€

. ween

The Software ToolwCrks
Walt °Bilofsky; Prop.

14498 GLORIETTA DRIVE o TELEPHONE

SHERMAN OAXS, CALIFCRNIA 91423 e e e . Q13 9844885
“LISP/80: 1

by Walt Bilofsky
Release 1.0

January 21, 1981

Copyright (c) 1980 Walter Bilofsky. Sale of this software

conveys a license for its use on a single computer owned or

operated by the purchaser. Copying this software or

documentation by any weans whatsoever for any other purpose 1is
\ prohibited. -

1

PREFACE

LISP/80 is an interpreter for LISP, a programming language widely used in
artificial intelligence experimentation. It includes wmore than 75
- built-in functions. It offers the essential LISP data structures and
functions, 16 bit integer arithmetic, list operations, recursion, string

operations, file I/0, and garbage collection for automatic reuse of
memory. )

A simple editor and file package, written in LISP, is included. It allows
editing of LISP function definitions and saving them on files.

Debugging aids include trace and optional break on errors. Prowision is
made for loading user-supplied machine language functions callable from
LISP programs. *

Two simple artificial intelligence programs, writtem in LISP, are
included: a guessing game which learns as it goes along, 4nd a simple
version of the famous ELIZA psychiatrist program which carries on a
conversation.

LISP/80 was written in order to provide computer enthusiasts with an
opportunity for expanding their programming skills and understanding.
Thus, LISP/80 1is intended primarily to be affordable, and, within that
constraint, relatively feature-rich and easy to use. LISP/80's most
serious limitation 1is its relative slowness; machine lang.age functions
can be used to overcome this, and there are faster microcomputer LISPs
available in the $200 price range.

LISP/80 is patterned after the IN.ERiL.ISP cialect, which is wide!} used on

PDP-10 and DECsystem-20 computers in the artificial intelligence
community.

LISP/80 provides storage capacity of abou. 3600 list cells and 1200 atom
name characters, and more on machines with over 48K of RAM. It comes in
versions for C?/M and for the HDUS uperating sys:em (relzase 1.5 and
later) for the H43/H89/289 computers, and requires .- least 438K of meuory.



Lisr,0u

1.
2.
3.
\

A
4,

e\
5.

PREFACE . . . . . . .

INTRODUCTION, . . . . . .« . .

CO\T;. ‘Tb

RUNNING LISP/80 - AN EXAMPLE . . . .

THE LISP/80 DISTRIBUTION DISK . . . .

=

ORIENTATION FOR THE LISP BEGINNER. .
Welcome to LISP . . . . . . .
What Good is LISP? , ., . . . .
Atoms . . . ¢ 4 e e e e s
Atoms, Names and Values . . . .
Lists . . . .. . .+ .« < . .

Time Out ., . .+ « « « o &+
Functions of Lists . . . . . .
Defining Functions . . . . . .
3.10. Recursion. .+ =+ =+ « & o« &
3.11. Counting Parentheses . . . . .
3.12, Conclusion . . . . . . . .

-
.

LWWLWLLWLWWW
.
WOONOWNE WN -

LISP/80 REFERENCE MANUAL. . . . . .
4.1, Running LISP/80 . . . . . . .
4,2, Atoms . . . . . . ..
4.3, S-Expressions. . . .« .« .+ . .
4.4, Lists . . . . .« < ¢ . . .
4.5. Other S-Expression Notation . .

4,6, The LISP/80 Interpreter - EVALQUOTE
4.7. Functions . . . . . . . . .
4.8,
4.9
4.1
4.1

Functions of S—-Expressions and Lists

. Predicates and Logical Functions .
0. Atoms and Values . . . . . .
1. Property Lists . . . . . . .

Expressions and LISP Functional Notation.

4.12, Addresses, List Structures, and Altering
4,13, Arithmetic Functions and Predicates .

4,14, Function Definition and Evaluation
4,15, Functions of Functions . . . .
4,16. LISP Programming Constructs. . .

4,17, Functions that Evaluate Expressioans

4,18. String Manipulation . . . . .
4.19. Input/Output. . . . . . . .
4.20. Comments . . . . . . .

4,21, TRACE, BREAK, Errors and Progran Termination .

4.22, Carbage Collection, .
4,23, Storage Allocation. . . .
4,24, Writing As:embly Lang 1ze SUTRs

THE EDLTGR AND FILE PACKAGE. . . .
5.1. Introduction . . . . . . . .
5.2, Editor . . . .. oo e .
5,3, Prettyprint . . . . . .

5.4. Saving Functions on a rile ., , .,

. BIBLICGRA2RY., . . . « .+ .+ .+ + . .

INDEX TO FUNCTICNS., . . . . . .

.

.

—— O W OOSNNSNN~SNOOWVN UL WD £~ (W) w

e



-

B e 0 detes o an SbMsctuntos avh

&

, -~
t
\N_-

LIs?/du l.v
INTRUDLCTION

This manual coutains two major sections: a brief orizrcatinn fo. the LIS? peginner,
and a LISP/80 Reference Manual. The Raference Manual zontai-s detailed
documentation of LISP/0 for reference purposes. The orienzation j:oviaes soae
motivation for LISP, tells what it is good for, and introduces a few important LISP
concepts. .
A sample LISP/80 session (Sectiom 1) allows the beginner to makz LISP '"do something"
before starting to learn the language. Also included are an Index to Functions and
a Bibliography.

Although it ir hoped that this manual will be informative enough to provide a start
in learning LISP, the beginner may well find it inadequate. The primary aim of the
L1SP/80 project with regard to the student of LISP was to make the language
available at moderate cost. The LISP Orientation manual section is included so as
not to leave the beginner '"high and dry". However, a comprehensive tutorial
introduction to LISP, of which there are many, would run to hundreds of pages. The
Bibliography section lists several of these books, and the LISP novice may find one
of them helpful.

1. RUNNING LISP/80 - AN EXAMPLE

Whether you are a beginner or an experienced LISP programmer, before you settle down
to wade through this manual it might be comforting to see the LISP/80 interpreter
run and do something. This section provides a step by step example for that
purpose.

Before doing anything else, the prudent computer scientist will make a backup copy
of the LISP/80 disk and place the original, with a write protect label, in a safe,
cool, dust-free, non-magnetic place. (The material on the disk is copyrighted, but
you are permitted to make copies as long as they are only for your own use.)

Now mount a copy of the LISP/80 disk in drive B:. [Note: HDGS wusers should
substitute SYl: for B: throughout this example.] (NOTE: The LISP/80 distribution
disk is not bootable. If you have a one disk system, copy the files from the
LISP/80 disk onto a bootable disk, and omit the characters "B:" when typing in this
example.) '

Type the command B:LISP. (All commands should be ended by hitting the RETURN key.)
LISP/80 will 1load, take a few seconds to compose itself, and type the prompt " ".
Since LISP generally uses upper case characters, you might want to use the CAPS LOCK
key at this point if your terminal has one.

First you will evaluate a simple LISP expression. Type the expression PLUS(1 2).
The LISP/80 interpretar will evaluate it and type the result.

Next you will define a simple LISP furction to cumpute facrorials. Factorial n, for
positive integers n, 1is the pred:zt of ail the numbers from 1 to n. Type the
following definition:

DEFINE ((
(FACT (N) (coND
((LEQP ¥ 0) 1)
(T (TIMES N (FACT (DIFFERINCE N 1]



Voo e s -

3

LISP/30 1.0

.

AN EXAMPLE

LISP isn't fussy about how many spaces you use when typing to it, but be sure to get
145 right. If you have, LISP/80 will respond with (FACT).

the parentheses

Now type FACT(S)
lictle larger th

will come out wr
calls itself.
discover that a

+ The answer should be 120. 1If you try computing FACT of numbers a -

an 5, you may discover some limitations of LISP/80 For instance,
once the maximum LISP/80 number range of -32768 to 32767 is exceeded, computations

ong. Also, the definition of FACT

is recursive: that 1is, FACT

If you try computing FACT of a sufficiently large number, you will
function can't call itself recursively indefinitely.

Next you will load and run a LISP program from the disk. Type the LISP command
The program will load and give you instructions on how to play the

LOAD(B:ANIMAL),
animal guessing

To terminate the

shift key and ty

\

* The LISP/80 disk
LISP.COM
EDIT.LSP

PP.LSP

game,

LISP/80 run and exit to the operat
pe C.

ing system, hold down the CTRL

& 2. THE LIS?/80 DISTRIBUTION DISK

contains the following files:

The LISP/80 interpreter. [On HDOS, this file is LISP.ABS. ]

The LISP/80 expregsion editor (

A "prettyprint" LISP functio
particularly function definitio

ANIMAL.LSP Animal guessiﬁg game. To rum i

simple example of an artifi
learns as it goes along.

DOCTOR.LSP A simple version of the ELI
program attempts to carry omn a dialogue with a""pacient”. It

PATCHES.

The use of EDIT

succeeds astonishingly well con

LISP program).

n for typing LISP expressions,
ns, in readable format.

t, do LOAD (ANIMAL). This 1is a
cial intelligence program which
ZA ps}chiatrist program. This

sidering the entire program is

about 60 lines of LISP. The original ELIZA program, one of the

early examples of a computer e
behavior, was written at M.I.
years ago.

DOC A file giving the addresses wh
LISP/80's storage allocation, a

and PP is described in Section 6.

xhibiting seemingly intelligent
T. by Joe Weizenbaum about twenty

ich can be patched to adjust
s described in Sectiomn 4.23.

The example in Section 1 includes

simple directions on how to run LISP and try the ANIMAL program.

Users gaining

on these files, and even to modify and improve them

w

e —— =+ e = et -

experience with LISP may want to tr

Y to understand the LISP programs



LISP/80 1.0 ' LISP ORLENIATION 5

3. AN ORIENTATION FOR THE LISP BEGINNER

3.1, WELCOME TO LISP

< .

Welcome to LISP. If you are a newcomer to this unique computer language, you
probably purchased LISP/80 because you are interested in learning about "something
different" in programming languages. LISP may or may not turn out to ‘be a useful
programming tool for you. But since LISP is totally unlike BASIC, assembly
language, or, probably, any language you now know, you will learn concepts and
techniques that will exercise your mind and improve your skills no matter what
language you wind up programming in.

Be prepared: LISP is not an easy language to learn. This part of the manual
provides a brief orientation for the beginner, and attempts to introduce some of the
more important concepts. It will probably be helpful, in additiom, to read or more
of the introductory books on LISP listed in the Bibliography section.

What follows is an introduction only. Some of the explanations leave out details
for the sake of brevity and clarity. For a complete description of LISP/80
features, use the Reference Manual section. :

3.2, WHAT GOOD IS LISP?

LISP has a reputation as an "artificial imtélligence" (AI) experimenters' language.
That is, it is suited to writing programs which deal with problems you would
ordinarily expect people to cope with: problems involving concepts, situations,
objects, their properties, and groups of them. :

What makes LISP good for these applications? In any programming project, the
approach you take to the problem can be divided into two parts:

The data representation: how to represent the objects and structures the
problem deals with; and a '

. The algorithms: how to manipulate the data in order to solve the.problem.

