#$20, (a0)
scanl
#3520, (a0)+
scan2
1S61,-(a0)
uppet

Revision 02.01

sub
cmpi.b
ble
cmpi.b
bgt
move.D
ext.vw
sub.w
oOVe. ¥

$$20, (a0)
#5411, (a0)
erxit
$550, (ad)
erxit
(ad),d0

40
1541,40
d0 ,dsk

cpen file to copy

nOVE. W
move.l
trap
cmpi.w
bne
move.l
pL
move.l
cle.bd

read

sove. Ll
cle.w
ROVE. W
sove. 1
trap
a0QVE. w
sove.l
trag
tst.w
bae
add.l
add. v
capi.v
sge
bea

jopen, a0
fcb,dl

2
#500€£,40
openok
topntl,dl
erx

£cb, a0
32(a0)

tbut,d2
count
tdsecdma, 30
42,41

"2
}ceadseq, d0
ten,dl

2

40

wetout
$128,42
¢l,count
$butfcne,count
sutoflx
¢loop

change to 2nd default fcb

*

get disk letter

upshift
Page 2

compace with range A -~ P

put disk letter into cange g - 15

Listing E-1. (continued)

Here is Proprietary to

98

Digital Research

i
i
i

-~

TN

~

CP/M-68K

3s
56
97
98 Q00000PC
99 00000OCF4
100 J0000GFA
L0l G00003FC
102 J00000PE
103 00000100
104 00000104
105 20000106
108 0000010A
167 00000110
108 00000113
109 90000118
110 cocQaolL2s
ce?2/ % § 3
Scuctce File:

111 oooo001l2C
112 00000132
113 00000134
114 000001238
115 00000L3A
116 00000140
117

118 00000146
119 o0o000aldc
120 Qoo0o00L4E
121 00000154
122 0000015SA
123 0000015C
124 00000164
125 000GO01l6A
126 0000016C
127 00000172
128 000001Ll78
129 d0000L7A
130 00000172
L31 000004134
132 00000135
133 goo0001l3cC
134 G00Q0190
135 000cgi32
136 00000196

117 000Q0:isC

138 0000013%
139 000001A2
140 00000LlAG
141 000001A6
142 000001A8

143 00000 1AA.

144 0000030
145 00000136
146 000001CO

All Information Presented Here is Proprietary to Digital Researcha

System Guide

3103C0009
32390000408A
4202

dE 43

4A 30

67000008

2040

2068000%
310000004084
33£800020000408C
427900004088
JIFC000100004086
41F 900000000
aaqo0 AsSseabdblecr

puthooe. s

443900004094
660C
250601
6606
DLFC0000001C
232800004099 weel:
L]
iA7900004108E

6774
323900004086
327903004034
sPLE
33PC000100004C336
303900204044
s240
13C060C04088

B0790C335408C

&C78
303C000A
323300003088
4243
323900004086
303C2008
4E43
3g3Coa0C
223900004030
4243
Joixooce
4241

€43

40

3638
527900004086
5379C000408E
063900000058000004090
6084

wrtoue:

wloop:

. TOve.w

weite

move.w
0Vve.w
cle.d
trap
tse. Ll
Seq
zove.l
movae. l
a0vVe.w
TOVEe. W
clr.w
move.w
lea

40,20
14(a0),ad
(ad), spt
l4(a0Q),0fe
(243
tl,sect
buf, a0

Revision 02.01

tse. b
bne
cmpi.w
bne
add. 1
mOVe. Ll

tst.w

sect,dl
cmp.w
ble
move.w
sove.w
add.
20Ve.w
cmp.w
bge
ove.w
moOve.w
trap
move.w
move.w
trap
nove.vw
aove.l
trap
ove.w
Cle.w
trap
tse.w
bne
add
sub
add.l
bca

hflag

weel
$3601a, (20)
weel
#28,a0

ad, bufp

count
exit

E PUTBOOT Utility

select the disk

check for select etroc

gdet OPB address

get SeCtors per track
get offset

stact at trk Q

start at sector 1

Page 3

check for end-of-track

spe,dl

sok

t1, sect
eek, 20
1,20

dg, tck
off,d0
oflex
fsetnri,do
erk,dl

13

sect,dl
}sacsec,do
43
tisecdma,dn
bufp,dl

[3]
fweite,dd
d1

[3]

