o

T

RML Algol 60 CP/M System

ALGOL 60 VERSION 4.8¢ RELEASE NOTE

CP/M Vetsioq;g

When uged wvith cp/yM versioﬁ 2 the Algol System wi1)31 accept digk drive
Dames éxtending frong A: to p:

ASSEMBLY copg ROUTINES

assembly (ode Program o which userg Day edit ip their roucines, Parts
DOt requireqd Bay be removed as desired, The resulting Program shoylq

then be assembled apq overlaid onto the runtipe system«using DDT, the
resultiag code being SAVEd a5 4 Dew runtipe System. It ig importante that
the Copr Program be ryp using the version of the runtime System to which

the code routines are go be 1lfnked else the tables producedj-mayv,bea
incompatible.

Another example program Supplied {g QSORT, the sortingm Procedure.
described in the manual,

) - PP

RML Algol 60 CP/M System

LONG INTEGER ALGOL

Arun-L {s a version of the RML 280 Algol system in which real variables
are represented not in the normal mantissa/exponent form but rather as 32
bit 2°s complement integers. This runtime System 1s wuseful for those
applications where greater precision is desirable but without the need to
extend the number range to the extent allowed by the floating point
representation, e.g. business programs, The number range allowed is from
(2°31)-1 to =(2°31), (about +2.15*%1079), The compiler itself remains
unchanged. Variables declared as integers will still be represented as

16 bit 2’s complement numbers., This document outlines the dirferences
from the Algol system described in the manual.

STANDARD FUNCTIONS

The following functions have been Temoved ;
sin, cos, sqrt, arctan, ln, exp

The function entier exists but 1is equivalent to a real to integer
assigmment., For example, the statements

i:=entier(x);
1:=x;

have the same effect.

LIBRARY PROCEDURES

The standard library file ‘ALIB.ALC’ can be used with Arun-L with the .
following exception :

random has been removed.
Two additional library procedures can be found in file ‘ARUNL.ALG’
powlO(n)
lrem(t,b)
DIVISION .
Real division (/) always truncates the result towards zero in the same
way as with integer division (). A procedure has been added to the
- library (lrem) to give the remainder term lost by the division.
z:=lrem(t,b);
gives the remainder lost by the division

-

u:=t/b;

Research Machines 2 Anronnatr 1000

/ RML Algol 60 CP/M Systew

The result of lrem will alwa

' ys have the same sign as the quotient (or
zero) in the same way as the MOD

operator does for the integer case e.g.

4 b t/b lrem(t,b)
35 8 4 3
-35 8 -4 -3
33 =5 -4 -3 .
=33 & 4 3
INPUT/OUTPUT

The decime’ Lnp
for the adéi::a-

¥10(n,

vhere ‘n’ 1. aall integer causes all subsequeut calls to read to be

scaled by ictor of 10°n. The digit string representing the number
(including -onal and exponent fields) is read and the result scaled
by 10°n. fractional part is then disregarded before returning the
result, Fo: iple with n=2, on reading the number 123.4567 the result
would be 1: On ocutput the converse scaling is performed. The value
to be outpu: irst converted internally into a digit string; the
decimal po. -3 then effectively shifted left by ‘n’ digits before

\ printing th: i1t in the required format. The meaning of the format
parameters -1 unchanged. This scaling on output applies only to
rurite; the ;8% print routine (write) is unchanged.

RUNTIME ERR:: SSSACES

. The followi:; charges to the runtime error numbers given in the manual
' have been m: ., ' ’

8 Rea! - integer) division by zero or lrem(t,0).

9 ™ Ove: +1 real multiply,

16 Ove:'" in real addition.

17 Over: . in real subtraction.

18 Ille:- srandard function called e.g. sin, cos etec, -

19 szgative number =(2°31) with no correspounding positive

:ation. This error can occur from abs, *, /, rem, rwrite

"y

Research Machines Y e L s AnA

it ALBVA OV ° CP/M System

STRING HANDLING

The following string handling routines were written by Clare Tagg of the

London School of Economics. The source code can be found in the file
STRING.ALG.

- General Philosophy

.

In RML Algol variable strings are stored in BYTE ARRAYs vhereas literal
strings are passed as STRINGs. This means that routines which may have
variable or 1literal strings as arguments must have addresses as
parameters. In the Algol library suppiied in ALIB.ALG there are four
such functions: atext, tlem, smatch and blmove as well as the literal
string specific function text. As these functions require the frequent
use of the functions location or sloc to find the relevant address, they
are rather unwieldy to use. In designing new string functions it was
decided to continue this distinction between variable and literal strings
and have special versions for routines commonly having 1literal
arguments. These routines are distinguishable by ending in an ‘s’ and in
general the rightmost string parameter is of type STRING.

In the following descriptions ‘b is a single dimension BYTE ARRAY

containing a string (ie. terminated by 0), 1 is an index in the byte
array which indicates the start of the string and s 1s a literal string.
Most of the routines use some of the string handling library routines
(ie. locationm, tlen, smatch, sloc, blmove, atext). The routines provided
are:-

BOOLEAN PROCEDURE seq(bl,11,b2,12);

Gives equality of two strings starting at bl[il] and b2[12].

BOOLEAN PROCEDURE seqs(b,i,s);

Gives equality of variable and literal string.

BOOLEAN PROCEDURE subeq(bl,11,b2,12,1en);

Gives equality of substrings starting at S1(11] and b2[12] of
length len. If len 1is negative it defaults to the length of the
string starting at b2[12]. :

o

BOOLEAN PROCEDURE subeqs(b,1i,s);

Gives equality of substring starting at b[i] and literal string
8 of length of s.

7

4

Research Machines: 4 . August 1980

RML Algol 60 ' - CP/M Systea

INTEGER PROCEDURE sfind(bl,il,bZ,iZ);

Finds start of String starting at b2{12] in string starting at
blfil]. Result 1s index in bl or =1 if not found.

INTEGER PROCEDURE sfinds(b,i,s);

Same as sfind éxcept 2nd operand is a literal string,

PROCEDURE scopy(bl,il,bz,iz,len);

Copies string from »2 into bl écarting at b2[12] for len

characters starting at bi[1l]. If len is negative entire string’
is copied.

PROCEDURE scopys(b,i,s);

Same as scopy but 2nd operand is a literal.

PROCEDURE stext(dev.b,i,len);

Outputs string to device dev starting at b{i] for len
characters or whole string if len is negative,

PROCEDURE stead(dev,b,i,len);
Reads a string from device dew into b starting at {., Reads len

character§ or until cr is found. On return len is set to the
length of the string which is also terminated with a zero.

PROCEDURE sinit(b,i,ch.len);

Initialises integer or byte array b to character c¢h starting at
i for len elements.