Most programming languages have data types like string, number, and array. This is
fine for data processing tasks, like producing a balance sheet or inverting a
matrix, but when trying to use such data types to represent properties and groups of
objects a programmer spends more effort on "fighting the language" than on dealing
with the real problem.

LISP has two data types - atoms, which are numbers or names, and lists, which are
made up of atoms and other lists. Lists provide a natural representation for most of
the things AI programmers want to deal with. In additiom, the normal style of

programming in LISP, called recursion, lends itself well to the algorithms which-

programmers want to use to manipulate lists.

What does this mean to a LISP programmer starting to think about how to program an
Al type of problem? Relatively little thought has to go into the design of a data
representation. And, if he starts with the LISP data representation, an experieunced

LISP programmer finds it easy to express the algorithms that might provide the
desired solution.

So for certain kinds of problems, programmers using LISP need to spend very little
time "fighting the language" and are able to concentrate om solving the problem,

-




3.3. ATOMS .

il /0L L.V LLOC va.ilaaita. v 4]

-

Will LISP be any wuse for the tasks you want to use your computer for? If you're

trying to write a program to balance your checkbook, probably not. But for many

interesting problems, LISP may be just right. The only way to find out is to learn
LISP. And even if you don't wind up using it a lot, you will have learned
techniques for writing programs and structuring data that can be used in BASIC,
assembler, and other programming languages. :

—tlaer . . . S e e . P « - -

-
= - . T

The atom is the basic unit of data in LISP. An atom is any string of letters,
digits, and hyphens. (Lower case letters are allowed, but LISP doesn't generally
use them, and if your terminal has a CAPS LOCK it is wise to use it when running
LISP.) Some examples of atoms are:

A
GAMMA :

\ AVERYLONGATOMWITH29CHARACTERS
=327

If an atom can be interpreted as an integer number, it is a numeric atom (similar to
& numeric constant ‘in other languages). =327 1is the only numeric atom in the

; examples above. All other atoms are called literal atoms.

b

3.4. ATOMS, NAMES, AND VALUES

Literal atoms can be used as either variables or string constants. You probably
know from other programming languages that a variable is a name to which a value may
be assigned, and a string constant is a string of characters that you can print and
do other things with,

In LISP, atoms are used as variables, and atom names serve as string constants. To
see both uses, run the LISP/80 interpreter. (See Section 1l if you need instructions
on how to do this.) When the prompt " " appears, type each LISP expression shown in
the following table, and try to understand what each one does. (The first one will
cause an error message; that's OK.) To provide some idea of what is going omn, the

BASIC equivalent for each LISP expression is also shown here. -
- LISP Expression Equivalent BASIC command
Al PRINT Al
(QUOTE Al) PRINT "Al"
(SETQ Al (QUOTE HI-THERE)) Al = "HI-THERE"
Al PRINT Al

When you type Al by itself, LISP evaluates the atom Al and prints the value of the
atom (which can be set by the SETQ function), or gives an error if the atom has not

yet been given a value. When you type (QUOTE Al) or (QUOTE HI-THERE), the atom is-

used as a string constant,

QUOTE is a function which prevents evaluation, so the atom continues to be itself
instead standing for its value. Printing an atom actually prints the name of the
atom. Printing the value of the expressioa (QUOTE Al), for example, printed the
atom Al, so its name, "Al", came out on the terminal.

Comparing the LISP commands with the BASIC equivalents may make what is going on a
little clearer. There is one difference, which 1is that the BASIC interpreter
executes commands, while LISP/80 reads expressions, evaluates them, and prints their

“




, LISP/80 1.0 . LISP ORIENTATION

~

values, We will simply mention that difference here, and talk more about the
interpreter later on.

Notice that yoJ didn't have to say PRINT to the LISP interpreter, because it prints
the values anyway. Try typing (PRINT (QUOTE Al)) and try to figure gut why LISP/80

~ does what it does. Hint: the value of the PRINT function is the value of the

expresgion which is given to it to print.
. _ : ce 3N
e .

3.5. LISTS - ‘ o

A LISP list can be a simple list of atoms, like (A B -27). A list can also contain
other lists: (ALPHA (X Y Z) (BETA GAMMA)). As you can see, lists are enclosed in
parentheses, and atoms in a list are separated by one or more spaces.

Some of the expressions you typed to LISP in the previous section were lists.

\ ]
3.6, EXPRESSIONS AND LISP FUNCTIONAL NOTATION

An expression is something that can be evaluated. You have already seen LISP's two
kinds of expressions: atoms and lists. You typed expressions to the interpreter,
which evaluated them and printed the values.

To evaluate an atom, the interpreter simply finds the value the atom was set to."

Evaluating a list is more complicated. A list is evaluated as a function call -
that' is, the application of a function to zero or more arguments. Here are several
examples of statements written in the BASIC language, and their equivalent LISP
function call expressions. ' You may try typing these expressions to LISP/80 and see
what happens.

BASIC LISP

* PRINT 2 + 3 (PRINT (PLUS 2 3))
LET X = 1 (SETQ X 1)
IF X = 1 PRINT "YES" (COND ((EQ X 1) (PRINT (QUOTE YES))))
OLD "ANIMAL" (LOAD (QUOTE ANIMAL))

.

All programs in LISP are expressions. A program is run by evaluating it as an
expression.

3.7. TIME OUT

Notice that LISP keeps using one kind of data item to represeat two different kinds
of things. Atoms are used for variables and for string constants. Lists are used
both as a kind of LISP data structure, and also as a way to write LISP functioms,
expressions, and, as you will see later, LISP programs.

This can be very confusing at first. However, since LISP programs are written as
LISP lists, this makes it easy to write programs in LISP that construct and even run
other LISP programs. This is particularly useful in artificial intelligence
programming, where it is often necessary for a program to create a data structure
describing how to do some task. What better description is there than a data
structure which is a LISP program to do, or simulate, the task?

At this point, you should read Section 4.6, which describes an alternative way of
typing expressions to the interpreter without having to use QUOTE as much. From now
on, we will mostly use the alternative format.




()

ot et ot shindle s P v
» Q

-

- araadten nons mes o b

“dior/O0V 1,V =430 XilalALavae 9

.

3.8. FUNCTIONS OF LISTS

How can you manipulate LISP lists? Since all LISP programming is done with
functions, LISP/80 contains built-in functions to perform 1list operations. The
essential functions for list manipulation are:
NIL is an atom which is defined as the .empty list, or the list without
any elements. NIL may also te written (). To prove this, type
(QUOTE ()) to the interpreter. (NIL always has a value: the value
of NIL is NIL.)

(CONS X L) CONS is a list CONStructionm function. If X is any atom or list, and
L is a list, then (CONS X L) is the list consisting of X followed by
the elements in L, Try the following examples on the interpreter.
Remember that in each case, the outer set of parentheses is for the
interpreter; it encloses the list of two arguments to CONS. For
example, in CONS (4 (3)), CONS is given two arguments, 4 and (3).

1

CONS (3 NIL) is (3)

CONS (4 (3)) is (4 3)

CONS (A (B C D)) is (A B C D)
CONS ((A B) (C D)) is ((A B) C D)

In each case, CONS takes the list which is its second argument, and

S adds on its first argument at the front. NIL is the list with no’

elements, so (CONS 3 NIL) is a list with one element, the atom 3. h

Notice that in the last example, (A B), which is a list itself,
becomes the first element of the three-member 1list ((A B) C D).
Also notice that we are using the EVALQUOTE notation of Sectiom 4.6;
typing CONS (A (B C D)) is equivalent to typing (CONS (QUOTE A)
(QUOTE (B C D))), but is a lot easier.

(CAR L) CAR returns the first element of a list. For example, CAR ((A B C))
is A. (Remember that the outer pair of parentheses in CAR ((A B C))
' is for the interpreter; this means "apply CAR to the list (A B C)."

- (CDR L) CDR returns the list L, minus its first element. For example, CDR
((ABC)) is (B C).

If L is a 1list, then (CONS (CAR L) (CDR L)) is the same list as L. To see this,
type the following expressions to the interpreter:

(SETQ L (QUOTE (A B C)))
(CAR L)

(CDR L)

(CONS (CAR L) (CDR L))

See hov L was used as a variable to avoid typing (A B C) over and over. Why did we
type (CAR L) instead of CAR (L)? Because in order to get the value of L, which was
(A BCJ), L had to be evaluated. So we did not want to use the EVALQUOTE form CAR
(L), since the whole point of that form is not to evaluate the arguments of the
function. To see the difference, type

CONS ((CAR L) (CDR L))

and compare the result to the result of the last thing in the previous example.

P Se g e e - . o —— - s st . .
. .




é

—— ol >, B . S

_LISP/80 1.0 LISP ORIENTATIUON -

3.9. DEFINING FUNCTIONS

DEFINE is a function which allows you to define your own functions. Type tte
following expression to the interpreter:

'sbusq'(s'ai
.k e T

You can cell by the result that SUMSQ 1is not a known function. Now type the
following expression:

DEFINE ((
(suMsSQ (X Y)
(PLUS (TIMES X X) (TIMES Y Y]

How you arrange this long expression or break it between lines does not matter, but
be sure to get the parentheses right! The character ] is shorthand; it tells
LIS?/BO to close all the open parentheses to the left.

Now try typing SUMSQ (3 4) again. = If everything has gone correctly, you have
succeeded in defining the function SUMSQ, which takes two arguments and returas the
sum of their squares.

Without going into a full explanation, we will just note a few things. DEFINE takes
one argument, which is a list, Each element in that list is a function definition.
In. this example, there is one such definition, for SUMSQ. Each function defxnxtlon
is itself a list, with three elements: the name of a function to be defined - in
this case, SUMSQ =~ an argument 1list = (X Y) - and an expression which is the
function body. DEFINE defines the function . SUMSQ Subsequently, when SUMSQ appears

in an expression being evaluated, the atoms in its argument list are assigned the
values of the arguments given to SUMSQ in the expression, and the function body
expression is evaluated. The value of that expression is the value of the function.

When you type SUMSQ (3 4), the atom X is set to the value 3, Y is set to 4, and the

function body of SUMSQ is evaluated. In this case, the function body is equivalent
to

.

(PLUS (TIMES 3 3) (TIMES &4 4))

and the interpreter types the value of this expression, or 25.

3.10. RECURSION

When an atom is set to a value by SETQ, the atom retains the value. But when an
atom is an argument in a function definitiom, the value it gets when the function is

called is strictly temporary, and the old value is restored after the function body
is evaluated. To prove this, type

DEFINE (( (PRINTME (X) (PRINT X)) ))
This defines a simple function which prints its argument. Now do

(SETQ X (QUOTE (HI THERE)))
X

(PRINTME (QUOTE (HELLO AGAIN))
X

When PRINTME was called, X took on the value (HELLO AGAIN) within the body of the
function. However, the old value of X was restored when PRINTME was done.




¢
‘:,'.

%

@

1o aiibrtitallonm

or amBale Ao Oiaies o

" list, the CDR of that, and so on.