40

veteex
i1, sect
$l,count
$128,bufp
vwloop

99

advance %9 new track

set the track

set sactor

set up dma_address foc wcite

and weite

cheek for weite eccoc

inctemant sectoc nusber

(continued)

Cr/Mm=oohn

148 000001C2
149 000001CS
150 9000001CS8
151 00GQOLCA

153 0c0001lCC
154 000001D2
155 000001D6
156 000001D8

158 00C001DA
159 000001E0
160 000001E2
161 000001E8
162 000Q0L1EA
163 000001FQ
164 000001r2
165 00000LlF8
ce/ M 6§38

166

167

168 00000000
159

170 °

171

172 00000000
173

174 00004080
175 00004084
176 Q0004086
177 00004088
178 0000408A
179 0000408C
180 0000408E
181 00004090
182 0000409¢
183

184 00004096
184 00000000
135

186 00000000
186 00000008
186 00000010
137 00000017
187 qaoo000.L?
188 00000026
1388 00000022
189 00000034
189 3000003C
189 00000044
189 000000¢C
190 0000004E

A1l Information Presented Here is Proprietary

SDystem Gulue

303C0015
&4l
4ZSE
4875

223C00000000
30XC0009
4242

6028

223C00000017
60F0
223C00000026
50E8
223C00000048
SO0EQ

223C00000060
60D8

exit:

erxit:
erxs

*
selecrx:
wrtecrx:
bufoflx:

oflex:

900 Asseablec
Source Pile: putboot.s

496B876616C626420
436FP8D6D6L6E6420
4C596E650D0A 24
§3656C6563742045
T27.26F72000A 24
$772697465204572
7267 72000A24
43616B6E6PT4204P
70656220536277572
63652046696C6500
OA24
427566666572204P

— -~ cee -

erste:

sslstc:
wgeser:

opntl:

bufofl:

Listing E-1l.

move.v
trap
unlk
rts

move.l
move.w
trap
bra

moOve. 1
bra
move.l
bra
move.l
bra
move.l
bra

#flush,do
]
a6

jecgaer,dl
¢penescr, d0
(¥}

exit

fselstr,dl
erx
fweestr,dl

erx
$bufofl,dl
erx
$trkofl,dl
erx

Revision 02.01

.even
.ds.b
.ds.l
ds.w
.ds.w
.ds.w
.ds.w
.d8.w
.ds.w
.ds. 1l
.ds.b

.daca

.dc.b

.de.b
.de’b
.de. b

.dc.b

T e e S —

bufsize+128

e

-3 EVALINIV L Vwdbdadwy

exit Loeg:ion - flush bios buffecs

and exit wo CCP

miscellanecus ecrors
pecint ecror message and exit

disk select error
disk write ecroc

buffer overflow

Page 4

fcb address
sectors per track
current sectoc
current track
selected disk

1st track of non-boot area

'tavalid Command Line*,13,10,°'S’

*Select Brrorc',13,10,°'S’

‘weite Brror®,13,10,°'S’

‘Cannot Open Soucce Pile’,13,10,'S’

‘Buffec Owerflow’,13,10,'S$’

100

(continued)

to Digital Research

cewme = e e ———

5

A BE AN et ot et Bv e atnst b wem ®

[P

ER -

AL 4 e me 8 e s e o s s Gevn b s hee e dhs

L e eiene e

— . bestma s e ceemn

o0 G et e @ n e b e & aet

— -y o= Tt e =~

- — -~

130 000000S6 766572666C6P7700

130 QO00000SE 0A24

131 00000060 546P6F204D756368

trkofl:

131 00000068 204461746120666F
L91 00000070 7220537973746560
131 00000078 205472616368730D0
191 00000080 OA24 -

192

193

194 00000082
ce2/ M 63000

Source Pile: putboot.s

Syabol Tabdle

buf 00000000 3SS
bufp 00004090 8Ss
dsazdma 000000 LA ABS
erxit 000001CC TEXT
nflag 00004094 3ssS
oflex Q0000 LF2 TEXT
prntstr 00000009 ABS
scanl 00000024 TEXT
seldsk 00000009 Ases
settrk QQ00CA0A ABS
(349 00004088 3sS
weite 0Q000U0E ABS
wretste 0000Q025 DATA
Ail InZormation