Research Méchines L Auoues 102N7

KL ALgol by TRS-80 CP/M Version

ALGOL 60 RELEASE NOTE
Compiler Version4.]T, Runtime System 4.7T

ISR-80 MEMORY MApP

The TRS-80 RAM starts at location 4200H instead of the normal zero for
CP/M computers, The absolute addresses described on page 69 of the
manual should be offset by this amount. Users adding assembly code to
the runtime system are strongly advised ¢to make use of the skeleton
generated by running the Program CODE described below,

TRS-80 CHARACTER SET

"y appears as """

"J " Nt
n{ " (1] ’ "
n} " nayn

None of these characters (or *) can be input via ‘the TRS-80 keyboard.
The compiler has been modified to accept the following alternative
syabols,

"¢<" as alternative to "

">> ”" "] "

"@ 11) "a e

For example the Statements
A<KI>>:=B@3; CRTL C:=4QC;
are the same as
A[I):=b"3; CTRL C:=§°C;

The program TaNCON on the distribution disk can be uysed to convert
programs written using the above Tepresentations into the Standard form,

Switch options attached to filenames may be enclosed by ‘<’ ang >
instead of ‘[‘ and 1" (see page 39), for example: -

DEV:-FINDINPUT("DATA.DAT(B)");

Research Machines 1 A ot men

TRS80 GRAPHICS

The graphics routines described in the manual as "for the RML380Z only"
(see pages 43,44,71 and 73) are available with the following differences:

l. The origin is at the bottom left hand corner, not 4 lines up.

2. For GHPOS the limics are 0<x<64 and 0<y<16.
3. For POINT and LINE the limits are 0<x<128 and 0<y<48

4, The EMT call is not available.

Se In POINT and LINE there is no difference in brightness between 2=}
and z=2,

6. The x resolution is about twice that of the Yy resolution instead of
being equal. '

For programs using graphics it is often convenient to obtain characters
from the keyboard without echo. This may be achieved with the call
310S(3,0). (See Page 36). Note also that all the control codes listed in
+C/1 of the LEVEL II handbook work when sent to the VDU via stream 1. For
example, CHOUT(1,28) sends the cursor home to the top left corner. , The
source of the graphics routines is in ARUNG.ALG.

The distribution disc contains several simple examples of the use of
graphics (TEST1 to TESTS). Some of these require a key to be struck
before moving on to the next display.

The program DUCK is a game of "duck shooting”; respond with an angle in
the range of about 45 to 90.

ASSEMBLY CODE ROUTINES

The program CCDE.ALG and CODE.ASC is an aid to users who wish to add
their own - code routines to the runtime system. The program produces an
output file which contains a Teconstruction of the INPUT, OUTPUT, IOC and
ERROR tables described in the manual. This file forms the basis of an
assembly code program to which users may edit in their routines. Parts
Mot required may be removed as desired. The resulting program should
then be assembled and overlaid onto the runtime system using DDT, the
resulting code being SAVEd as a new runtime system. It is important that
the CODE program be run using the version of the runtime system to which -

the code routines are to be linked else the tables produced may be
incompatible,

L 4
Other example programs supplied are QSORT, the sorting procedure
described in the manual, and STARTREK, the well known game.

Pesearch Machines 2 August 1930

RESEARCH MACHINES . 280 ALGOL

" ALGOL 60

- RELEASE NOTE
Compiler Version 4.1C

Runtime system Version 4.1R (380Z only)
' 4.1C (pure CP/M)

Users linking their own code procedures into the runtime system should
note that the addresses of the necessary tables are contained in the
1list of pointers located near the start of the code. The examples given
in the manual describe the mechanism; the exact locations of these
tables will vary between the various versions of the runtime system.

380Z USERS ONLY.

If you wish to use a VDU as the outout device rather than the normal
memory mapped VT screen then the pure CP/M version of the runtime system
should be used (file ARUNC.COM on the disk). List the file README.DOC
for more information.

A number of additional test programs can be found on the distribution
disk which make use of the graphics facilities available.

A number of characters on the VT ROM do not print as the desired ASCII
code. In particular, square brackets appear as left and right arrows,
and braces (curly brackets) appear as one quarter and three quarters.

w»

RESEARCH MACHINES Z80 ALGOL

INTRODUCTION

TS s e o o o

RML Algol 1s agn implementation of the Algol 60 language designed
especially for smal) computers. Almost all the features of Algol 60 are
implemented together with a significant number of extensions. The system

]
having been "burned ip" over a period of several years on PDP8 and PDP]]
computers. The RML Algol for the 280 running under the CP/M operating
system consists of 4 one-pass compiler and 2 runtime program. The
compiler translates the Algol source Program into a machine independent
intermediate code which specifies the sequence in which a number of

subroutines is to be obeyed angd which contains arguments for thesge
subroutines.

The intermediate codes each occupy only one byte of memofy
resulting {n g, Very compact object code. Roughly 10 bytes are required
to store an average statement. The runtime program contains a loader for

the compiler output and all the routines required to fun the Algol
progran.

The compiler determines the oinimum memory requirements of the
system. The compiler and its runtime Systea together occupy about 12K
bytes. - Program work Space and the Cp/M operating system bring the total

The runtime System requires about 8K bytes of memory, which
together with program, data, and CP/M requirements allows sizable
programs to run in as little as 16K bytes.

The modular construction of the Programs allows the user to
optimise the runtime system ¢o meet 1individual requirements. In
particular users can add 1/0 handlers, assembly code routines and error
handling without needing to become involved in the inner workings of the

RML Algol 60 pProvides an {deal mediun, for the distribution of
precompiled software avoiding the need to supply program sources.
Licences may be obtained from RML to redistribute software linked to the
runtice system ipn this way.

RESEARCH MACHINES ' 280 ALGOL

THE RML ALGOL LANGUAGE

The RML Algol language is Algol 60 with a few restrictions. Sope
of these are a result of the one-pass nature of the compiler. For
example variables must be declared textually before use. In other
possible ambiguous situations that a multi-pass compiler could resolve,
this compiler may require a "clue" as to the type of object being
" translated. These differences are described in the following sections.
A number of extensions to the language have been introduced. These
include the data type BYTE ARRAY, logical and MOD operators, and a
significant number of functions, Appendix 3 glves a Ssummary of the
differences from the Algol 60 Report.

This manual describes the syntax of the language. The distribution
disk includes a number of example pPrograms which are described 1in
appendix 4. Users new to structured Programming may find 1t benefictal
to refer to an introductory manual on the language and also to. the
Algol 60 Report (see Bibliography). :

LANGUAGE KREY WORDS AND IDENTIFIERS

Some convention is required in Algol to distinguish between the
language key vords, e.g. BEGIN, END, ELSE, etc., and identifiers. In
textbooks this {is usually done by printing the key words in bolq " type.
In actual compilers some other convention is needed depending upon the
1/0 hardware available. This compiler accepts two possible conventions.
The first must be used where the I/0 s restricted to upper case
characters only. The second may be used where both upper and lower case
are available. Two small utilities are provided to convert between these
conventions (see appendix 4).)

CONVENTION 1. Upper case only. All basic language words must be euclbsed
within single quote (’) marks e.g.

SUM:=(Q;

"FOR* I:=] “STEP’] ‘UNTIL’ MAX ‘DO’
SUM:-SUM+(X[I]-XM[I])‘2; "
RMS:-SQRT(SUM/MAX); : :

CONVENTION 2. Upper and lower case. All basic language vords must be in
upper case and all {dentfiers must use only lower case. The above

exanple now becomes:
sum:=Q; ;
FOR 1:=1 STEP 1 UNTIL max DO
sum:esumt(x(1]-xm[1))~2;
rms:=sqrt(sum/max); .

The compiler decides which of the the two conventions is being
used from the first word of the program, which must be BEGIN. Once

selected the mrammd ¥ ma

RESEARCH MACHINES) 280 ALGOL

upper case (which {s how they appear 1f the identifier tables are
printed). The compiler only checks the first 2 letters of the language
key words, then skips unti] 3 Suitable terminator is found (a closing

quote or a non upper case letter). This implies that in the second
convention adjacent language key words must be separated e.g.