LISP/30 1.0 LISP ORIENTATIUN 10

Since function arguments have their previous values restored in this way, it is
perfectly legal for a function to call itself in LISP. In fact, it is rather the
right way to do things. As an example, here is a function which takes a list, and
returns a new list whose element$§ are the original list, the CDR of the

original

DEFINE ((
(LISTS (L) (COND ((NULL L) NIL)
(T (CONS L (LISTS (CDR L]

The expression which forms the function body of LISTS contains three things you have
not seen before: T, NULL and COND,

T is an atom whose value is T. T is used as a truth value to represent "true"; NIL

is used for "false". NULL is a predicate, or truth-valued function. The value of
NULL is T if its argument is the empty list NIL, and its value is NIL otherwise.

COND is a conditional. It is explained in detail in the reference manual, but its
effect in LISTS is to cause LISTS to return as value either the empty list, NIL, if

the argument to LISTS 1is NIL, and otherwise to return the CONS of the argument L
with the value of (LISTS (CDR L)). ‘

How does the function LISTS operate, then? If its argument is NIL then it just.,.
returns NIL. If its argument is a non-empty list, it computes a value with CONS,
calling itself in the process but with a shorter list for an argument. So.
eventually it gets down to an empty list instead of going on forever.

If you type in the above definition of LISTS and then type
LISTS ((A B C))
LISP/80 will type the value

((A B C) (A B) (A)) )

Rather than try to figure out, step by step, how LISTS came up with this value,
let's let LISP/80 tell us by tracing the execution of LISTS. Type

TRACE ((LISTS))
LISTS ((A B C))

The TRACE function tells LISP/80 to print out the arguments each time a function
called, and the value of the function each time it returns one.
trace printout looks like this:

is
In this case, the

: Calling LISTS, args = ((A B C))
: Calling LISTS, args = ((B C))

: Calling LISTS, args = ((C))

: Caliing LISTS, args = (NIL)

: Returns NIL

: Returns ((C))

: Returns ((B ¢) (C))

: Returns ((A B C) (B C) (C))
(ABcC) (BcC) (C))

The first time LISTS is called, its argument - (A B C) - is not NULL, so it tries to
return (CONS L (LISTS (CLCR L))). In order to do that, it must call LISTS with (CDR
L), which is (B C). LISTS tontinues down the list, calling itself over and over,

- —————

e e ¢ e v




bo

e RAR

+ seermea

_LIsp/80 1.0 - Lis¢ JRIZNTALION 11

-

until eventually it gets called with the empty list, NIL, and returns NIL. Then

each previous call of LISTS can compute the CONS and return the value from that
call. .

If you want to see even more of what is going on, you can execute

;- =u. TRACE ((CAR CDR CONS NULL COND))

and see'absolutely everything as it happens.

o e -~
PR

A function calling itself, as LISTS does, is known as recursion. In LISP, recursion
provides the programming facility which many other languages accomplish by iterative
statements, such as the FOR in BASIC and the DO in FORTRAN. Iterative statements
are fine for stepping down an array of subscripted variables such as you find in

these more '"normal" programming languages. But, as the above example shows,
recursion is a natural way to operate on lists.

\
3.11, COUNTING PARENTHESES

You may have noticed that LISP is a language of parentheses. In fact, students
sometimes claim LISP stands for "Lots of Irritating Single Parentheses!" Experienced
LISPers have a method for checking that parentheses are balanced in an expression.

While scanning the expression from left to right, count aloud, adding ome for each
e <

is balanced. If the count ever becomes negative, there is an error somewhere in the
expression.

For example: .
While reading: DEFINE (((PRINTME (LAMBDA (X) (PRINT X))))
Say out loud: 123 4 545 4321

The final count should be zero. Since it was 1, you know there is one ")" missing.

3.12. CONCLUSION ) -

This completes the Orientation to LISP. At this point you may continue by reading
the Reference Manual section of this document. If, after this brief introduction,
LISP is still a complete mystery, you may wish to consult one of the more complete
references listed in the Bibliography. Either way, we wish you good success, and

send you on your way toward new LISP experiences. Have patience, and always count
your parentheses!

and subtracting one for each ")". If the final number is zero, the expression .




Ve e B o et apads b

LIsP/30 1.0 ‘ REFERENCE MANUAL

4, LISP/80 REFERENCE MANUAL

-~ &

4.1. RUNNING LISP/80 ' <

‘The LISP/80 interpreter is run by typing the LISP command. While the interpreter is
running, it accepts the normal typing conventions: DELETE erases the last character
typed, and ctrl-U causes whatever has been typed on the current input line to be
ignored. In addition, ctrl-C will terminate the LISP/80 program and return to
system command level. (Ctrl-C is typed by holding down CTRL and typing C.)

Ctrl-B will cause an interruption of LISP/80 function execution. This will usually
cause a printout of the name of the function being executed (if any), and return to
the top level of the interpreter. The user may also select a mode in which ctrl-B
invokes the interpretec at a lower level, within the interrupted function, allowing

ingpection of current variable values, printout of the current function call stack,-
etc (see Section 4.21). '

Under CP/M, if ctrl-B fails to interrupt LISP/80, the interpreter is probably in an
internal loop. The programmer can cause this, for example, by applying LAST to a

list which has been looped back on itself by RPLACD. Under HDOS, ctrl-B will always
work.

]

4.2, ATOMS °

The basic unit of LISP data is the atom. An atom is a string of characters which
may be at most 127 characters long. Any character is legal in an atom name, but the
characters space, tab, end of line, period, (, ), {, ], ' and X must be quoted by
preceding them with a %,

. .
Lower case characters are legal in atoms, and are distinct from upper case
characters. However, lower case is rarely used in LISP.

LISP uses atoms to represent both variables and values. A string of characters is
represented as the atom with that string as its name. A string whith is written in
many languages as "HI THERE" would be written in LISP as the atom HIXZ THERE. Every
atom can also have a value assigned, or bound, to it. :

There are two kinds of atoms: numeric and literal. A numeric atom is composed of an
optional minus sign, followed by one or more digits. Numeric atoms must fall in the
range -32767 to 32767. If a numeric atom exceeds this range, no error will be given
but numeric results will be incorrect. The value of a numeric atom is always the
number which its name represents.

Any atom which is not a numeric atom is a literal atom. Most literal atoms do not
have values initially, but may have values assigned to them in various ways, the two
most common being biiding of function arguments, and the SETQ fuaction. (Individual
functions, such as SETO, are documeated later on in this Reference Manual.)

Two literal atoms 1:'2 predecrined salies in LISP: NIL and T. Tne value of NIL is
NIL and the valuve of T is T. These are used to represant the logical wvalues true,
or T, and false, or NIL. NIL is also used to .epresent the empty list.

The value of an atom 1is not permanent; a ne~ valce may be assigned at any time.
However, it is unwise tn try to chiige che values of T or NIL.

G > o oy




LISP/80 1.0 REFZRENCE MANUAL L,

-

Some languages require variables to be declared. This is not true of LISP. There

’ are two ways in which an atom makes itself known to LISP. An atom is created when
: LISP reads it, either from the te.minal or from a file. An atom may also be created
by use of the PACK or PACKC functions.

~

el

4.3. S-EXPRESSIONS .

.-

S-expressions are the general LISP data structure. An s—expression is one of the
following:

f o An atom, or

) o The expression (sl . s2) where sl and s2 are s-expressioms.

O

The construct (sl . s2) is called a dotted pair. The simplest way of creating a
dotted pair is the function CONS. Some examples of s-expressions are:

ATOM

Ui A-LONGER-ATOM-THAN-ONE-MIGHT-USUALLY-FIND
! -37 .
‘ (A .B)

(A. (B.C))
i (U .v) . (255 . (Y . 2)))

O 4.4, LISTS

Most s—expressions encountered in LISP are in the form of lists. A list is omne of
the following:

i
£ ]

o The atom NIL, which represents the empty list, or

‘:) o The s-expression (s . 1) where s is any s—expression and 1 is a list.
, A notational convention is used to simplify the representation of lists.
Ngi) The list NIL is written ().
<:> The list (A . NIL) is written (A).
1 The list (A . (B . NIL)) is written (A B).
- The list (A . (B . (C . NIL))) is written (A B C).
... and so on.
b 4,5, OTHER S-EXPRESSION NOTATION
Extended List Notation
. In general, even when an s-expression is not a list, the expression (s . e), vhere s
l is any s-expression and e is not an atom, may be written (s e). Thus, for example,
!(ﬁl> (A.(B.(C.D))) may be written (A B C . D).

When printing s-expressions, LISP/80 uses this notation.

PP e e e ———— —— = o —— o e g < e & -
- . .



LISP/80 1.0 ‘ REFERENCE MANCAL o la

3:..‘ . N
Superbrackets

KRR

Since LISP often gives rise to expressions containing many levels of parentheses, 1t
is convenient to have a way to abbreviate multiple pafentheses. The characters (
and ] are called Superbrackets. The open superbracket, [, has the same effect as an
open parenthesis. When a close superbracket, ], appears, it matches the most recent
[ which has not yet been matched, even if there are unmatched open parentheses in

between. If a ] appears when there is no matching [, it closes all open parentheses
to its left.

Examples: '
(A (B (c (D))) E) can be written (A (B (C (D] E)
(A (B (C (D)) can be written (A (B (C (D]

(U (Vv (W (X (Y)) Z)) A) can be written (U (Vv (W (X (Y] 2] &)
\ 1
QUOTE Abbreviation

The function QUOTE is used very often in LISP programming. LISP recognizes the
notation 'e, where e is any s—expression, as an abbreviation for (QUOTE e).

4.6. THE LISP/80 INTERPRETER - EVALQUOTE

LISP/80 reads commands from the terminal (or from files - see LOAD, Section 4.19)
through an internal function which, for historic reasons, is referred to as
EVALQUOTE. This function prints the "_" prompt on the terminal, and the user may
type something for EVALQUOTE to evaluate, using one of two formats:

0 A LISP expression, which is simply evaluated, or

o A function name followed by a list of arguments, in parentheses. When this
format is used, the arguments are not evaluated before the function is applied.
Typing an atom to EVALQUOTE produces its value, or an error if the atom has no

value. Typing an expression, such as (PLUS 1 2), produces the value of the
expression.

But often the expressions one wants to evaluate have literal arguments which must
all be quoted. For example, to demonstrate the use of the function MEMBER, one
might type

(MEMBER (QUOTE X) (QUOTE (W X Y 2)))

This could be abbreviated considerably by using the equivalent form which does not-

evaluate arguments:
MEMBER (X (W X Y 2))

Note that this form does not actually quote the arguments, but merely ra2frains from
evaluating them. For example, typing either (QLOTE X) or QUOTE (X) to EVALQUOTE
produces X. Lf EVALQUOTE were really prefixi 'g a QUOTE to each of the arguments,
then the latter would produce (QUOTE X).

This can lead to confusing behavior when EVALQUOTE 1is wused with functions which
evaluate their own arguments (FEXPRS and FSUBRS - see Section 4.14). One such




LIsp/80 1.0 REFERENCE MANUAL 15

_function is SETQ. Typing SETQ (X (A B)) to EVALQUOTE will not work, since SETQ
evaluates its second argument, and will try to apply A to B. What is really wanted
is (SETQ X (QUOTE (A B))), but that is not what EVALQUOTE does. (At EVALQUOTE
level, SET should be used instead of SETQ.)