.dc.b

.end

‘Too Much Data for System Tracks',13,10,°'S$*

- R A

Asseablec Revision 02.01 Page 5
oufcnt 00000080 ABS bufofl 00000042 DATA bufoflx
bufsize Q0004000 ABS count 0000408E 3s3 dseldsx
dsk 0000408A 8Ss erste 00000000 DATA erx
exit 000001lC2 TEXT fcd Q0004080 3S3 flusn
i1setdma 0000000C AsS nonypn 00000056 TSXT off
open 00Q0000QF ABS openox 000000A8 TEXT opafl
teadseq 00000014 ABS ¢ loop Q00000BE TEXT scan
scan2 C000005C TEXT sect Q0004036 3S3 sectran
selecx 00000 LDA TEXT selstr 00000017 2ATA s3etsec
sox 00000 L7A TEXT spt 0000433¢ 353 stact
trkofl 00000050 DATA upper 0000005C TEXT wloop
weel 00000140 TEXT wrrerx 000Q0LE2 TEXT wrtout

Listing BE-1l. (continued)

End of Appendix E

Presentad

Hece 1is

10

2r

1

~
~

prietary

to Digital Research

00000 L2ZA
0000000E
00000102
00000015
3000408C
00000034
900000 1C
00000010
00000008
00000000
Q0000146
000000F 0

N e de dode '-1

TEXT
ABS
TEXT
ABS
38s
DATA
TEXT
ABS
A3S
TEXT
TEXT
TEXT

nbosn cbes et

et 03 a il st en b Bevre. Nt d s Soae 0B ads < b

o e W e ol A e

[P S e

o~
‘)
N .

Appendix F
Motorola S-Records

F.1l S-record Pormat

The Motorola S-record format is a method of representing
binary memory images in an ASCII form. The primary use of S-records
is to provide a convenient form for transporting programs between
computers. Since most computers have means of reading and writing
ASCII information, the format is widely applicable. The SENDC6S

utility provided with CP/M-68K may be used to convert programs into
S-record form.

An S-record file consists of a sequence of S-records of
various types. The entire content of an S-record is ASCII. When a
hexadecimal number needs to be represented in an S-record it is
represented by the ASCII characters for the hexadecimal digits

comprising the number. Each S-record contains five fields as
follows:

Pield: S type length address data checksum
Characters: 1 1 2 Zy—_b—oer—6 variable 2
L!/SOMQ ’

Figure P-1. S-record Pields

The field contents are as follows:

Table P-1. S-record FPield Coatents

Field : Contents)
S ' The ASCII Character 'S'. This signals
the beginning of the S-record.
type A digit between 0 and 9, represented in
ASCII, with the exceptions that 4 and 6 -

are not allowed. Type is explained in
detail below.

All Information Presentad Here is Proprietary to Digital Research

103

Table P-l. (continued)

Field Contents

length The number of character pairs in the
tecord, excluding "the first three
fields. (That is, one half the number
of characters total in the address,
data, and checksum fields.) This field
has two hexadecimal digits, representing
a one byte quantity.

address The address at which the data portion of
the record is to reside in memory. The
data goes at this address and
successively higher numbered addresses.
The length of this field is determined
by the record type.

data The actual data tc be loaded into memory,
with each byte of data represented as a
pair of hexadecimal digits, in ASCII.

checksum A checksum computed over the length,
address, and data fields. The checksum
is computed by adding the values of all
the character pairs (each character pair
represents a one-byte quantity) in these
fields, taking the one's complement of
the result, and finally taking the least
significant byte. This byte is then
represented- as two ASCII hexadecimal
digits.

P.2 S-record Types

There are eight types of S-records. They can be divided into
two categor ies: records containing actual data, and records used to
define and delimit groups of data-containing records. Types 1, 2,
and 3 are in the first category, and the crest of the types are in
the second category. Each of the S-record types is described
individually below.

All Indormation Presented Here 1s Proprietary to Digital Researzch

104

- s m——— — e

CP/M-68K System Guide F.2 S-record Types

Table #~2. S—~record Types

Type Meaning

0 This type is a header record used at the beginning
of a group of S-records. The data field may
contain any desired identifying information. The
address field is two bytes (four S-record
characters) long, and is normally zero.