THEN GOTO label; and not - THENGOTO label;

One small difference to note is the representation of real numbers

vithin the program. In the first convention decimal exponentiation is

represented by "g" €-8. X:=1.234E-5 whereas in the second case a small
"e" must be used €-8. x:=1.234e~5. Note that when data is being read by

the program then a capital "E" is always used.

Users, 1f they so wish, may use any of the language key words for

the names of identifiers. As ap example the following declaratiom is
perfectly acceptable.

_ BEGIN INTEGER real,begin, end;

For the sake of readability the examples given in this manual will
for the most part use the upper/lower case conventicn. -

PRE-DECLARED IDENTIFIERS

Certain procedure names are recognised by the compiler without
declaration. Such fdentifiers may be regarded as having been declared

in a fictitious outer block enclosing the entire Program and thus {n
Scope everywhere except where masked out by a local redeclaration. These
procedures 1include the input/output routines which are discussed later
and the standard functions as defined in the Algol 60 Report. 1In

addition to these there is the procedure "foc" which takes a single
integer parameter, e.g.

ioc(n);

This routine serves a variety of purposes depending upon the value of n.
These 1include input/output selection, format control and so on. These
uses will be discussed in the following sections to which they apply.
Another use of this procedure 1is as a simple way of linking to code
routines within the runtime System. An inspection of the file "ALIB.ALG"
on the distribution disk shows that the majority of the procedures
consist simply of a formal definition of their parameters with a single
call to "1oc" as the body of the procedure. Users cay link in their own
code routines by this Same method. The details are discussed later.

P

RESEARCH MACHINES

280 ALGoL
STANDARD FUNCTIONS
sin(x) x is 1n radians
cos(x) - X is {n radfans
arctan(x) the result {s in radians in the range -pi/2 to +p1/2.
In(x) natural logarithm
exp (x) e to the power x
sqrt(x) 8quare root of x
-abs(x) absolute value of x
8ign(x) delivers -1, 0, or +1 according to whether x is
negative, zero or positive.
entier(x) reéturns the largest integer less or equal to x.

Thus {f x = 3.3 the result is 3.

if x = -3.3 the result 1g -4,
Note: as the fesult is integer the value of x

must lie within the valid integer range of -32768
to 32767.

In each of the above Procedures x 1s called by VALUE and thus the actual
parameter may be an expression.

THE STRUCTURE OF AN ALGOL PROGRAM

One of the most important features of the Algol language 1s that
it 1s structured. Just as round brackets define sub-expressions within
expressions, so the brackets BEGIN and END enclose a set of statements
which are treated Syntactically as a single statement. These bracketed
Statements are used in controlling the order of execution of the program
and largely replace the use of labels and GOTOs since they are ocbeyed ags
a wvhole or not at al]. Such a statement 1s known as a compound statement
or, if it contains any declarations apart from labels, a block.
Statements within @ compound statement are Separated by semicolons.
Stricely speaking, an Algol program is one Statement, because 1t must
start with BEGIN and end with END. A complete RML Algol program can be
represented thus

BEGIN .l; .2; .3;¢o¢oco¢0!n END FI.NISH

The statements sl, 82 etc. may be of any type, including compound
statements and blocks. The closing FINISH must be present. It {s ysed by

the compiler to check that there are the same aumber of BEGINs and ENDs.

RESEARCH MACHINES 280 ALGOL

is worth explaining why the "converted" consider this such an important
feature. An examination of any Algol program reveals the modular nature
of its structure, each block containing specific declarations of the
variables, arrays and procedures relevant to its operation. Many users
new to such languages are at firse irritated by the need to declare
explicitly every identifier in a program. While there may be some
Justification for such criticism when considering trivial prozram
examples, the advantages become obvious as the programs become larger
and the declarations become a small percentage of the program. The block
in which an 1identifier {s declared defines the "scope" of that

identifier. Outside that block the identifier has no meaning and
occupies no memory resource. The system thus takes on the role of

resource management. The allocaciou of memory to variables is done

dynamically as the program is being executed. On entering a block the
system makes available those resources defined in the declarations and

upon exit from that block these resources are reclaimed and made
available for other uses; thus the memory required is always minimised.

The penalty in terms of runtime speed is negligible as most of the
organisation is done by the compiler. The total declarations throughout

the program may {n fact be in excess of the memory of the computer

provided it is not all {in Scope at once. In languages such as Fortran,

on the other hand, the nearest one can get to this feature is to work
out some cumbersome EQUIVALENCE Statements wuich probably take longer to
define than the corresponding Algol declarations.

Economy of memory can also be achieved using "dynamic bounds"” on
array declarations. The declared bounds can be defined in terms of
arithmetic expressions evaluated at runtime on entering a block. These
bounds may be different each time the block is entered. The size of the
arrays can be chosen to be the smallest that will do the required task.

Because memory 1s allocated dynamically in this wvay 1t {s
important that programs make no assumptions on entering a block about
the initial values of variables declared therein. Between leaving a
block and re-entering it the memory used by such variables may have been
re-used for other purposes and indeed, in the case of procedures, the
variables need not even occupy the same memory addresses each time the
block 1s entered. If it {is important that a particular variable should
preserve its value between leaving and entering a block then its
declaration should be removed to an outer block such that it remains "in
scope”.

The localisation of the scope of variables to that of the block in
which they are declared also economises on the use of identifiers. The

Same names can be declared within several blocks without ambiguity as to -
which 1s being referred to. This also helps when program segments from
varidus sources are combined without leading to major problems with
conflicting identifiers.

RESEARCH MACHINES 280 ALGoL

BLOCRS AND DECLARATIONS

It has been mentioned already that variables must be declared
before being used and that the Presence of such declarations makes a

compound statement into 4 block. A1} declarations must be placed
*mmediately after a BEGIN Or another declaration. This does not apply to

labels, which are set by Placing an identifier terminated by 4 colon
Just in front of the statement to be 1labelled. The form of a

declaration of a set of unsubscripted variables of the Same type is:
Type identl, ident2,..,.... identn;

"Type" may be REAL, INTEGER, or BOOLEAN. ident]l ete. represent
the names of the identifiers. Variables Day be used within the block n
which they are declared fronp the point of their declaration up until the
corresponding END. Outside this Tange they do not exist and are said to
be out of 8cope. Procedures and labels may be used before declaration,
but the declaration must still be such that they are 1p Scope at the
Point they are used, Variables ang switcnes must be declared before they
are used. This is go that the compller can distinguish them from
fuuctions, which may be uged before declaration. This restriction ig
not made {n fyl}l Algol, in which variables may ¢ referenced before
declaration as long as they are 1n Scope. To each identifier used in a
given block there nust be a corresponding declaration. It follows thae

all identifiers declared ip 4 block must be unique. The same identifiers
may however be re-used within other blocks. Where an identifier 1g used

declaration takes Precedence for the duration of the inner block. The
outer declaration {s effectively "masked out” but its valye is preserved
and again becomes accessible on leaving the inper block. Consider the

BEGIN REAL X,Y,P; INTEGER i,p;
8l; s2;

cannot refer to the first x because the ipner declaration will take
Precedence. When g3 refers to x {¢ will always he the one declared with
2, but 33 may refer to y and to i. The tdentifier P 1s declared twice

RESEARCH MACHINES Z80 ALGOL

PROGRAM LAYOUT AND STYLE

The layout of an Algol program is almost entirely within the hands
of the programmer. Such concepts as line number or column number have no
meaning in Algol. Layout characters such as new lines, spaces, and tabs
are generally ignored except for the following cases.