SR '."-'f-""'.vr"' -

Y

4.7. FUNCTIONS

LISP programming 1is done by writing expressions that call functions. The user may

define functions in terms of other user-defined functions and a number of built-in
functions. EL

Functions are either LAMBDA or NLAMBDA, and spread or nospread. A LAMBDA function
has its arguments evaluated before the function 1is applied, while an NLAMBDA
receives its arguments unevaluated, and may or may not evaluate each argument before
{ re:Ptning. A spread function expects a fixed number of arguments, while a nospread

‘:) function may be called with any rumber of arguments. Unless otherwise specified,
all functions are LAMBDA spread.

" ,~ If a function is called with fewer arguments than it expects, th2 arguments that do
XI\ not appear are taken to be NIL, If a function is called with more arguments than it
expects, the additional arguments are evaluated if the functiom is a LAMBDA, but
they are ignored by the function.

———

An ' atom which is a function name has the function definition placed on its property
list (see Section 4.11). Functions which are defined by machine language
subroutines have the address of the subroutine stored under the property SUBR (or,

oy for NLAMBDAs, FSUBR). Functions defined by expressions have the expression under
: Q the property EXPR (or, for NLAMBDAs, FEXPR).

Currently, all built-in functions are SUBRs or FSUBRs, and all user-defined
* functions are EXPRs or FEXPRs., A future version of LISP/80 may allow the user to
define machine-language SUBRs and FSUBRs.

€:) 4.8. FUNCTIONS OF S-EXPRESSIONS AND LISTS
(,{ A (CONS x y). The basic function for constructing s-expressions. Constructs a list
:‘4t:> cell whose CAR is x and whose CDR is y, and returns that 1list cell as the

function value.

(CAR 1). L is a list cell (i.e., not an atom). CAR returns the first element of 1.

If 1 is a list, CAR will return the first member of the list. Applying CAR to
an atom produces an error.

(CDR 1). L is a list cell (i.e., not an atom). CDR returns the second element of 1l.-
If 1 is a list, CDR will return a list consisting of 1 minus its first element.
Applying CDR to an atom produces an error.

Note that if the value of X is a list cell and not an atom, the following equality
always holds:

1
3 (:if X is EQUAL to (CONS (CAR X) (CDR X))
! LISP/80 recognizes compound CAR/CDR function names, such as CADR and CDDADAR. (CADR

X), for example, is short for (CAR (CDR X)). There is no limit (short of the
maximum atom name length) on the number of As and Ds that can be used to coastruct




R L TSRS

sece s Mo wamies o s Do e man

crem besamien 8

-

LISP/o0 1.0 : ALsLaZinly MAaual lo

such a function name.

(Seasoned‘LISP programmers are recognized by their facility in pronouncing these
function names. CAR is pronounced like automobile; CDR is pronounced ''COULD-er",
CADR is pronounced "CAD-ur", CDDADAR "COULD-ud-a-DAR", and so onf. The horribly
un-mnemonic names CAR and CDR are historical relics of an early LISP implementation
in which two address fields in a 32-bit computer memory word were used as pointers
in the 1list cell. The machine hardware gave us the names '"Contents of Address
Register" and "Contents of Decrement Register".

(QUOTE e). NLAMBDA function. QUOTE takes one argument, and returns that argument
unevaluated. E.g., (QUUTE FOO) is FOO. (QUOTE e) may also be written 'e.

(PROGN al ... an). NLAMBDA nospread function. Evaluates al, a2, ..., an in

sequence, and returns the value of an. PROGN is used to specify more than one
computation within a single expression.

(LIST al ... an). Nospread function. Returns the list (al ... an) consisting of the
values of its arguments.

(APPEND p gq). P and q are assumed to be lists. APPEND returns the list consisting
of the elements of p followed by the elements of q. APPEND calls CONS, and
does not alter list structures. If p or q are not lists, the result may not be
useful, but no error will occur. See also NCONC.

e

- (COPY e). Returns =2 copy of the s-expression e. The value of COPY is EQUAL to its'

argument, but COPY will walk over the entire list structure of e and perform a
new CONS for every list cell in e, thus producing an entirely new list
structure. COPY may be used to save a copy of a list before operating on it
with functions that actually alter list structure.

(REVERSE 1). Returns a list consisting of the elements of the list 1, in reverse
order. For example, (REVERSE '(A B C)) is (C B A). REVERSE of an atom is NIL.

(SUBLIS ((ul . vl1) ... (un . vn)) e). Returns the s-expression e, with substitutiors
made according to the first argument. This argument consists of a 1list of
dotted pairs (ui . vi). Every occurrence of ui in e is replaced by vi. SUBLIS
checks for possible substitutions only at atoms in e, so the ui should be
atoms; the vi may be any s-expression. SUBLIS creates new list structure only
when necessary; if there are no substitutions the value will be EQ to e.

(LAST 1). Returns the last list structure in the list 1. For example, (LAST '(A B
C)) is (C). If 1 is an atom, returns NIL.

(LENGTH 1). Returns the number of elements in the list 1, [Lf 1 is an atom, returns
0.

Some list-like s-expressions end not in NIL, but in a dotted rair: (A B . C), or,
equivalently, (A . (B . C)), for example. The built-in functioas >f lists test for
the end of the list using the predicace ATOM, rather than Ni'LL. Thus, LAST of the
above s-expression is (B . C), LENGTH is 2, i.d REVERSE is (5 A).

e ey e e g .. 3 .- G ok e e ol s o S
> Ao R - e ‘. e e



O

A
&

O

e )

Mg

.
el
i
M
]
[
1
!
H

. e

.LISP/80 1.0 REFERENCE MaNUAL ¥

4,9. PREDICATES AND LOGICAL FUNCTIONS

(ATOM a). Returns T if a is an atom, otherwise NIL.

(LITATOM a)< Returns T if a is a literal atom, and NIL otherwise. A literal atom is
an atom vhxch is not a number.

(NUHBERP a). Retutns T if a is a numeric atom, and NIL otherwise.
RN T - )
(LISTP e). Returns T if e is a list (i.e., not an atom) dnd NIL otherwise.  (LISTP
e) is always the same as (NOT (ATOM e)).

(EQ y). Predicate which returns T if x and y are the same pointer or atom. Two
numeric atoms with the same value are always EQ in LISP/80 (although this is
not necessarily true in other LISP implementations). A literal atom is always
EQ to itself. Two list structures are EQ only if they arose from the same CONS

v operation. For example, (EQ|(CONS T T) (CONS T T)) is NIL.

When a variable is given a value, that value is actually the address of the
list structure which represents the value. Thus, if one variable is SETQ to
another, or if a variable in a function argument list is bound to a variable
which is the actual argument in a function call, the two variables will be EQ.

EQ- should be used in preference to EQUAL wherever it will serve the desired.

purpose, since it is considerably faster.

(EQUAL x y). Predicate which returns T if x and y are the same atom or equivalent
list structure. EQUAL will compare list structures down to the atomic level.
For example, (EQUAL (CONS T T) (CONS T T)) is T.

(NOT e). Returns T if the value of e is NIL, otherwise returns NIL, NOT is
identical to NULL, and 1is wusually used when the argument is a predicate or
truth value.

(NULL e). Returns T if the value of e is NIL, otherwise NIL, NULL is identical to

NOT, and is usually used when testing whether the argument is an empty list.
(AND al .. anmn). NLAMBDA nospread function., Evaluates al, a2, ... until one is
encountered which is NIL, and returns NIL. Evaluation stops at the first
argument whose value 1is NIL, If none of the ai evaluate to NIL, AND returns
the value of the last argument, an.

(OR al ... an). NLAMBDA nospread function. Evaluates al, a2, ... until ome is
encountered which is not NIL, and returns that value. Evaluation stops at the
first non-NIL argument. If all the ai evaluate to NIL, returms NIL.

(MEMBER s 1). If the s-expression s is EQUAL to any element of the list 1, returns
T. Otherwise, returns NIL. See also: EQUAL.

* - .ee . N R R =
N i A . haaibdty N 7 e v . - ~
E R e ¥ Ty T g . SEE™ LA R N . N ..




LISP/80 1.0 « ’ REFERENCE MANUAL

4.10. 'ATOMS AND VALUES

¢§’ As mwmentioned in a preceding section, every atom may have a value. The value of a
numeric atom is always the number represented by the atom name. Literal atoms do
not initially have values (except for T and NIL, which evaluate to themselvesl, and

‘attempting to evaluate an atom which has no value results in an error.

Atoms may receive values in three ways. The value may be set using the SET or SETIQ
_functions described in this section. An atom may have a value bound to it
temporarily within a function when it is a formal argument of the function (Sectiom
4.14) or PROG (Section 4.16). And an atom may be given a value temporarily in the
optional second argument of the EVAL function (Sectiom 4.17).

(SET a v). A is an atom, and v is an s-expression.. SET sets the current value of a
to v. If a is bound in a function or PROG, SET affects the most recent active

binding; otherwise SET will change the top 1level value of the atom. SET
! returns v.
\

(SETQ a v). NLAMBDA function. A is an atom, and v is an s-expression. SETQ
) evaluates v, but not a. It sets the value of a to v. Thus, (SETQ A E) is the
N~ same as (SET 'A E). If a is bound in a function or PROG, SETQ affects the last

i:k::_ such binding; otherwise SETQ will change the top level value of the atom. SETQ
returns v,

J Note éarefully the difference between SET and SETQ. If the following two functions
i are executed:

-! (SETQ X 'Y)
' (SET X 'A)

the first sets the value of X to Y, since SETQ does not evaluate its first argument.
But the second sets the value of Y to A, since SET does evaluate both arguments
before performing the assignment.

For LISP experts, it should be mentioned that LISP uses a modified deep binding
scheme. Variable values are stored on a pushdown stack constructed from list cells.
The top level, or global, value of a variable is kept on the atom's property list,
under the property VALUEZ CELL. '

Cemma

* ———

A0 4.11. PROPERTY LISTS

Every literal atom has associated with it a list, called a property list, which may
be used to store attributes associated with that atom. The property list is of the
form

(propertyl valuel property2 value2 ... propertyn valuen)

where propertyi is an atom which is the name of a property, and valuei is any
s-expression. Function definitions and global values assigned to atoms are among
the things which the LISP/80 interpreter stores on property lists. The programmer
is free to make use of this facility as well.

(GETPROPLIST a). Returns the property list of the atom a. Gives an error if a is
not a literal atom. The property list is a list of the form (pl vl ... pa vmn),
where pi is an atomic property name and vi is the value of that property.

b - % Qi a8 A ha £ aaihldtd

LYy




¢t e e A b e e o o - e

O

N\
3

¢
C

O

§ o

PRy i LT - o

.LISP/80 1.0 : KEFZRENCE MANUAL 19

.

(CETPROP a prop). Returns the value of the property prop from the property list of
the atom a. Gives an error if a is not an atom. GETPROP returns NIL if the
property prop does not appear on the property list of a. The way to

distinguish between a property which is not there and one which has the value
NIL is to do )

o

£

(MEMBER PROP (GETPROPLIST ATM))

(PUTPROP atm prop val). Puts the value val on the property list of atom atm under

the property prop. If atm previously had the property prop, val replaces the
old value. Otherwise, the property is added.