1 This type of record contains normal data. The
address field is two bytes long (four S-record
characters).

2 Similar to Type 1, but with a 3-byte (six S-record
characters) address field.

3 Similar to Type'l, but with a 4-byte (eight S-
record characters) address field.

S This record type indicates the number of Type 1,
2, and 3 records in a group of S-records. The
count is placed in the address field. The data
field is empty (no characters).

7 This record signals the end of a block of type 3
S-records. If desired, the address field is 4
bytes long (8 characters), and may be used to

i contain an address to which to pass control. The

data field is empty.

8 This is similar to type 7 except that it ends a
block of type 2 S-records, and its address field
is 3 bytes (6 characters) long.

9 This is similar to type 7 except that it ends a
block of type 1 S-records, and its address field
is 2 bytes (4 characters) long.

S-records are- produced by the SENDC68 utility program
(described in the CP/M-68K Operating System Programmer's Guide).

End of Appendix P

ALl InZcrmation Presented Jere is Pragrietary o Digital Research

4 e mmes et mu e e ————— e wm et e em——— e, @

b et wr e et s ae,

[P SN

oien aemivese

Appendix G
CP/M-68K Error Messages

‘This appendix lists the error messages returned by the internal
components of CP/M-68K: BDOS, BIOS, and CCP, and by the CP/M-68K
system utility, PUTBOOT. The BIOS error messages listed here are
specific to the EXORmacs BIOS distributed by Digital Research.
BIOSes for other hardware might have different error messages which
should be documented by the hardware vendor.

The error messages are listed in Table G-l in alphabetic order
with explanations and suggested user responses.

Table G-1. CP/M-68K Error Messages

Message Meaning

bad relocation information bits

CCP. This message is a result of a BDOS
Program Load Function (59) error. It indicates
that the file specified in the command line is
not a valid executable command file, or that
the file. has been corrupted. Ensure that the
file is a command file. The CP/M-68K Operating
System Programmer's Guide describes the format
of a command file. If the file has been
corrupted, reassemble or recompile the source
file, and relink it before you reenter the.
command line. o

BIOS ERROR ==~ DISK X NOT SUPPORTED

BIOS. The disk drive indicated by the variable
*X" is not supported by the BIOS. The BDOS
supports a maximum of 16 drives, lettered A
through P. Check the documentation provided by
the manufacturecr for your particular system
configuration to £find out which of the BDOS
drives your BIOS implements. Specify the
correct drive code and reenter the command
line.

All Information Presented Here is. Proprietary to Digital Research

107

L&/ 1Uon Iyacem sulue G CP/M=68N Lrror Messages

Table G-1. (continued)

Message Meaning

BIOS ERROR == Invalid Disk Status *

BIOS. The disk controller returned unexpected
or incomprehensible information to the BIOS.
Retry the operation. If the error persists,
check the hardware. If the error does not come
from the hardware, it is caused by an error in
the internal logic of the BIOS. Contact the
place you purchased your system for assistance.
You should provide the information below.

l) Indicate which version of the operating
system you are using.

2) Describe your system's hardware
configuration.

3) Provide sufficient information to reproduce
the error. Indicate which program was
running at the time the error occurred. If
possible, you should also provide a disk
with a copy of the program.

Buffer Overflow

PUTBOOT. The bootstrap file will not fit in
the PUTBOOT bootstrap buffer. PUTBOOT contains
an internal buffer of approximately 16K bytes
into which it reads the bootstrap file. Either
make the bootstrap file smaller so that it will
fit into the buffer, or change the size of the
PUTBOOT buffer. The PUTBOOT source code is
supplied with the system distributed by DRI.
"Equate hufsize (located near the front of the
PUTBOOT source code) to the required dimension
in Hexidecimals. Reassemble and relink the
source code before you reenter the PUTBOOT
command line.

Cannot Open Source Pile

PUTBOQIT. PUTBOOT cannot locate the source
file. Ensure that you specify the correct
drive code and filename before you reenter the
PUTBOC'T command line.

All Information Presented Hera is Proprietary to Digital Research

108

CP/M~-68K System Guide G CP/M-68K Error Messages

Table G-1. (continued)

Message Meaning

CP/M Disk change error on drive x

BDOS. The disk in the drive indicated by the
variable x is not the same disk the system
logged in previously. When the disk was
replaced you did not enter a CTRL-C to log in
the current disk. Therefore, when you
attempted to write to, erase, or rename a file
on the current disk, the BDOS set the drive
status to read-only and warm bootad the system.
The current disk in the drive was not
overwritten. The drive status was returned to
read-write when the system was warm booted.
Each time a disk is changed, you must type a
CTRL-C to log in the new disk.