1. Spaces are significant within strings.

2. Language key words and double character symbols should
contain no embedded layout characters e.g.

BEGIN
a>=h
t=b
and not: ’ _ N
- BE GIN o
. a> =h N
a: =h

In all other contexts the programmer i{s free to lay out the program as
he wishes. The resulting text may thus range from the very elegant to
the totally unintelligible. As intelligent layout requires no additiomal
work and results in programs far easier to follow and nodify, users are
‘urged to develop a good layout style which should reflect the block
structure inherent in an Algol program. Use tab stcps to indent text
with BEGIN and END pairs aligned as in the examples given in this
manual. Labels should start on a new line to the left of the program
statements. Statements are separated by semicolons or language key words
and not by new 1line characters, so that if necessary expressions may
extend over several lines of text. Similarly one 1line may contain
several shorter statements.

Identifiers should reflect the nature of the quantities they
represent; spaces may be included within identifiers 1f it makes the
resulting text more readable. They will be ignored by the compiler.

Frequently wused loop variables and array subscripts are often most
convenlently represented by a single letter identifier e.g.

end of file:=char=§"Z;

total:=total+term; o
FOR i:=lower STEP interval 'NTIL upper DO
volume:=height*length*width; i '

Comments should be included where they make the workings of the program
more understandable and are described later. :

RESEARCH MACHINES 280 ALGOL

DATA TYPES
-w

The data in. the Computer memory which may be manipulated by the
pProgram {s either Qumeric or Boolean. Numeric values may be real or
integer. The difference ig that integers have no fractional part and
occupy 2 bytes of memory, while real quantities are held in exponent and
mantissa form and occupy 4 bytes. The Algol system converts numbers from
one type to the other whenever necessary. Arithmet{c expressions may
contain a mixture of real and integer quantities.

Numerical and Boolean data may appear within the program ags
literal wvalues. An integer literal s one which has neither a decimal
point nor a decima}l exponent partc. Examples are 3, =200, +1234. The
range of integers ig =32768 to 32767. Real numbers contain efither a
decimal point or a decimal eéxponent, indicated by E or e (dependiug upon
which coanvention is in use), or both. Examples are 0.1, =2.345, 1.2E3,
25.7e-7. Real numbers yge one byte for the éxponent and three for the

A RML Algol Program consists of 4 sequence of symbols vhich are
Printing characters on a standard teletype, terminal or its equivalent.

Editing and layout characters are generally 1gnored by the compiler
except where indicated in the following sections. The symbols are
frequently grouped into units wvhich the compiler treats as 2 single
entity, These 8roups are the numerie constants just described, the
language key words such as BEGIN and TRUE (wvhich are strings of letters
enclosed in single quotes or in upper case depending upon the convention
being used), and identifiers. Only the first two letters of a language
key word are significant. an identifier 1s the Dame given by the
Programmer to a variable, label, switch, array or Procedure. There is a
small group of Algol symbols which are made up of two characters. These
are the assignment operator (:=), greater than Or equals (>=) and less
than or equals (<=). Identifiers consist of any number of alphanumeric i
characters of vhich the firse must be a letter. Only the first six
characters are used, any extra ones being ignored. Letters are'in upper
or lower case depending upon the convention being used. Examples are x,
fred, ml, m2, abcl23, abcl234. The last two are identical in RML Algol.

All identifiers referring ¢to variables and switches must be
declared before they are used so that the compiler knows to what type of

object they refer. Labels and Procedures may be used before they are
declared because the type of the identifier can be deduced from the

context in which it {s used.

RESEARCH MACHINES - 280 ALGOL

ARRAYS

———

Subscripted vartables in Algol are known as arrays. Real, integer,
and Boolean variables may be subscripted, while byte variables must be
subscripted. Like other variables, arrays are declared at the start of

@ block. REAL ARRAY and ARRAY are equivalent. The declarationm of an
array with one subscript has the form:

ARRAY ident (ae:ae];

The ae’s represent arithmetic expressions defining the bounds of
the subscript. Either or both bounds may be negative or zero, as long
as the second one is not lower than the first. Real ae’s will be rounded
towards the nearest integer. If there is more than one subscript, the
bound pairs are separated by commas; there is no limit to the number of
subscripts other than the amount of availible memory. If more than one
array 1s to have the same bounds, the bounds need only be specified

after the last one. One declaration may contain any number of array
names:

INTEGER ARRAY ia[1:30,1:5);
BOOLEAN ARRAY bal, ba2 {l:n,1:3], ba3l [0:20}1,
ba4, ba5 [l:2%n];

When arrays are declared with variable bounds care should be taken
that the variables have defined values. This means that they should be
declared in an outer block and have béen 2ssigned values. This feature
is used to partition the available storage according to the data.

When an array {s used an arithmetic expression 1is put 1in each
subscript position. The following are possible Statements, using the
examples above. Conditional expressiond are described later.

1a[l,4):=7; e
‘ia[n,m]:=1a(1a(n,2],ia(n,m]]; N
ia[n,3):=IF ba2(3,1] AND ba3(n] THEN

ia(ia[3*n,1], IF ba3(0] THEN 2 ELSE n]

ELSE nj

ARRAY MEMORY LAYOUT AND BOUND CHECKING

The elements of an array occupy a contiguous region of 'memory. In
nulti-dizensional arrays the last subscript varies most rapidly. For
example, consider a two. dimensional array declared as

a[m:n, p:q]
The address of element a(i,j] vould be given by an equation of the form
base + size * ((i-m)*(q-p+1)+(j-p)) .

vhere size i{s 1, 2 or & depending on the "vpe of the array (Boolean or

RESEARCH MACHINES 280 ALGOL

byte, integer, or real). At runtime a check is made that the address
computed lies within the limits allocated for the storage of the array.

Note that for multi-dimensional arrays this does not necessarily mean
that all subscripts 1lie within the declared bounds. For example, the

element a[~1,15) would be acceptable for an array declared as
a[0:9,0:9]).

BYTE ARRAYS

The introduction of BYTE arrays in RML Algol is an extension to
the language as defined .in the Algol 60 Report. BYTE arrays allow for
the efficient use of memory when string manipulation or small integer
values are required. Within expressions BYTE array elements are treated
as type INTEGER, and may be used in any context where an integer 1is
allowed.

Within expressions the contents of a byte array element become the
integer value, and the 8 most significant bits of the integer are set to
zero. Thus

1:=b(n)] .

N

will always yield a positive value for 1 in the range 0 to +255.

When assigning to a byte array element, the expression on the
right hand side 1s first converted to type integer if necessary, the

eight least significgnc bits of which are then assigned to the byte
array element, the 8 most significant bits being discarded without any
checking. Thus '

b(l]:=-1;
1:=b (1]

will assign to 1 the wvalue +255. The only time the compiler
distinguishes between an INTEGER ARRAY and a BYTE ARRAY 1s at the
declaration. 1In all other contexts the two may be used interchangeably.
In particular, a formal procedure parameter specified as type INTEGER
ARRAY or BYTE ARRAY will accept eithetr as the actual parameter. E.g.,

BEGIN INTEGER ARRAY 1(0:100];
BYTE ARRAY b[0:100];

PROCEDURE xx(a); INTEGER ARRAY a;
BEGIN

END;
xx(1); xx(b); «es

will be accepted. | . .