(REMPROP atm prop). Removes the property prop from the property list of atm.
Returns prop if the property was found, otherwise NIL, This function alters
the list structure of the property list.

The property list functions use EQ to check for the property name. Thus, although
it'is possible to put a property with a non-atomic name on a property list, it will
not subsequently be found or removed except by a user-defined functionm.

4.12. ADDRESSES, LIST STRUCTURES, AND FUNCTIONS THAT ALTER THEM

Every s-expression in LISP is represented by two words (four bytes) in memory. For
numeric atoms, the first word contains an identifying bit pattern, and the second
word contains the value. For lite.il atoms, the first word holds the address in the
string storage area of the atom name, and the second word points to the atom's

property list. In a list cell, the first word is the address of the CAR and the
second word, the CDR.

When LISP passes around s-expressions, what it actually passes is the address of the
two word representation’in memory. If X currently has the value (A . B), then the
value of X is an address in memory of two words, the first containing the (unique)
address of ‘ the atom A, and the second the (unique) address of the atom B. (LISP
insures that a literal atom with a given name always refers to the same list cell
address; in other words, a literal atom is always EQ to itself.)

If (SEIQ Y X) is now performed, the value of Y is set to the value of X. Y now

points to the same address in memory as X does, and typing either X or Y to
EVALQUOTE would print (A . B).

If X 1is subsequently changed, say by (SETQ X 1), this changes the address which is
the value of X. Y still points to the same list cell as before, and typing Y to
EVALQUOTE will print (A ., B), as one would expect.

The following functious, however, actually change list structure. They can be used
to achieve powerful effects, but can also create confusing results.

(RPLACA e val). Replaces the CAR of the s-expression e with the s-expression val.

Returns the new value of e. This function alters existing list structure, and
should be used with caution, since it can alter the value of objects which
point to the expression it is changing.

(RPLACD e val). Replaces the CDR of the s-expression e with the s-expressiom val.
Returns the new value of e. This function alters existing list structure, and
should be used with caution, since it can alter the value of objects which
point to the expression it is changing.




e?éuq
O

LISP/80 1.0 ' . REFERENCE MANUAL 20

An example may help to clarify the use of RPLACA and RPLACD. The following 1is an

illustration of an actual interchange with the LISP/80 interpreter, with comments
added. ‘

_(SETQ Y (SETQ X '(A . B))) X and Y are set to

. (a . B) point to the same list
structure, (A . B).
X
(A . B) e s ...~ The value of X is (A . B),
Yy and so is the value
Ta.B) of Y.
_(RPLACA X '(C . D)) RPLACA is used to replace the ad-
((c . D). B) dress of A in the CAR of the value
of X with the address of (C . D).
\ X X still points to the same cell,
T . D). B) ' which now contains ((C . D) . B).
X Since Y points to the same cell
((c . D). B) as X, its value has been changed

as well!

Functions which alter list structure can be used to create reentrant lists - that,
*s, lists which point back to themselves. For instance, performing the functions

(SETQ A ‘(X Y 2))
(RPLACD (CDDR A) A)

will replace the NIL at the end of the list (X Y Z) with the address of the list
itself, creating an endless loop. If these expressions are typed into EVALQUOTE,
the value printed by the RPLACD will be

(zXyYyzxXxyYyzxyzxyzxyz...

and so on, as PRINT chases around the looped list. The printing will go on forever
(or until ctrl-C is typed, or, under HDOS, ctrl-B.) .
It should not be assumed that reentrant lists and other tampering with list
structures are always evil. Such operations are generally more efficient than
copying list structures over, and can be safely used when the list being altered is
not pointed to by anything else. It is often useful to change list structures that
are pointed to from several places, and to create reentrant lists, but it 1is
necessary to know what ome is doing.

Another function that alters list structures is:

(NCONC p q). P and q are assumed to be lists. NCONC creates a list consisting of
the elements of p followed by the elements of q, by actually altering the list
structure of p. No new list cells are created in the process, but the list p
may be destroyed. NCONC returns a pointer to the new list. Note that this
pointer is p, except when p is NIL. NCONC is equivaleat to:

(LAMBDA (P Q) (COND
((ATOM P) Q)
(T (RPLACD (LAST P) Q)
P)

. -— .. . - -

TIWRETmeT T




. L1sP/80 1.0 : REFERENCE MANUAL ' 2:

4.13. ARITHMETIC FUNCTIONS AND PREDICATES

LISP/80 provides a number of functions which operate on integer numeric atoms. The
allowable range of numeric atoms is -32768 to +32767. It is the responsibility of
the programmer to confine arithmetic results to that range; the result of an

operation which exceeds that range will be some (not specified) number in that
range, but no error message will be given.

(PLUS i j). Returns the arithmetic sum of i and j. If either of the arguments is
not a numeric atom, an error occurs. Note: unlike some LISP implementations,
LISP/80 does not allow more than two arguments to PLUS,

- ctdintn..

(DIFFERENCE i j). Returns the numeric difference i minus j. If either of the
arguments is not a numeric atom, an error occurs.

(TIMES i j). Returns the numeric product of i and j. If either of the arguments is
(:) not a numeric atom, an error occurs. Note: unlike some LISP implementations,
A Y

' LISP/80 does not allow more' than two arguments to TIMES.

(QUOTIENT i j). Returns the numeric integer quotient of i divided by j. If j is
\~g" equal to 0, the result is undefined. If the result is not a whole number, the
‘N&i \ fractional part is discarded. If either of the arguments 1s not a numeric
1 atom, an error occurs.

(REMAINDER i j). Returns the numeric remainder from i divided by j. The sign of the
» . - . . I3 y . .
remainder is the same as the sign of the quotient i/j. If j is equal to O, the

i result is undefined. If either of the arguments is not a numeric atom, an
= error occurs.

i (ZEROP i). Numeric predicate. Returas T if i is EQ to 0, otherwise NIL. Gives an
error if i is not numeric.

(GREATERP i j). Numeric predicate. Returns T if i is greater tham j, otherwise
NIL. If either of the arguments is not a numeric atom, an error occurs.
.
(LEQP i j) Numeric predicate. Returns T if i is less than or equal to j, otherwise
(~j NIL. If either of the arguments is not a numeric atom, an error -occurs.

(LESSP i j). Numeric predicate. Returns T if i is less than j, otherwise NIL. If

> either of the arguments is not a numeric atom, an error occurs.

i “)C:Q(GEQP i j). Numeric predicate. Returns T if i is greater than or equal to j,

otherwise NIL. 1If either of the arguments is not a numeric atom, an error
occurs.

- —— e e clents o

4.14. FUNCTION DEFINITION AND EVALUATION

! (DEFINE 1). Used to define user-provided functions. DEFINE takes one argument,
which is a list of defining expressions for functions. Each defining

expression is either of the form (name (LAMBDA args body)) (or NLAMBDA) or else
(name args body).

For example, the factorial function can be defined as follows:

)




re

.

LISP/30 1.0 REFERENCE MANUAL 2

DEFINE ((
(FACT (LAMBDA (N) (COND
: ((ZEROP N) 1)
.. " (T (TIMES N (FACT
et - (DLIFFERENCE N 1]
“’-"3’!’"‘ N .- .i ..

© - Alternatively, one could wriﬁe (FACT (N) (COND ...]. The two

. forms are
... equivalent,.

v
-~ )

DEFINE usually causes the LAMBDA expression to be stored on the property list of the
function name as the value of the EXPR property. This defines a LAMBDA function -
i.e., the arguments are evaluated before being passed to the functiom. If NLAMBDA

is used instead of LAMBDA, the definition is stored as an FEXPR and the arguments
are passed unevaluated to the function.

If the argument list is an atom, rather than a list, the function 1is nospread -
i.%., the function may be called with any number of arguments, but actually receives
a 'single argument consisting 'of a list of the arguments it was called with. For
example, the NLAMBDA nospread function OR could be defined by the expression:

DEFINE ((
(OR (NLAMBDA L (PROG (X) (RETURN (COND
((NULL L) NIL)
((SETQ X (EVAL (CAR L))) X)
(T (APPLY 'OR (CDR L]

DEFINE has no magic powers as far as function definition is concerned. The
functions which manipulate property lists can be used to define functions, and to

‘alter and remove function definitions. The LISP/80 editor changes function

definitions in this way.

When a function 1is evaluated, the atoms in the function argument list are
temporarily given the values of the arguments with which the function was called.
The old values, if any, of the atoms are saved on a pushdown list. The expression
comprising the body of the function is evaluated. The saved values of the atoms in

the argument 1list are restored, and the value of the function body is returned as
the value of the functionm. :

Although LAMBDA and NLAMBDA appear to be functions themselves, they are not. They

are just names which indicate to the LISP interpreter that the expression which
follows is a function body.

4.15. FUNCTIONS OF FUNCTIONS

(MAPLIST 1 fl f2). Applies the function fl to the list 1, the CDR of 1, the CDDR of
1, and so on, and returns the list of values returned by fl. If the argument
f2 is specirfied, it is a function which is used in plice of CDR to step down

the 1list 1. %or example, (MAPLIST '(A B C) '"(LAMBDA (X) (CONS (CAR X) (CAR X]
evaluates to (A . a) (B . BY (C . C)).

(MAPCAR 1 fl f£2). ldentical %o MAPLIST, except applies fl to the CAR of 1, the CADR
of 1, and so on.




CLIse/

80 1.0 . REFERENCE MANUAL

(MAPCONC 1 fl f2). Identical to MAPCAR, except NCONCs together the values returned

‘.-

by each application of fl to form a list, and returns that 1list. MAPCONC is
useful when there are a variable number of elements to be inserted in the
result list for each evaluation of fl. For example, if X is a 1list, then
(MAPCONC X '(LAMBDA (Y) (AND Y (LIST Y) will return a list of all the nom-NIL
elements in X. - <

"~ (MAPATOMS fn). Fan is a function of one argument. MAPATOMS applies fn to each atom

known to the system. Thus, (MAPATOMS 'PRINT) will print the name of every
known atom. Note that MAPATOMS can not tell which atoms are no longer 1in use
but have not been garbage collected. If it is important to comsider only
active atoms, a COLLECT should be done before MAPATOMS is called.

.

LISP PROGRAMMING CONSTRUCTS

‘

.

| .
i

‘:) Programming in LISP consists of v;icing user—defined functions. Most programming
languages contain constructs which provide the programmer with conditionals and
branches, and LISP is no exception. As one would expect, they are all functioas.

O

1¥’O (COND (pe ... e) ... (pe ... e)). NLAMBDA nospread function. COND provides a

conditional construct for LISP programming. The arguments of COND are any
number of lists (pe ... e), where p is a predicate and e ... e are

expressions. COND evaluates each p in turn until one of the p returns a
non-NIL value. Then COND evaluates each e following that p. The value of COND

is the last e evaluated. If all of the p evaluate to NIL, the value of the
COND is NIL.