CP/M Disk file error: filename is read-only.
Do you want to: Change it to read/write (Q),
or Abort (A)?

BDOS. You attempted to write to, erase, or
rename a file whose status is read-only.
Specify one,of the options enclosed in
parentheses. If you specify the C option, the
BDOS changes the status of the file to read-
write and continues the operation. The read-
only protection previously assigned to the file
is lost.

If you specify the A option or a CTRL-C,
the program terminates and CPM-68K returns the
system prompt.

CP/M Disk read error on drive x
Do you want to: Abort (A), Retry (R), or Continue
with bad data (C)?

BDOS. This message indicates a hardware error.
Specify one of the options enclosed in
parentheses. Each option is described below.

Option Action

4 A or CTRL-C Terminates the operation and
CP/M=-68K returns the system
prompt. (Meaning continued on
next page.) i

ALl Informacion Pr2sentad Fere is Prooriataryv o 2igital Research

109

WE / NE T VWAL W WU wwis wwawew

Table G-1. (continued)

Message Meaning

oEtion
R

CP/M Disk read error on drive x (continued) -

Action

Retries operation. If the retry
fails, the system reprompts with
the option message.

Ignores error and continues
program execution. Be careful
if you use this option. Program
execution should not be
continued for some types of
programs. For example, if you
are updating a data base and
receive this error but continue
program execution, you can
corrupt the index fields and the
entire data base. For other
programs, continuing program
execution is recommended. For
example, when you transfer a
long text file and receive an
error because ocne sector is bad,
you can continue transferring
the file. After the file is
transferred, review the file,
and add the data that was not
transferred due to the bad
sector. :

parentheses.,
Option

A or CIRL-C

CP/M Disk write error on drive x
or Continue with bad data (C)?

BDOS. This message indicates a hardware error.
Specify one of the options enclosed in

Each option is described below.
Action

Terminates the operation and
CP/M-68K returns the system

prompt.

Retries operation. If the retry
fails, the system reprompts with
the option message (Meaning
continued on next page.)

U

All Information Presented Here is Proprietary to Digital Research

110

s o o e o & e st . ey =y

B Db T e EE———

Cy/M-68K System Guide ' G CP/M-68K Error Messages

Table G-1. (continued)

Message Meaning

CP/M Disk write error on drive X (continued)

Option Action

c Ignores error and continues
program execution. Be careful
if you use this option. Program
execution should not be
continued for some types of
programs. For example, if you
are updating a data base and
receive this error but continue
program execution, you can
corrupt the index fields and the
entire data base. For other
programs, continuing program

. execution is recommended. For
example, when you transfer a
long text file and receive an
error because one sector is bad,
you can continue transferring
the file. After the file is
transferred, review the file,
and add the data. that was not
transferred due to the bad
sector.

CP/M Disk select error on drive x .
Do you want to: Abort (A), Retry (R)

BDOS. There is no disk in the drive or the
disk is not inserted correctly. Ensure that
the disk is securely inserted in the drive. If
you enter the R option, the system retries the
operation. If you enter the A option or CTRL-C
the program terminates and CPM-68K returns the
system prompt.

CP/M Disk salect error on drive x

BDOS. The disk selected in the command line is
outside the range A through P. CP/M-68K can
support up to 16 drives, lettered A through P.
Check the documentation provided by the
manufacturer to find out which drives your
particular system configuraition suppor ts.
Specify the correct drive code and reenter. the
command line.

All Information Presented Here is Proprietary to Digital Research

111

Table G-1. (continued)

Message Meaning

File already exists ,
H .
_ CCP. This error occurs during a REN command.
The name specified in the command line as the
new filename already exists. Use the ERA
command to delete the existing file if you wish
to replace it with the new file. If not,
select another filename and reenter the REN

command line.

insufficient memory or bad file header

CCP. This error could result from one of three
causes:

1) The file is not a valid executable command
file. Ensure that you are requesting the
correct file. This error can occur when you
enter the filename before you enter the
command for a utility. Check the
appropriate section of the CP/M-68K
Operating System Programmer's Guide or the
CP/M-68K Operating System User's Guide for
the correct command syntax before you
reenter the command line. If you are trying
to cun a program when this error occurs, the
program file may have been corrup ted.
Reassemble or recompile the source file and
relink it before you reenter the command
line.