RESEARCH MACHINES 280 ALGOL

SIMPLE EXPRESSIONS

An expression is a section of program which delivers a result. "he
result may be of type REAL, INTEGER, BOOLEAN, or LABFL.

The result of a numerical expression 1s real unless all the
variables and 1literals within {t are integer and it contains no real

operators. The real operators are exponentiation (denoted by “) and real
division (/). Arithametic expressions are evaluated with due regard to
operator priority and from left to right where these are equal.
Parentheses may be used to change the order of evaluation. The following

is a list of the arithmetic and logical operators together with their
priorities.

operator priority meaning

(highest priority)

- 3 exponentiation
* 2 nultiplication
/ 2 real division
2 2 integer division
MOD 2 integer modulus o : .
+ 1 addition : to ’ :
- 1 subtraction
MASK 1 logical AND
DIFFER 1 logical EXCLUSIVE OR
- 1 1 logical OR
_ (lowest priority)

The operators MOD, MASK, DIFFER, and | are additional to those defined
in the Algol 60 Report.

.

The operators %, MOD, MASK, DIFFER, and ! take two 1integer
operands and deliver an integer result. The result of integer division
(X) is truncated towards zero. The result of integer modulus (MOD) is

the remainder lost by integer division. Note that
1 MOD 0
will always return the value zero while : e :

120 or x/0

will give a division by zero runtime error.

The logical operators MASK, DIFFER and ! consider each of the two
integer arguments as a pattern of 16 bits thus:

315 -7
3MASK 5 =l - .
3 DIFFER 5 =6 E ‘ » .

Apart from the cases just discussed, expressions may contain any
mixture of real and integer quantities, and conversion between types

RESEARCH MACHINES

will occur automatically as context dictates.

BEGIN REeAL X,¥3
INTEGER {,§;

Limx*y; x:mx#y; 1imxy;
1:=x71; x:=1%y;

L L I I WY

For exampie gi

are all valid operations.

In conversion from real to integer the result is roundeq towards
the nearest integer value. : , ;

Boolean expressions are made up of Boolean variables, the literals
TRUE and FALSE, arithmetic relations, Boolean procedures, and Boolean

operators. The Boolean operators are in order of pPrecedence from highest
to lowest priorities.

¢ 18 FALSE {f b g true and TRUE if b 1is

NOT "NOT b
FALSE. .

AND b AND c: is TRUE 1if both b and ¢ are TRUE
otherwise it igs FALSE.

OR bOR e¢: 1s TRUE 1f either b or ¢ 1s TRUE
(regardless of the other) otherwise 1t is FALSE.

IMPLIES b IMPLIES c: 1s FALSE only 1f b 1s TRUE and ¢ s
FALSE, otherwise it is TRUE. -

EQUIVALENT b EQUIVALENT c: 1s TRUE {f b and ¢ have the same
. truth value and FALSE otherwise.

The relational operators are

= equals

> greater than .

S= greater than or ¢qual
< less than v

<= less than or equal

f# not equals

Relational operators are dyadic. Care should be taken with the use of =
and f# vwhere either argument 1{s of type real. In this case an exact X

equals only occurs if both arguments have exactly the same bit' patternm,
which in the context of real quantities involving rounding may not be
very meaningful. A more sensible test to make may be to check if the
absolute difference {is less than (or greater than) some small quantity
€.

replace -
IF X=y THEN cees
with !
IF abs(x-y)<0.0001 THEN cese

As wvith arithmetic expressions, the order of evaluation may be
changed by the use of parentheses to group terms. -

RESEARCH MACHINES 280 ALGOL

Examples of Boolean expressions are:

NOT x<5 OR bvl AND (y=0 OR bv2)
x ¥ (y-5)
+(x=5)"2 <= 20

where x and Y are numeric variables or procedures and bvl and bv?2 are
Boolean variables or procedures. |

Note the plus sign before the parentheses in the last example. 1If
this had been absent, the compiler would have assumed that the bracket
enclosed a Boolean expression and would Hhave indicated an error on
finding the closing brackat instead of the expected relational operator.
In the first example the brackets do enclose a Boolean expression.
(This way of forcing the compiler to recognise a bracketed arithmetic
expression within a Boolean expression 1is not necessary in full
Algol 60). The RML Algol compiler can deal with expressions such as
x-5>=20 correctly because x must be numeric. Similarly, in the second
example, the expression after the # must be numeric, so the compiler

does not aeed a plus sign. In this case the brackets are not essential
either. '

STRINGS AND CHARACTER LITERALS

A string in Algol consists of a sequeace of characters enclosed
vithin double quotes e.g.

text(1,"Hello Dolly");

All characters within the quotes with an ASCII value less than 32 are
ignored. This includes carriage return, tab, and control characters but
space is permitted. In order that these and other characters may be
included within strings the following convention is used. The characters
* and ~ have special significance and are always considered in
conjunction with the character following.

CONTROL CHARACTERS
X

will insert CONTROL-X into the string. In seneral ~ has the effect of

stripping off all but the 5 least significant bits of the following
character. .

LAYOUT CHARACTERS

*N Inserts carriage return/linefeed into string.

*C Inserts carriage return.

AL Inserts linefeed. .

%S Inserts space (a literal space is also allowed).
*T Inserts tab.

*p Inserts new page (formfeed).

13

S

RESEARCH MACHINES

280 ALGoL

All other characters following % are taken literally; in particular,‘

bk Inserts #
*= Inserts =
k0 Inserts " .
For example
text(1,"An example *"STRING*" .

*Smight look 11k
e this*Nx*‘2+Y*“2-f):

will print on the console as:

An example "STRING" might look like this
X"24Y 2=

The internal representation of a string is a series of characters stored
in sequential bytes terminated by a zero valye. :

The literal value of any character may‘be found using an ampersand “‘§‘
character followed immediately by the required character. For example to
convert a character digit to a number between 0 and 9 we have

i:-chin(l)-&O;
OT to output an X then
chout(1,8X); L

The convention described above involving % and =~ also applies, so to
check for end of file (CONTROL-~Z), o

i:=chin(dev); _
IF 1=§~2 THEN ceee

or to check for a carrfage return character.
IF 1=§*C THEN veee

The two exceptions are &*N and &*" which will lead to the wrong result.
The first generates 2 characters and the second 1s written §",

- - —

RESEARCH MACHINES 280 ALGOL

ASSIGNMENT STATEMENTS

—even

The general form is:
variable:=expression

The variable on the 1left hand side is assigned the value of the
expression on the right. Note that in Algol the assignment operator is
the double character symbol (:=) and not the equal sign (=) which is a
relational operator. Multiple assignments are not implemented in this
version of Algol. If the variable is Boolean the expression must also
be Boolean. If the variable 1s numeric the expression mav deliver an
integer or a real result; it will be converted to the type of the

variable 1f necessary, real numbers being rounded towards the nearest
integer. Exanoples:

1 := 3+4;

X := IF be THEN jZ5 ELSE 36.75;
bv := {#7

CONDITIONAL EXPRESSIC.S

A conditional expression 1s one that takes one of several values
depending on the result of one or more Boolean expressions. The general
form 1is:

IF be THEN se ELSE e

be stands for Boolean expression (it may itself be conditional), se
stands for simple expression, which must not be conditional, and e for
any expression. Because e may also be conditional the form can be
extended:

IF be THEN se ELSE IF be THEN se ELSE e

The expressions must all be numeric, all Boolean or all designational
(these are described 1later). A conditional expression is made
unconditional by enclosing it in round brackets. The following is legal
Algol:

IF IF bvl THEN x#3 ELSE y=0 TEEN _
(IF bv2 THEN 25 ELSE 30) ELSE x+y -

The first be is conditional. The ae (arithmetic expression) within
brackets is conditional and would not be allowed in that context without
its brackets. It 1s a general rule of Algol that IF must not follow
immediately after THEN. This is because 1f¢ can result in ambiguous
code. Examples of conditional expressions are:-

RESEARCH MACHINES

Z80 ArcoL

a:=IF a>0 THEN a#a ELSE 0;
large:=IF &>p THEN a ELSE b;
max:=IF a>=b AND a>=c THEN g
ELSE IF b>=a AND bp>a- THEN b ELSE c3
a:=IF IF x>0 THEN ¥>0 ELSE y<50 THEN 3*x ELSE 0;

CONDITIONAL STATEMENTS

These have the same form as codditional eéxpressions, except that

it 18 not necessary for there to be an ELSE part. There are consequently
two forms of conditional Statement:

IF be THEN g]
IF be THEN g) ELSE 82

8l must not be conditional byt 82 may be. In the first case no
Statements are obeyed 1f the be delivers o PALSE result. In the second
case sl is obeyed if the result g TRUE otherwise 82 1s obeyed. As 82

IF bel THEN s1 ELSE IF be2 TmEN 82 ELSE 83

IF char=§~z THEN close(dev);

IF samp>max THEN max:=gamp .
ELSE 1IF samp<min THEN min:=samp;

IF a>b AND c>4d THEN
Bzcm ®ocovoee

END ELSE

BEGIN [E Y ’
END; :

FOR STATEMENTS

FOR variab;e:-fle,fle,......fle DO sl

8l may be conditional. The controlled variable must be real or integer
and not subscripted. (In full Algol 60 subscripted variables are
allowed.) fle stands for "

element are allowed. There are three types of for lisc.elemenc (1) an

RESEARCH MACHINES 280 ALGOL

arithmetic expression (2) a STEP element and (3) a WKILE element.

A STEP element has the form "ae STEP ae2 UNTIL ae3". After each
execution of the controlled statement the value ae2 is added to the

variable. Before each execution of sl, including the first, the variable
is tested against ae3. If it is greater than ae3l and ae2 is positive, or
less than ae3 when ae2 is negative, then the element is said to be
exhausted. It should be noted that ae2 and ae3 are evaluated each time

they are used, so that the value may be changed by the execution of the
controlled statement. A STEP element may result in the statement not

being executed at all, for example if ae>ae3 and ae2>0.

A WHILE element has the form "ae WHILE be". On each iteration the
arithmetic expression 1s evaluated and assigned to the variable. Then
the Boolean expression i1s evaluated and 1if the result is TRUE the
statement is executed, otherwise the element is exhausted. Examples of
FOR statements are:

FOR i{:=min STEP | UNTIL max DO sum:=sum+s(i];

FOR 1:=]1 STEP { UNTIL 1024 DO

FOR {:=1, 3, 99, §, -5, 11 DO

POR x:=1, x*2 WHILF x-°025 DO ea..

FOR 1{:=100 STEP -1 UNTIL -100 DO

FOR x:=0.1, 1, x*5 WEILE x<1000, 20 STEP =S UNTIL O DO..

FOR loops can be nested as deeply as desired. For example,

FOR {:=] STEP 1 UNTIL max DO
FOR j:=1 STEP 1 UNTIL {4 DO a:=a+b[1,3]"2;

Matrix multiplication might look like:
FOR 41:=]1 STEP 1 UNTIL m DO |) ,
FOR j:=1 STEP 1 UNTIL n DO Yoo o
BEGIN x:=0; .
FOR k:=1 STEP 1 UNTIL p DO x:=x+a(i,k]*b(k,§];
cfi,3]):=x;
END;

The body'of the FOR loop may be a durmy statement, for example to skip
to the start of a new line.

FOR i:=chin(dev) WHILE i{#*C DO ;
The loop variable may also be a durmy:
FOR 1:=0 WHILE test DO body;

In this case body may be a procedure or block which sets a Boolean
variable test, or test could itself be a Boolean procedure. .

FOR 1:=bodyl WHILE test DO body2 ;
In this example bodyl could be an integer or real procedure, test a

Boolean procedure, and body2 a procedure or block, giving several

17

RESEARCH MACHINES

280 ALcoL

possibilities for loop construction.

A FOR loop 1g oot a gimple Btatement gand cannot be called
following the THEN part of 2 conditional statement unless enclosed

within a BEGIN and END. It may however follow the ELSE clause without
needing an enclosing BEGIN and END.

DUMMY STATEMENTS

A dummy statement is one in which there 1is nothing before the
terminating END, ELSE or Semicolon. Examples are: '

BEGIN END
IF be THEN ;

9
BEGIN sl; END

IF be THEN ELSE H :
PROCEDURE dummy; H . e oo

v

COMMENTS
. o e

RML Algol allows three types of comment. Any symbols appearing
after an END until the first occurrence of semicolon, FINISH, END, or
ELSE are ignored. These are known ag END comments. E.g.

END this is ignored;
END 8o is this ELSE
END and this also FINISH

The other form is

COMMENT any Sequence not containing semicolon;

This form 1s alloved after 5 semicolon or after a BEGIN. Within comments
single quotes must be matched. An alternative to using .the key word

COMMENT is to enclose text within braces. This is ag extension to the
Algol 60 Report. Such comments may contain embedded matching braces, or

embedded unmatched single quotes. This form of comment may be used
anywhere that COMMENT may be used. E.g. .

{this {comment) is ignored)

Full Algol 60 also allows an additional type of comment within procedure
calls and declarations. .

-t

RESEARCH MACHINES 280 ALGOL

LABELS, SWITCHES AND GOTO STATEMENTS

Any statement may be labelled by preceding 1t with an identifier
and a colon. The scope of the label is the block in which it occurs.

Program control is transferred to a labelled Statement by a GOTO
stdtement.

BEGIN REAL x; sl; s2; GoTO lab; s3;
lab: s4
END

The following is not allowed because the label is not in scope:

GOTO lah;

BEGIN REAL x; sl; 82;
lab: s3

END;

Labels in an outer block may however be accessed from within an {nner
block e.g. .

BEGIN REAL q;
lab: sl; s2;
BEGIN REAL y;
83; GOTO lab;
END
END

It 3hould be noted that a compound statement does not become a block
beczuse there is 2 labelled statement within i{t. The second examp le
would have been allowed but for the declaration of x. For the same

reason labels in different compound statements but within the same block
must have different names.

A switch 1s a 1ist of labels declared at the start of a block. All
the labels must be within scope at the declaratiom.