(PROG vlist el ... en). NLAMBDA nospread functiom. PROG provides the LISP language

T ORI PR TV SR X

s, wmmhad ol

with a conventional sequential programming control structure. The first
argument is a list of atoms, which are the local variables of the PROG. El ...

en are atoms, which are interpreted as statement labels, or expressiomns, which
correspond*to program statements.

PROG binds the value of each variable om vlist to NIL, and then -evaluates el,
e2, and so on. (Any of the ei which are atoms are considered-labels and are
not evaluated.) The GO function (q.v.) 1is a '"goto" which may be wused to
transfer control within a PROG. The RETURN function (q.v.) terminates PROG
execution, restores the previous values of the variables in vlist, and returms
a value for the PROG. If PROG exectvtion "falls off the end" by evaluating en,
the PROG returns the value NIL.

The following example is a PROG which computes the LENGTH function of a list:

DEFINE (((LENGTH (L)
(PROG (U V)
(SETQ V 0)
(SETQ U L)
A (COND ((ATOM U) (RETURN V)))
(SETQ U (CDR U))
(SETQ V (PLUS V 1))
(GO A]




e B . e e St ot . c—

- -
- - .

-~

¢
S

—eEWE Tl N AW Nl CRL LD cANGALL

-
.

(GO 1). NLAMBDA function. Transfers control to the label 1 (which does not need to
be quoted) within the current PROG. Since GO never "returns", it has no value.
The GO need not be physically contained within a PROG, but may be in a function
called from a PROG. The label 1 must be defined in the most recently entered
PROG which has not yet been exited, or an error occurs.

(RETURN e). Returns from the current PROG. The value of the PROG is the
s-expression e. If execution is not withim any PROG, an error is given. Note
that the RETURN need not be physically within the body of the PROG, but can be
in a function which is called from the PROG body or from some other function.

RETURN always returns from the most recently entered PROG which has

not yet
been exited.

(SELECTQ e (el sl1 ... sln) ... (e2 s21 ... s2n) ... deflt). SELECTQ is the
switch-case construct in the LISP programming language. It is an NLAMBDA
nospread function. SELECTQ first evaluates the expression e. Next, e is
compared to el as follows. el is not evaluated; it is implicitly quoted. 1f

v el is an atom, e is checked to see if it is EQ to el. If el is a list, e is
checked to see if it is EQ to any element of el. If either of these is true,
expressions sll ... sln are evaluated, and the value of the SELECTQ is sla. 1If
e is not found in el, SELECTQ goes on to e2, and so forth. If e is not found
in any of the ei, deflt is evaluated and SELECTQ returns that value.

The following expression will check to see if the value of the atom LETTER is a
vowel, and will return VOWEL, CONSONANT, or Y.

th
(SELECTQ LETTER

((AEIOU) 'VOWEL)

(Y 'Y)

' CONSONANT)

4.17. FUNCTIONS THAT EVALUATE EXPRESSIONS

It is no accident that LISP expressions are identical in form to LISP s-expressions.

One of the powerful capabilities of LISP is the ability to construct an s-expression
and evaluate it as an expression. : _ -

(APPLY fn args). Returns the result of evaluating the function fn with the argument

list args. APPLY is a LAMBDA, so it evaluates the argument list and the
function name before applying the function.

(EVAL e). Evaluates the expression e and returns its value.

4.18. STRING MANIPULATION

String manipulation in LISP is performed by operating on atom names. To obtain

a
string of characters, an atom is created with that string as a nume.

(UNPACK a). A is an atom. UNPACK returns a list of single character atoms which

make up the name of a. A may be a numeric atom.




4

4

1

R

Jpys V)

O

O

. LISP/80 1.0 REFERENCE MANUAL 25

(PACK al ... an). Nospread function. Al ... an are atoms. PACK returns the atom
whose name is the catenation of the names al ... an. For example, (PACK 'ALPHA
=1) returns ALPHA-l. PACK will create a numeric atom when the name is

suitable; note that creating numeric atoms outside the range =-32767 to 32767
will give strange results, <

(PACKC nl ... ni). Nospread function. Nl ... ni are numeric atoms. PACKC returns

- the atom whose name consists of the ASCII characters whose numeric character

. . codes are unl ... ni. .Atom .names formed with PACKC can contain coatrol

- characters. For example, to write the sequence ESC, p to the terminal do

(PRIN1 (PACKC 27 112)). (This sequence turns on inverse video on the H19
terminal or H89.)

(NCHARS a flg). A is an atom. NCHARS returns the number of characters in the
printed name of a. For example, (NCHARS 'ALPHA) returns 5. If flg is present
and non-NIL, NCHARS returns the number of characters in the PRINl-name of a.
For example, (NCHARS 'Z(%X)) is 2, but (NCHARS 'Z(Z) T) is &.

1

\

(CHARACTER a). Returns the numeric value of the first ASCII character in the name of
the atom a.

{é;f<:> (CHCON a). A is an atom. CHCON returns a list of numeric atoms which are the values

of the ASCII character codes which make up the name of a. For example, (CHCON
'ABC) returns (65 66 67).

4.19. INPUT/OUTPUT

1 e&:’ (PRIN2 e ch). Prints the expression e. If ch is omitted, or NIL, e is printed on

the terminal. If ch is present, it is a numeric channel number obtained from
OPENW, and the expression is printed on the device or file which is open on

- that channel. S-expressons written to a file by PRIN2 may not read back in
correctly; see PRINI, '

(PRINL e ch). PRINI is similar to PRIN2, with one exception. Lf an atom contains a
special character (i.e., one which must be preceded by a 2 to be inserted in
the atom name), PRINI prints the atom as it would be typed, with % inserted as
necessary. For example, the atom %(%) would be printed as () by PRIN2, but
PRIN]1 will print it X(Z). PRINl is used to output s-expressions in a form
suitable for reading back in.

The name of an atom, including the X% characters, 1is referred to as the
PRINl-name of the atom.

(PRINT e ch). Identical to PRINl, except that PRINT terminates the output linme with

a pewline after printing e. (PRINT e) 1is the same as (PROGN (PRINLl e)
(TERPRI)). '

(TERPRI ch). Prints an end of line character on channel ch. Ch is usually NIL (or
omitted), which sends output to the terminal. Ch may also be a channel for a
file or device which has been opened for writing; see OPENW.

(POSITION ch). Returns the columm number 1in which the next character will be
printed on channel ch. Following a (TERPRI), for example, POSITION returns O.
If ch is NIL (or omitted), refers to the terminal.

b 2iaieng 4o et 4
. .



LISP/80 1.0 ' REFERQENCE MALUAL 26

(TAB n min ch)., Prints a sufficient number of spaces on channel ch so that the next
’ character will be printed in column n. At least min spaces are printed. (If
455 min is NIL or missing, min is taken to be 1.) Thus, if the current position is
to the right of column n - min, a TERPRLI is performed before spacing over.
Setting mif to a large negative number (-100, say), removes all possibility of
" a TERPRI occurring. If ch is NIL (or omitted), refers to the terminal. TAB
. will use tabs instead of spaces wherever possible.

. (OPENW fname). Fname is an atom which is the name of a file or device. OPENW
- attempts to open that file or device for writing, and returns a channel number
if successful. S-expressions may be written to the file or device by passing
the channel number to PRINT, PRINl or PRIN2. If no extension is specified for
the filen me, the extension .LSP 1is assumed. In specifying an extension,
remember that the character "." in an atom name must usually be quoted by
preceding it with a "Z"., If the file or device can not be opened, an error
occurs. A maximum of three files or devices may be open for reading and/or
y writing at any ome time; to use more see CLOSE.

A file or device which has been written to must be closed before exiting from

PN A the LISP/80 interpreter, or the information written will be lost. See CLOSE.
Y — It 1is not necessary to close channels which have only been opened for reading,
‘“’(.f but at most three channels can be open at any one time.

e —

is a number, CLOSE returns T and closes the file or device which is open on
that channel. If ch is not a number, CLOSE returns NIL and does nothing.

!  /({OPENR fname). Fname is an atom which is the name of a file or device. OPENR
attempts to open that file or device for reading, and returns a channel number
if successful., S-expressions may be read from the file or. device by passing
the channel number to READ, q.v. If the open can not be performed, an error

. occurs., If no extension is specified for the filename, the extension .LSP is
assumed. A maximum of three files or devices may be open for reading and/or
writing at any one time; to use more see CLOSE.

P T

(READ ch). Reads an s-expression. ILf ch is missing or NIL, reads from the terminal.
If ch is a channel number obtained from QPENR, reads from the file or davice
which 1is open oan that chanael, See also: READC, OPENR. When the last
s-expression on the file has been read, READ returns the atom »~. Attempting to
read anything else after that causes an error.

~

-/<:> (READC ch). Similar to READ, but returns the atom whose name is the next character
read from the terminal (ch missing or NIL) or the file open on channel ch.

(LOAD fname). Fname 1is an atom which is the name of a file. LOAD opens the file,
and evaluates the s—-expressions oo the file as if they had been typed to the
interpreter. LOAD 1is useful for loading programs that have been typed oanto a
file. LOAD returns fname.

- o e o G . — - -

PRV,

/ (CLOSE ch). Ch is a channel obtained from a previous call to OPENW or OPENR. If ch.



et

PR O e T X ]

. cahsaatio. sthriuiis aadiihahio. onbs

-~

N ;)
©

O

LISP/80 1.0 ‘ REFERENCE MANUAL ' 27

4,20, COMMENTS

It is good programming practice to include comments in every program. LISP does not
have any special way to do this, but there is a trick which can accomplish the same
thing using the QUOTE function, as in the following function definition example:

(FACT (N) (COND ((ZEROP N)
(QUOTE Return 1 for (FACT 0)) 1)
(T (QUOTE Otherwise, recurse)
(TIMES N (FACT (DIFFERENCE N 1}

There are two things to remember about this way of commenting a program. First, the
comment will take up list space, and especially character storage space, that could
otherwise be used for program and data. This is why the LISP program files on the
LISP/80 distribution disk do not contain comments.

Second, the QUOTE function is evaluated during program execution, just like any
other function. Thus, it must be 'used only in places where it does not affect the

value of the expression in which it is inserted. This is the case in the example
above. :

4.,21. TRACE, BREAK, ERRORS, AND PROGRAM TERMINATION

LISP/80 provides several facilities to help with debugging and examining the
operation of user programs. TRACE displays call and return values of designated
functions while the interpreter is running. BREAK allows examination of variable
values from inside a function which is being executed. This may also be done when
an error occurs.

(TRACE 1). L is a list of function names. TRACE turms on tracing for each of these

functions. When a traced function is called, its name and argument values are
printed, along with the function call d2pth (counting only traced functions).
When a traced function returns, the call depth and function value are printed.
Both user-defined and built-in functions may be traced. TRACE returns its
argument list as value. . -

TRACE operates by placing the property TRACE on the property list of each
_traced function, with property value T. In order to speed functiom execution,
the interpreter does not test for this property unless TRACE has been called at
least once. Thus, it 1is possible for a user function to turn tracing of
individual functions on and off dynamically, but if this is done the

interpreter must be signalled to look for the TRACE property by first calling
(TRACE NIL).