2) The program is too large for the available
memory. Add more memory boards to the
system configuration, or rewrite the program
t0 use less memory.

3) The program is linked to an absolute
location in memory that cannot be used. The
program must be made relocatable, or linked
to a usable memory location.. The BDOS
Get/Set TPA Limits Function (63) returns the
high and low boundaries of the memory space
that is available for loading programs.

AlL Informartion Presentad Here is Proprietary o Digital Research

112

CP/M-68K System Guide G CP/M-68K Error Messages

Table G-1. (continued)

Message Meaning

Invalid Command Line

PUTBOOT. Either the command line syntax is
incorrect, or you have selected a disk drive
code outside the range A through P. Refer to
‘the section in this manual on the PUTBOQT
utility for a full description of the command
line syntax. The CP/M-68K BDOS supports 16
drives, lettered A through P. The BIOS may or
may not support all 16 drives. Check the
documentation provided by the manufacturer for
your particular system configuration to find
out which drives your BIOS supports. Specify a
valid drive code before reentering the PUTBOOT
command line.

No file

CCP. The filename specified in the command
line does not exist. Ensure that you use the
correct filename and reenter the command line.

No wildcard filenames .
CCP. The command specified in the command line
does not accept wildcards in file
specifications. Retype the command line using
a specific filename.

Program Load Error

CcCPr. This message indicates an undefined
failure of the BDOS Program Load Function (59).
Reboot the system and try again. If the error
persists, then it is caused by an error in the
internal logic of the BDOS. Contact the place
you purchased your system for assistance. You
should provide the information below.

1) Indicate which version of the operating
System you are using.

2) Describe your system's hardware configur-
ation. (Meaning continued on next page.)

All

N
‘

Information Pre2sentad Hera is Proprietary to Digital Research

113

Table G~-1. (continued)

Message Meaning

3) Provide sufficient information to reproduce
the error. Indicate which program was
running at the time the error occurred. If
possible, you should also provide a disk
with a copy of the program.

read error on program load

CCP. This message indicates a premature end-
of-file. The file is smaller than the header
information indicates. Either the file header
has been corrupted or the file was only
partially written. Reassemble or recompile the
source file, and relink it before you reenter
the command line.

Select Error ' .

PUTBOOT. This error is returned from the BIOS
select disk function. The drive specified in
the command line is either not supported by the
BI10S, or is not physically accessible. Check
the documentation provided by the manufacturer
to find out which drives your BIOS supports.
This error is also returned if a BIOS supported
drive is not supported by your system
configuration. Specify a valid drive and
reenter the PUTBOOT command line.

SUB file not found

CCP. The file requested either does not exist,
or does not have a filetype of SUB. Ensure
that you are requesting the correct file.
Refer to the section on SUBMIT in the CP/M=68K

Operating System User's Guide for information
on creating and using submit files.

Syntax: REN newfile=oldfile

CCP. The syntax of the REN command line is
incorrect. The correct syntax is given in the
error message. Enter the REN command followed
by a space, then the new filename, followed
immediately by an equals sign (=) and the name
of the file you want to rename.

All Information Prasented Here is Proprietary to Digital Research

114

——— — e - —— —
J - ——— . - o . vm—— e — — C——

CP/M-68K System Guide _ G CP/M-68K Error Messages

Table G-1. (continued)

Message Meaning

Too many arguments: argument?

. cCP. The command line contains too many
arguments. The extraneous arguments are
indicated by the variable argument. Refer to
the CP/M-68K Operating System User's Guide for
the correct syntax for the command. Specify
only as many argquments as the command syntax
allows and reenter the command line. Use a
second command line for the remaining
arguments, if appropriate.

Tco Much Data for System Tracks

PUTBOOT. The bootstrap file is too large for
the space reserved for it on the disk. Either
make the bootstrap file smaller, or redefine
the number of tracks reserved on the disk for
the file. The number of tracks reserved for
the bootstrap file is controlled by the OFF
parameter in the disk parameter block in the
BIOS.