SWITCH si=labl,lab2,1ab3;

The simplest uyse of a switch is in a GOTO Statement, GOTO s{ae]. The ae
is evaluated and is used as an index to the 1list of labels in the
declaration. If, for example, the ae has the value 2 the effect of the
Statement is the same as GOTO lab2. If the value of ae is less " than 1}

or greater than the number of labels in the declaration then the effect
is that the statement is treated as a dummy statement. Example:

BEGIN SWITCH Swi=casel,case2,casel;
try: text(l,"casenumber-“);

GOTO sv[chin(l)-&O];

text (1,"*Nillegal value"); GOTO try;
casel: R
case2:
cased: ...

19

RESEARCH MACHINES

280 ALGoL

DESIGNATIONAL EXPRESSIONS

Designational expressions are like arithmetic o Boolean
expressions. In a designational éxpression the elements may be labels or
8witch elements. The full definition of a GOTO statement is:

GOTO de
vhere de stands for designational exrvession. An example:

GOTO IF x=0 THEN labl ELSE IF b THEN 8[1+3]) ELSE 1ab2

eéxtension of Algol 60, 1in which designational expressions a; 4:3?
allowed for labels. _

éXecuted. The simplest type of procedure has no Parameters and does not
deliver a result.

BEGIN o
PROCEDURE dothis; g;

8l; 82; dothis; 83; dothis

A procedure may deliver a result of type REAL, INTEGER, or
BOOLEAN. Such a Procedure is known as a "type procedure" or function.
Its name can then be used in éxpressions, which will cause the procedure
to be executed and the result to be used in evaluating the expression.
Within the Procedure body the value which will be Teturned is set by
assigning it to the name of the procedure. Such an assignment statement
may occur anywhere within the procedure body and there can be any number
of thenm. Execution of the Procedure continues unti] either the end is
reached or a GoTo leads out of 1t. 1f the name of the Procedure occurs
within the procedure body itself, eéxcept on the left of an assignment ag
Just explained, then the Procedure will call itself and 1s said to.be
recursive. The following example illustrates several points:

RESEARCH MACHINES) Z80 ALGOL

BEGIN INTEGER {; }
INTEGER PROCEDURE j;
IF 1<0 THEN GOTO nogood
ELSE IF {=] THEN j:=0 ELSE
BEGIN {:=i-];
. J :-j"'i
END procedure j;
1:=10; 1:=3;
nogood:
END
FINISH

The procedure refers to variable i which 1s declared in the main program
in the same block as the procedure. The declaration of 1 must come first
or the compiler would have assumed that it refered to anm as yet
undeclared procedure of type Boolean (lines 3 and 4) or integer (line
6). Line S would have failed because the identifier to the left of :=
must be already declared. There must always be some condition which
Ccauses a recursive procedure to deliver a result or exit without
recursing, as on lines 3 and 4. If this had not been done, or i{f 1 had
not been decremented on line 5, the procedure would have called 1itself
until the available storage was used up. The label nogood is attached to
4 dummy statement. Note also that the body of the procedure does not

have to be enclosed by BEGIN and END; in this case it {s a conditional
statement.

PROCEDURES WITH PARAMETERS

The action of a procedure can be made to depend upon data supplied
to it through a list of parameters at the time it 1s called. The ,
procedure declaration contains a list of formal parameters. These are
the names which are used within the body of the procedure. The type of
each formal parameter is given in a specification, which looks rather
like a set of unsubscripted variable declarations. The 1list of formal
parameters is enclosed in round brackets and is placed immediately after
the name of the procedure. The identifiers are separated by commas.
Only the names are glven, not subscripts or procedure parameters. For
example,

REAL PROCEDURE p(x,y,a,r,lab);
VALUE y; REAL X,¥;

REAL ARRAY a;

REAL PROCEDURE r;

LABEL 1lab;

In full Algol 60 a more complicated type of parameter separator (the
"fat comma™) 1s also allowed.

21

RESEARCH MACHINES

280 ALcoL

NUMERIC aNp BOOLEAN PARAMETERS BY VALUE

This is the Simplest type of parameter. When the Procedure s
called the actual parameters are evaluated and the value 1s passed to
the procedure. Within the Procedure body a Parameter called by value

accessible once the Procedure hasg finished.

PROCEDURE p(1,x,b); VALUE x,b,1;

REAL x; BOOLEAN b; INTEGER i;

BEGIN IF b THEN a:=x+] ELSE al=x-1;
SmQkg . a:=x+1;

END

"a" 1s a variable
the VALUE specification must come before the part specifying the types
of the parameters. The RML Algol system converts between INTEGER and

No other type conversions are allowed. A possible call of this
Procedure is: .

P(3.32, 2.5%y, TRUE AND 250)

where x and z are numeric variables.,

Note the TRUE before the relation z>0. If this had not been
Present the compiler would not have known that it should be compiling a -
Boolean expression. All actual Parameters which are Boolean values nust

what type of éxpression to evaluate. It 1is never Becessary to enclose
an actual parameter {n brackets. These rules are needed because the
RML Algol compiler makes only one pass through the source program. They

are not necessary in full Algol 60.

VARIABLES CALLED By NAME

Any formal parameter which is not specified to be VALUE 14 said
to be called by NAME. Instead of a value being passed to the

Procecedure, the address of the variable is transmitted. It follows
that the actual parameter must be the name of a variable of the correct
type. (In full Algol 60 an eéxpression is allowed and the address of 4
routine to evaluate it is transmitted). When a variable called by name
is assigned to within che Procedure body the variable specified ip the
call is changed. Thus, variables called by name do not act like locally
declared variables. The formal name stands for the actual name wused in
the call. The - actual parameter 1{g brought within the scope of the
~ procedure body.

RESEARCH MACHINES - 280 ALGoL

In RML Algol, array parareters myst be called by name. (The full
Algol 60 call of array names by value involves making a local copy of

the whole array.) The actual parameter 1s the name of the array, withouc
subscripts. Withip the procedure body the formal array name 1s used with
subscripts. There Bust be the same number of Subscripes as in the
original declaration of the array whose Rame was used as g parameter.
Array elements (an array name followed by subscripts) may be used withip
or as an actual Parameter, byt only when the formal Parameter ig by
value. This compiler accepts the use of BYTE ARRAY and INTEGER ARRAY
1n:erchangeab1y in procedure calls. (See the section on byte arrays).

Objects called by name may be passed on from procedure to
procedure through the Parameter lige. Unsubscripted variables called by

name may be used ag the controlled variable {n a FOR Statement.