(UNTRACE 1). L is a list of function names. Turns off tracing of each named

function in 1 (whether or not it was on). See TRACE.

(BREAK). This function, when executed, calls EVALQUOTE, which prompts the user for

input exactly as at the top level of the interpreter, except that the character
":" i3 used as the prompt. The user may type expressions to be evaluated. Any
variables which are bound at the time BREAK is called are still defined, and
may be examined, and their values changed, by the user. The user may also type
the following special commands:

BT Backtrace. Types a list of all functions which are currently called,
starting with the function containing the BREAK and proceeding up to
the function originally called from EVALQUOTE.

Dl e S g L o saase el o ot et c memer e s s Al S e aea. . LA N .. . d
. .. ~ . e P - .



B )

Lior/ov 1.9 PEFEREMCE MANLAS 23

CONTINUE Continue with program execution. Return from the BREAK with the
value NIL,

A Pop up to the top level (or to the next level of EVALQUOTE, if the
current BREAK was caused by something typed at a previous BREAK).

Ordinarily, the effect of an error is to print the error message, abort program
execution, and return to EVALQUOTE level. - However, if the value of the atom BREAK
is other than NIL, after an error message is printed a BRELK occurs. If the wuser
CONTINUEs from the break, the function which caused the error returns the value NIL,
and execution continues from that point.

At any time during interpreter execution, typing ctrl-B on the terminal causes
function evaluation to be interrupted. (Under CP/M, if the interpreter is locked in
a tight internal loop it can not be interrupted.) This interruption is handled
precisely 1like an error. That 1is, if BREAK is set to NIL, ctrl-B will cause a
return to top EVALQUOTE level. If BREAK has been set to other than NIL, ctrl-B will
cause a BREAK and drop into EVALQUOTE. From this point, CONTINUE will resume
function execution from the point of interruption.

(LOGOUT). Terminates LISP/80 interpreter execution and returns to momitor command
level. All data in memory is lost.

4.22." GARBAGE COLLECTION

As the interpreter runs, new lists are created. Eventually all the available space
is wused up. At this point, the interpreter looks around for any list cells which
were once used but are no longer needed. (This can happen, for example, if a cell
was the value of an atom which was then set to a different value.) These cells are
reclaimed and made available for reuse. This process is called garbage collection.

(LISP was invented before the term "recycling" came into general use.)

LISP/80 divides its data storage into two areas: list cells and atom character name
space. When the garbage collector rumns, it prints out the amount of each kind of
space it was able to make available. If a program is large or creates a lot of
data, all of one kind of space can be used, and the garbage collector can not free
up any at all.

It is possible to readjust the allocation between list and character space (see
Section 4.23). But if both kinds of space run short, the program is really too big
for the machine. At that point you should consider swapping function definitions or
list structures out to the disk using READ and WRITE, or buying more memory or a
PDP-10 computer.

Garbage collect is invoked automatically whenever more space is needed. It may also

be run explicicly. One use of this is to print out the amount of space available.

(COLLECT). Causes a garbage collect to take place, reclaiming any atom and list cell
space no longer in use. Causes :the amount of spice available to be printed omn
the terminal; see also GCGAG.




.

LIsP/80 1.0 ' REFERENCE MANUAL 29

~ (GCGAG flg). Controls printing of garbage collection messages. Normally, a message

~is printed on the terminal during each garbage collection. Calling GCGAG with

flg = T will suppress printing of messages. Calling GCGAG with flg = NIL will

resume printing. GCGAG returns the previous value of its flag, so that a

function may control the message during execution of the function and then
;=% #% 7 restore the previous status on exiting.

4.23. STORAGE ALLOCATION

When the LISP interpreter is run, it divides all available storage into three areas:
lists, characters, and stack. The list area holds atoms and list cells, using four
bytes per item. The character area contains atom names, with an atom taking the
space for its name plus three and a half bytes. The stack area is the hardware
program stack, and is used only for internal subroutine linkage and storage; the
LISP stack is kept in the list area. The character space and the stack space grow
‘:) toward a common boundary, so' that the maximum recursion depth is increased when
character storage is relatively uncluttered, and may occasionally be reduced before
. a garbage collect.

-
{®/\_ When the interpreter exhausts list or character space, the garbage collector will
1 show this by first displaying small or zero amounts of free or character cells, and
: then by giving an error message. When the program stack is exhausted, a "Stack..
l Overflow" message appears. "
l Typically, LISP/80 running on a 48K system will have available about 3600 1list
{ cells, 1200 character bytes, and a minimum of 1500 bytes for the internal stack.
: Since a particular application may require a different allocation of available
‘ t::) memory, these parameters may be adjusted by the user.

A permanent change can be effected by patching the file LISP.COM [under HDOS,
LISP.ABS]. Type file PATCHES.DOC on the LISP/80 distribution disk to see the
addresses to patch in your versign and the default values, and for instructions on
how to patch program files on your operating system.

PR P

There are two values which can be patched. - One holds the number of list cells to be

allocated. If this number is 0 (the default), there will be about two list cells

allocated for every character byte. If this number is patched to a nonzero value,

that number of list cells is allocated. Because of the initialization process, the

if}f‘:> actual number of list cells available (as shown by a COLLECT() upon starting LISP)
- will differ slightly from the number requested.

The other value holds the number of bytes assigned to the program stack. This

number is initially set to 1500. All free memory not used for stack or lists is
' used for character storage.

The size of these areas may also be determined at the time LISP is run. If LISP is
invoked by the command

o v uan dam oot

LISP L=nnnn S=mmmm

vhere onnn and omm are decimal numbers, then nonn list cells and mmim bytes of
stack space are reserved. If the default value is acceptable, either or both of the
’ (::) L=nonn and the S=mmmm may be omitted.

T - ey gr——ao ce o am e = -



Lo ot i

Wy

LISP/80 1.0 REFERENCZ MANUAL 30

4.24. WRITING ASSEMBLY LANGUAGE SUBRS

User-coded machine language routines may be loaded at the time LISP/80 is rum, and
called as SUBRs or FSUBRs from LISP functions. This section describes how to
accomplish this, assuming the reader is an accomplished machine language programmer.
To write such routines, it is necessary to understand a little about the internals
of LISP/80. A 1list cell is two consecutive words, always starting on an address
whose two low bits are 0. The first word holds the address of the CAR of the cell,
and the second holds the CDR.

An atom is a list cell with the 1low bit of the first word set to l. This
distinguishes it from a normal list cell. Ia a numeric atom, the first word
contains 1 and the second word holds the value. In a literal atom, the first word
(with the low bit masked out) points to the atom name, and the second word to the
property list. The atom name begins on an even address, and is stored as the

address of the atom cell, followed by the name itself, terminated by one or two zero
bytes.

LISP/80 is written in C/80, and uses that language's subroutine calling conventionms.
The calling sequence is: PUSH argl; ...; PUSH ar°n;" CALL subr; POP; ...; POP,
Subroutines return their value in HL., No registers are preserved through subroutine
calls., The arguments to and values returned by LISP machine language functions
should be the addresses of list cells.

To write machine language functions it 1is necessary td kacw certain internal
addresses. Running LISP using the command "LISP P" will print these addresses. ORG
is the origin for user functions; NIL is the address of a word of memory containing

the address of the atom NIL. (The address of the atom itself may change from run to
rua.) ‘ ‘

The other addresses are internal routines which may be useful. Their arguments may
be list cells or not, as noted.

. ROUTINE .#ARGS FUNCTION
getatom 1 Argument is address of O-terminated atom name;

returns pointer to the atom in HL.

P

getcell O Returns address of a fresh list cell in HL.

box 1 Argument is number; returns numeric atom with that
value, .

push 1 Argument is a list cell; pushes it on list stack.

pop 0 Pops top item of list stack into HL.

Push and pop are useful in protecting temporary list structures from a garbage
collect. A collect can happen any time storage is wused: in a call to getatom,
getcell, box, or any LISP function that calls these routines. Collect does not move
list cells, but it may '"sweep up" and clobber the contents of anything it can't
identify as being in use. The arguments to your machine language function are
protected, and so is anything placed on the list stack by cailing the internal
routine push. Everything that is pushed must eventually be popped or LISP/80 will
become muddled.

Any LISP built-in function can be called from your function. To discover the
addresses of built-in functions, do a GETPROPLIST on the function. name and look at
the SUBR or FSUBR value.

If you are running CP/M, to load a set of machine language functions into LISP/80,
assemble them with the CP/M assembler ASM onto a file called, say, MYFNS.HEX and run
LISP with the command "LISP P=MYFNS.HEX".




-_—

—

_LISP/80 1.0 REFERENCE MANUAL 31

Under HDOS, use ASM to assemble your functions, creating a file MYFNS.ABS. Then run
LISP with the command "LISP P=MYFNS.ABS",

To make your routines available to LISP/80 functions, first compute the entry
address of each routine in decimal, Then choose a name for each routine, and use
PUTPROP to place on the property list of the routine two properties: NZ ARGS, with
the number of arguments the routine expects, and SUBR, with the decimal value of the
subroutine entry address. The routine may now be called from LISP.

The number of arguments to a machine language function may not exceed 3. 1f NZ ARGS
is -1, the routine will be nospread (see Sectiom 4.14). 1If the subroutine address
is placed under the property FSUBR instead of SUBR, it will receive 1its arguments
unevaluated,

Following is a simple machine language function implementing (ADDl n), which returns
n+l. This routine does not check its argument and will return a random value if
called with other than a numeric'atom. NOTE: the addresses assumed here for ORG and
box may differ from the actual values; run "LISP P" to find out the right ones.

ORG 27329 Use the ORG from "LISP P"
ADD1 POP D Pop return addr.

POP H Get argument

PUSH H Restore stack

PUSH D )

INX H - Move to second

INX H word (value)

MOV E M and get it in

INX H DE.

MOV D,M

INX D Add one to value.

PUSH D Push argument to box.

CALL 19636 Call box to make atom,

POP B Pop argument off stack.
* RET Return the atom in HL,

END ADDI

{:) If this is assembled onto file ADDl.HEX it can be loaded into LISP/Sd'by the command

“"LISP P=ADDl.HEX" |under HDOS, use ABS instead of HEX] and linked in by typing to
EVALQUOTE

S = PUTPROP (ADD1 SUBR 27329)

PUTPROP (ADD1 NXZ ARGS 1)




pra

LloPs00 1.V EOLI0r AND rile 2aCKAGE J2

5. EDITOR AND FILE PACKAGE

S.1. INTRODUCTION

To make LISP/80 program development easier, a simple program editor and function
save routine, written in LISP, are provided. The editor permits editing of functiom
definitions and other s-expressions. The save routine writes the curreat
definitions of a 1list of functions onto a file, from which they may be reloaded.
The system remembers what functions have been loaded from a file, so that the user
need not list all the function names when saving them again.

Also provided is PP, a "prettyprint" routine which prints a LISP expression, and in

particular a function definition, in a more readable format than is afforded by
PRINT,

These functions are written in LISP. They are supplied as files EDIT.LSP and PP.LSP
on the LISP/80 distribution disk, and may be loaded by the commands LOAD (EDIT) (or
LOAD (B:EDIT) if the file is on B:; under HDOS, LOAD (SY1:EDIT)) and LOAD(PP).