A

<:j ‘ This error can also be caused by a
bootstrap file that contains a symbol table and
relocation bits. To find out if the bootstrap
program will fit on the system tracks without
the symbol table and relocation bits, use the
SIZE68 Utility to display the amount of space
the bootstrap program occupies. The first and
second items returned by the SIZE68 Utility are
the amount of space occupied by the text and
data, respectively. The third item returned is
the amount of space occupied by the BSS. The
sum of the first two items, or the total minus
the third item, will give you the amount of
space required for the bootstrap program on.the
System tracks. Compare the amount of space
your bootstrap program requires to the amount
of space allocated by the OFF parameter.

Because the symbol table and relocation

—_ bits are at the end of the file, the bootstrap
(program may have been entirely written to the
Y system tracks and you can ignore this message.

Or, you can run RELOC on the bootstrap file to
remove the symbol table and telocation bits
from the bootstrap file and reenter the PUTBOOT
command line.

S® [/ BB WWEr W WwW Wi W ewm e - Nl [NS WA Mk Wk LIS WM e

Table G-1. {(continued)

Message Meaning

User # range is [0-.151 v

CCP. The user number specified in the command
line is not supported by the BIOS. The valid
range is enclosed in the square brackets in the
error message. Specify a user number between 0
and 15 (decimal) when you reenter the command
line.

Weite Error

PUTBOOT. Either the disk to which PUTBOOT is
writing is damaged or there is a hardware
error. Insert - a new disk and reenter the
PUTBOOT command line. If the error persists,
check for a hardware error.

End of Appendix G

All Information Presented Here is Proprietary to Digital Research

116

S tim e e e eyt e sen —————— e s s -y e seememees e e ———

St de L teiathmtie e v e mia Mmeni e s L e

-t

G et St e ¢ Bl .

R i e d I R Sadlenad s S

Index

0000, 40

_autost, 51

_ccp, 16

CcCp entry point, S0
init, 15 :
init entry point, S0
init routine, S1
usercmd, 51)

-
-
-
—
-

o>

absolute, 2

absolute data
down-loading, 50

address, 1

address space, 1

algorithms, 31

allocation vector, 1l

ALV, 41

applications programs, 5

ASCII character, S5, 20

ASCII CTRL-Z (laH), 22

AUXILIARY INPUT device, 33

AUXILIARY QUTPUT device, 33

base page, 2

BDOs, 3, 5, 6, 7, S0

BDOS Direct BIOS Function

Call 50, 13

BDOS function 61 Set Exception
Vector, 38

BIOS, 3, 5, 6,

BIOS

. compiled, 7

creating, 39

BIOS flush buffers operation,
47

BIOS function 0, 15

BIOS function 0

: Initialization, 15

BIOS function 2 Console
Status, 17

BIOS function 3 Read Console
Chatacter, 18

BIOS function 4 Write Console
Character, 19 .

BIOS function S List Character
Qutput, 20

10, 13

117

BIOS function 6 Auxiliary
Qutput, 21

BIOS function
Input, 22

BIOS function 8 Home, 23

BIOS function 9 Select Disk
Drive, 24

BIOS function 10 Set Track
Number, 25

BIOS function 1l Set Sector
Number, 26

BIOS function 12 Set DMA
Address, 27

BIOS function 13 Read Sector,

7 Auxiliary

28

BIOS function 14 Write Sector,
29

BIOS function 15 Return List
Status, 30 :

BIOS function 16 Sector.
Translate, 31
BIOS function 18 Get Address
of MRT, 32
BIOS function 19 Get I/O Byte,
33
BIOS function 20 Set I/O Byte,
36
BIOS function 21 Flush
Buffers, 37
BIOS function 22 Set Exception
Handler Address, 38
BIOS function I Warm Boot, 16
BIOS function
called by BDOS, 13
Home (8), 25
BIOS interface, 39
BIOS internal variables, 15
BIOS register usage, 14
BIOS write operation, 47
BLM, 43
Block Mask, 43
block number
largest allowed, 44