These functions are not particularly sophisticated, fast, or  complete. They are
provided not only to be used, but also to serve as examples of how LISP can be used
to manipulate other LISP programs and to write, in LISP, programs that perform

system utility functions. The user may well wish to extend the editor and to polish®

EP beyond their current state. Or the user may find it easier to make program
changes by exiting from LISP/80, editing the program file using PIE or another text
editor, and reloading the program.

WARNING: These functions should be loaded early in the LISP session. If memory is
almost full loading them may exhaust available storage and the contents of memory
may be lost. The amount of storage required by a file may be determined by doing a
(COLLECT), loading the file, doing another (COLLEGT), and subtracting the new free
space counts from the previous ones. Then (COLLECT) may be used to see if the

<

required amount of space is available before loading the file during subsequent LISP

runs.

5.2. EDITOR

The functiouns described in this section must be loaded by LOAD (EDIT) before they
can be called.

(EDIT fname). Edits the function definition of fname, using the editing commands
shown below. When editing is completed, the function definition is updated to
the edited one, and EDIT returns the value fname.

(EDITEXP expr). Similar to EDIT, but eurts the actual expression expr. EDITEXP is
called by EDIT.

EDIT is an expression editor. It ailows insertirg, changing and deleting elements
of a list. There 1is always a current expression, which initially is the enctir2
function definition. As editing priceeds, various commands can be used so that one
of the sublists of the current expression, or the list containing the curreant
expression, becomes the new current expression. Other commands allow editing the
current expression, and it is displayed after every step.

When EDIT 1is run, it finds the definition of the function fname. If there is no




. LISP/80 1.0 EDITOR AND FILE PACKAGE . 3

existing definition, EDIT starts off with the expression (LAMBDA NIL NIL). EDIT

prints the current expression, which is the entire function definition, prompts with
the character *, and waits for a command.

. <

_ When the current expression 1is printed, any list nested at or deeper than the
? maximum print depth is represented by the character ?. The print depth is initially
set to 3 but may be changed by the (P n) command. Example: the expression

. (LAMBDA (X) (COND ((NULL X) X) (T (CDR X)))))

would print as
(LAMBDA (X) (COND (? X) (T 2)))

t This allows complex expressions to be summarized in a reasonable amount of space.

1

‘:) The ‘EDIT commands are:

PP Prettyprints the current expression. This permits viewing the entire

expression in a readable format, but is liable to be quite slow. This command

G§9<:> requires PP to have been explicitly loaded (see Section 5.4).
n (n is a positive number other than 0). The nth element of the current
expression becomes the new current expression, Example: if the curreat™
i expression is the ome shown in the previous paragraph, then the commands "
1 3
3

; ~would print

€ (COND ((NULL X) X) (T (CDR X)))

(T (CDR X)) ’
0 _ Sets the current expression to the 1list containing the current expression.
(:> . Continuing the example of the previous paragraph, typing
{ 0 . . amma e

would print
(COND ((NULL X) X) (T (CDR X)))

F Moves forward; i.e., sets the new current expression to be the next list
element after the present current expression. If the current expression is C
] in the list (A B C D E), then the F command moves the current expression to be

D. 1If the current expression is the last element in a list, F prints a ? and
does nothing else. '

B Moves backward; i.e., sets the new current expression to be the list element
preceding the current expression. If the current expression is D in the list
(A B CDE), then the B command moves the current expression to be C. If the

i current expression is the first element in a list, b prints a ? and does
} nothing else.




L meeda

L[]

s 20 b o, o B 4% ot - @

LISP/80 1.9 : EDITOR AND FILE PACKAUE

(n el e2 ... en). The nth element of the current expression is deleted and repis:ed

by the expressions el ... en. The replacement is performed using NCONC.
@ Continuing the example, typing

(1 ((ZEROP X) Y) ((NULL X) Z)
prints the edited expression
(COND ((ZEROP X) Y) ((NULL X) Z) (T (CbR X)))

If there are no expressions in the commana, the nth element of the current

expression 1is simply deleted. For exaample, (3) deletes the third element of
the current expression.

{-n el e2 ... en). The expressions el ... en are inserted before the nth element of

the current expression, but nothing is deleted. The replacement is performed
using NCONC.
\ [

(P n) Sets the maximum print depth to n. Expressions nested n levels deep or more
are printed as ?,

Q§)<:> E Exit from the editor. Note that EDIT alters the list structure of the function

definition, so even if EDIT is aborted by typing ctrl-B, any change is likely
to be made and irreversible (unless the definition was previously saved on a
file or COPYed to another expression.) :

T

5.3. PRETTYPRINT ° .

The functions described in this section must be loaded by LOAD (PP) (or B:PP if ‘the
file is on B:) before they can be called.

(PP expr file). Prettyprints the expression expr on file. File is NIL (or omitted)
to print on the terminal, or a channel number (see OPENW, Section 4.19) for
output to a file or other device.

A prettyprinted expression is considerably more readable than an expression
. printed by PRINT, However, since it does a considerable ampunt of character
\ * counting, PP is quite slow.

(PPF fname file). Prettyprints the definition of the function fname.

Q
3

5.4. SAVING FUNCTIONS ON A FILE

The functions described in this section mus® be loaded by LOAD {£DIT) (or B:EDIT 1if
the file is on B:) before thev :an be called.

(SAVEFILE fuane progs ppflag). Saves function d:fiaitions c¢a file fname. The
defirn..ions zan be read back in by (LOAD fname). The functious which are saved
are (1) any fuasctions in the \list progs of funccion names, and (2) any
functions which were previously loaded from file fname if fname was previously
written by SAVEFILE. The file will contain only thicse functions and no others;
anything previously on the file is lost. If no extension is given for fname,
.LSP is assumed.

If ppflag appears and is not NIL, the functions are prettyyrinted, using PP.




.enmma— e .

- ———.o -

z;)cgi

P e e . S et St A, Sl

O

B e

LISP/30 1.0 : EDITOR AND FILE PACKAGE 35

This will be extremely slow but the resulting file will be more readable. 1£
PP has not explicitly been loaded, PRINT will be used in any event.

When a file created by SAVEFILE is read back in by LOAD, the list of functions
defined .on the file is remembered (by storing it as the property PROGRAMS on the

property 1list of the file name atom). This allows SAVEFILE to write the functions
back out later.

Thus, a function F may be defined originally by typing in a DEFINE. It can be saved
the first time by SAVEFILE (MYPROGS (F)), which will create MYPROGS.LSP and write

the definition of F to it. Subsequently, the saved definition of F may be restored
by LOAD (F), edited, and saved again by SAVEFILE (MYPROGS).

+  BIBLIOGRAPHY

Laurent Siklossy, Let™s Talk LISP. Prentice Hall, Engelwood Cliffs, NJ, 1976. A
recommended introduction to LISP.

Daniel Friedman, The Little LISPer. Science Research Associates, 1974. A softcover.

introduction to LISP using the question and answer method.

Winston, Artificial Intelligence. Addison-Wesley, Reading, MA, 1977. A good
hardcover text which describes a number of artificial intelligence
applications, with many examples of how to program them in LISP. Few of the
programming examples are complete, however, so there are not lots of things for
the novice to type in and try to run. The last third of the book contains a
good introduction to the LISP language. This is the one book to buy for those
learning LISP in order to program AI applicationms.

Clark Weissman, LISP 1.5 Primer. Dickenson Publishiang Co., Belmount, CA, 1967. An
old introduction to LISP, It is well written, proceeds slowly, and contains

many examples and exercises. All this tends to compensate fcr its being
obsolete in a few places.

John Allen, Anatomy of LISP, McGraw Hill, 1978.

BYTE Magazine, August 1979. Byte Publications, Peterborough, NH. This issue
contains a short article introducing LISP, and a number of applications. The
introduction is worth reading if the magazine is easily available; but note
that it uses FIRST for CAR and REST for CDR. The applications articles may be
of interest once the reader has a bit more LISP knowledge.

Warren Teitelman et al, INTERLISP Reference Manual. Xerox PARC, Palo Alto, CA,:
1978. Thicker than the Boston telephone book, this manual describes ome of the
largest L1SP systems in existence., It 1is mainly of academic interest to
LISP/80 owners, although if it is available it may be worth looking at, since
explanations it provides of .the functions LISP/80 does contain are usually
applicable to LISP/80 and can be instructive.




LISP/30 1.0 . [NDEX TL FUNCILLONS

e INDEX OF FUNCIIONS

Gg’ This is an alphabetical index to the built-in and library functions
LISP/80 Reference Manual. ‘It does not include references to these
introductory sections of the manual.

RS S

MEMBER. . . . . 18
2ERIP . . e
NCHARS. . . . . 25

E acdibi adagn koo L g L noiod
Rl P e

26

described in the
functions in the
<

L AND . . . ., .17 NCONC . . . . . 20
e APPEND. ., . . . 16 o7 NOT . . . . .17
APPLY ., . . . . 24 NULL . . . . . 17
ATOM . . . . .17 NUMBERP . . . 17
1]
. BREAK , . ., . . 27 OPENR . . . . . 26
 OPENW . . . . . 26
CAR. . . . . .15 OR. . . . . 17
COR. . . . . .15
\ CHARACTER. . . . 25 PACK . . . . .25
CHCON . . . . .25 PACKC . . . . .25
CLOSE . . . . .26 ' PLUS . . . . .21
COLLECT . . . . 28 POSITION . . . . 25
X o coop ., . . . .23 PP (library fn). . 34
@V CONS . . . . .15 PPF (library fn) . 34
! CORY . . . , .16 PRIN! . . . . .25
] . e C PRINZ . . . . . 25
) . DEFINE. . . . .21 PRINT . . . . . 25
; DIFFERENCE . ., : 21 PROG . . . . .23
_ PROGN . . . . . 16
! EDIT (library fn) . 32 PUTPROP . . . . 19
) EDITEXP (1ib. fn) . 32
: EQ. . . . . .17 QOTE . . . . .16
; EQUAL . . . . .17 QUOTIENT . . 21
| EVAL .. . . . . 2
; ' READ . . . . . 26
H - GCGAG . . . . .29 READC . . . . 26
GEQp . . . . .21 REMAINDER. . .21 *
GETPROP . . . . 19 REMPROP . 19
GETPROPLIST . . . 18 RETURN . X
GO. . . . . .2 REVERS! lo
- GREATERP . . . . 21 QPLACA. e
L - . RPLACWY -4
L’@ . LAST . . . . .16
‘ LENGTH P SAVEE1LL 1ip. ta,. 34
b . LEQ. . . . . .21 SELE.™0 ., . 24
. " LESSP . . . . .21 SE™ ) 18
4 LIST . . . . .16 SEIC 18
LISTP . . . . .17 B! 19
LITATOM . . . . 17
i LOAD . . . . .26 1AB. . . b
‘ LSGGUT. . . .28 "ERPRI . .28
' i7ois .21
MAPATOMS . . . . 23 “RGE 27
MAPCAR. . . . . 22
MAPCONC . . . . 23 LCACE. L. . 2
MAPLIST . . . . 22 L ICE L 27

.21