Block Shift Factor, 42

block storage, 2
BLS, 44
BLS bytes, 48
boot disk, 11, 49
boot tracks, 43
boot

warm, 47

e ——— — ———————

bootstrap loader, 6
machine dependent, 43
bootstrap procedure, 9
bootstrapping loading, 9
BSH, 42
bss' 2 '
buffer
writing to disk, 47
built-in user commands, 4
byte, 1
byte (8 bit) value, 42

c

C language, 39
carriage return, 19
CBASE feature, 51
ccp, 3, 4, 6, 7, 50
CCP entry point, 16
character devices, §
<hecksum vector, 41
CKsS, 43 ’
Cold Boot Automatic Command
Execution, 51
Cold Boot Loader, 7
Cold Boot Loader
creating, 1.0
cold start, 6
communication protocol, 20
configuration requirements, 49
Conout, 10)
CONSOLE device, 33
CP/M=-68K
customizing, 7
generating, 7
installing, 49
loading, 49
logical device
characteristics, 33
system modules, 3
CP/M-68K configuration, 39
CP/M-68K file structure, 1l
CP/M-68K programming model, 2
CPM.REL, 7
CPM.SYS
‘ereating, 7
CPM.SYS, 6, 9
CPM.SYS file, S1
CPMLDR, 9
CPMLDR.SYS, 10
building, 11
CPMLIB, 7
csv, 41
CTRL-Z2 (lAH), S

118

D

data segment, 2
device models
logical, 5
DIRBUF, 40
directory buffer, 11
dicrectory check vector, 43
disk, 6
disk access
sequential, 46
disk buffers
writing, 37
disk definition tables, 39
disk devices, 6
disk drive
total storage capacity, 43
disk head, 23
Disk Parameter Block (DPB), 11,
13, 24, 42, 43
Disk Parameter Block fields,
42
Disk Parameter Header (DPH),
11, 13, 24, 31, 40
Disk Parameter Header
elements, 40, 41
disk select operation, 24
disk throughput, 46
disk writes, 37
DMA address, 27
DMA buffer, 29
DPB, 40
DRM, 43
DSM, 43, 44

end-of=-file, 5

end-of-file condition, 22
error indicator, 24

ESM, 44 R
exception vector area, 1, 38
EXORmacs, 49

Extent Mask, 43

P

PDC, 49

file storage, 6

file system tracks, 43
Function 0, 10

——

D,

e e ———— oy {eie ey ——— - —

G

Get MRT, 11
graphics device
bit-mapped, 4

I

I/0 byte, 34
I/0 byte field definitions, 34
I/0 character, 5
I/0 devices
character, 5
disk drives, 5
disk file, 5
Init, 10
interface
hardware, S
interrupt vector area, 3

J
jsr _init, 15
. :

L068 command, 7
LDRLIB, 10
line-feed, 19
list device, 20
LIST device, 33
Loader BIOS
wrciting, 10
loader system library, 10
logical sector numbering, 41
longword (32-bit) wvalue, 40
longword value, 1, 15
LRU buffers, 48

MACSbug, 49

mapping
logical to physical, 41

maximum track number
65535, 25

memory location
absolute, 7 -

Memory Region Table, 32

mopping
logical-to=-physical, 6

Motorola MC68000, 1

119

N

nibble, 1

(o]

CFF parameter, 43, 53
offset, 1

output device
auxiliary, 21

P

parsing

command lines, 4
physical sector, 46
PIP, 35

PUTBOOT utility, 10, 11, 53

R

Read, 11

read/write head, 45

README file, 50

register contents
destroyed by BIOS, 13

"RELOC utility, 7

relocatable, 2
reserved tracks

number of, 43
return ccde value, 28
rotational latency, 41,
RTE, 10
rts instruction, 15

s

S~record files, 49
S-record systems, 50
S-records
bringing up CP/M-68K,
longword location, 50
scratchpad area, 40
scratchpad words, 40
sector, 5
Sector numbers
unskewed, 26
sector skewing, 53
sector translate table,
sectors
128-byte, 5, 45
Sectran, 11
Seldsk, 10
Set exception, 11
Setdma, 11

45,

50

41

47

Setsec, 1l

Settrk, 1l

SETTRK function, 23
SIZE68 command, 7, 8
SPT, 42

SPT parameter, 53 !
STAT, 35

system disk, 6 A
system generation, 6

T

text segment, 2

TPA, 1

track, 6 i
track 00 position, 23
transient program, 2
translate table, 31
Trap 3 handler, 10
TRAP 3 instruction, 13
Trap 3 vector, 15

trap initialization, 10
turn-key systems, 51

U

UDC, 49
user interface, 4

warm boot, 47
wo:d' 1l

word (l6-bit) value, 40, 42

word references, 36
b4
XLT, 40 ’

120

- — . - —