BEGIN ARRAY ar(l:20];
x; INTEGER {;

REAL PROCEDCRE TP} rp:=172+2;

PROCEDURE pla,k,2); VALUE a;
REAL a; INTEGER %; ARRAY z;
FOR k:=1,2 Do z[k]:-rp*a;

ar(l):=10;
p(ar(1],1,ar);

FINISH

When procedure P 1s called, the value of the parameter a is inftfalised
to be 10.0 and & within the procedure becomes equivalent to { in the
main program. Whep TP 13 called for the first time { has the value | so

assigned the valye 3.0*%10.0, which means that ar(l] becomes 30.0. Next
time, when i=2, the value of rp 1s 6.0 but a sti]] has the valye 10.0 so
the effect of the statement is ar[2]:=60.0.

either a String of characters enclosed in double quote marks or, if tha
call 1s within a Procedure having a String parameter, the name of such a
string. String parameters can only be wused ag actual parameters in
further procedure calls, so it follows that the information in the
string (as opposed to the address of the string, which 1is the
information transmitted to the called procedure) can be usad only by
machine code called from within the procedure. This may be done -4

using the pre-declared procedyre text(device,scring), string handling
procedures in ALIB.ALG Oor some machine code written by the user and

RESEARCH MACHINES

280 aLcoL

PROCEDURE moan (message,mum);

VALUE num; INTEGER num; STRING message;

BEGIN text (l,"*NError at line ");
write(l,num); cext(l.message);

The use of switch parameters 1s straightforward, The actual
Parameter is the nape of a switch. When this name ig used within the

within a procedure which has been called recursively, then the return
is to the most recent call of the recursive procedure. If this
consideration 1is important the RML Algol Programmer should uyse several
label parameters instead of a switch. RML Algol finds the correct
incarnation of 4 recursive procedure if it is Jumped 1into through a
label parameter. A procedure has been called recursively {f there is
more than ome call 1n force. If a calls B, B calls C, and C calls then

A has been uysed recursively. In practice this restriction is unlikely to
Prove to be a limitation, :

LABELS AND PROCEDURES aAs PARAMETERS

The treatment of Parameters of type LABEL, PROCEDURE, REAL
PROCEDURE, INTEGER PROCEDURE and BOOLEAN PROCEDURE is similar. The

actual parameter is a designational expression which in RMI Algol (but
ot 1in full Algol 60) must be Preceded by a type Specification. This
~equirement {s included so that the one-pass RMI, Algol compiler may
allow ags yet undeclared Procedures and labels to be used in procedure
actual parameters. as with variables called by name, arrays, and
8witches, it is the address of the label or procedure which is passed to
the Procedure being called. The actual parameter must be {n scope at
the point of call but need not be within the scope of the called
Procedure; its use as a parameter effectively brings 1t within Scope. If

The pre-declared functions and input/output names cannot be used
8s procedure parameters, where the formal parameter ig a procedure. A
dummy procedure which calls the Pre-declared one must be used. This is
because the pre-declared procedures are not treated in the same vay as
those declared by the user, in order to shorten compiled programs and to
increase the speed of eéxecution. (In full Algol 60 the pre-declared
Procedure names can be used 1n thig way). The Pre-declared procedures
can of course be used in expressions where the formal parameter is: a
value parameter. sin(cos(3)), for example, is allowed.

The RML Algol compiler does not differenciate between name and
value calls of parameters which are switches., strimoe Tal.v. .
Drocedmnrae 'Y R

RESEARCH MACHINES 280 ALGOL

(only allowed for labels and Procedure types) the value {s calculated on
procedure entry only, and not each time the parameter i{s ysed within the
procedure body. The calls of all these parameters aras therefore by
value, although the compiler does not force the user to specify this.

To 1llustrate these pPoints, suppose that two procedures have the
following headings:-

PROCEDURE p(s,lab,rp,st);
SWITCH s; STRING st; LABEL lab;
REAL PROCEDURE rp;

REAL PROCEDURE x(y,st); VALUE y;
REAL y; STRING st;

A possible call is:

p(sw, LABEL IF be THEN labl ELSE lab2,
REAL PROCEDURE x ,""abe") :

A designational expression has been used as an actual paraceter of type

LABEL. As with arrays and switches only the name of the real procadure
is used as a parameter. The parameters of the parametric procedure are
included when the procedure is actually called, and not otherwise. 4
possible call of x winin the body if p is: :

rp(rp(3,"DEF"),st)

SUMMARY OF POINTS ON PROCEDURES -

On entering a procedure the menory required i1s allocated
dynamically according to the declarations. It follows that procedures
are intrinsically recursive {n nature, the 1limit on the depth of
recursion being set by the available memory.

The body of a procedure 1s a "statement"; this may range from a
simple (even dummy) statement to a compound statement or block. Within
such a block there may of course be further procedure declarations, so
that the following is a valid structure.

PROCEDURE tom;

BEGIN
PROCEDURE dick; : :
BEGIN . o
: PROCEDURE harry; "
BEGIN
8l; coee
END;
S2; ceee
. END;
. 835 e
END; 4

25

RESEARCH MACHINES 280 ALGOL

The scope of these Procedures follows the normal rules of Scoping, go
that Statements g) and s2 may refer to tom, dick or harry; Statement g3
Ray refer to tom and dick bye not harry,

Statements yithin 4 procedure Day make reference to any variable
that is "y Scope", not Just thosge Passed through the Parameter 1is¢, In
Fortran g, COMMON Statement would be nécessary. It yg also Possible ¢o

Jump out of 4 Procedure by means of a GOTO Statement to any label thag
is withip scope. .

Pre-~declared ones. This resuleg from the fact that these Pre-declared
functions are compiled differencly from those declared by the user, ¢o
make thenm faster and to economise on memory, '

BEGIN INTEGER i;

PROCEDURE abe;
BEGIN ..,
Z:=sin(y);

END;". . . - ..‘. o

REAL PROCEDURE sin(x);
-VALUE x; REAL x;
BEGIN

According to the Algol 69 Report the 8cope of the two Procedures "ghen

and "sip" 44 the block ig which they are declared. The Statement

"z:-sin(y)" in the firge Procedure is referring to the 8econd. procedure

in the block. In this compiler however the Statement wil] generate code

corresponding to g built-in Procedure identifier that ic already %knows

about. No error message igs g8iven. The Problem could be avoided in this

case by 8imply reversing the order of the two Procedures, or better‘
stil]l changing the Dame so that no ambiguity cap exist. There ig no
Problem with Procedures having names different from the built-ip ones.

8 general ryle all procedure names are best kept unique amongst
themselves ang also from the variables.

RESEARCH MACHINES -~ 280 ALGOL

INPUT/OUTPUT PROCEDURES

In Algol the exact form of Input/Output is not strictly defined
but left wup to the implementer to make best use of whatever facilities
are available. Input/Output takes Place through a series of procedures
built into the runtime system. Input/Output 1is device independent. All
Input/Outpuc 1is associated with a stream or device number. In the case
of non file-structured devices such as the console and printer
Input/Qutput can be performed by simply choosing the appropriate Sstream
number. These are Ssummarised in appendix 2. In the case of disk files
however some pre~dialogue {is necessary to open or create a specified
named file. In this case the corresponding stream numbers are allocated
dynamically by the system. The Procedures to perform this dialogue are
described in a following section. In the case of disk files we also have
the choice of serial or random access. The latter will be dealt with
later. .

SERIAL INPUT/OUTEUT

In all of the pre-declared 1/0 procedures the first parameter 1is the
streao number denoted by dev. The name val indicates a REAL variable and
ival an INTEGER variable. As the formal Jarameters are called by VALUE
the actual parameters may contain expressions; the sSystem will convert
between integer and real valyes if necessary.

PROCEDYRE skip(dev);

Outputs a carriage return/linefeed to dev.

INTEGER PROCEDURE chin(dev);

Read the next character from dev. The result of the procedure is

the value of the character. In the case of disk input the
character CONTROL-Z 1is returned at the end of file.

REAL PROCEDURE read(dev) ; .

or
“REAL PROCEDURE read(dev,label);

Read a floating point number or integer number from dev. The
number 1s in free format, and is terminated by any ‘¢haracter
which cannot be part of a number. Decimal exponentiation is
indicated by E. Spaces, tabs and blank lines preceding the
number are ignored but other characters will give an error. A
space will terminate the number except between the E and the
exponent field. Integers may be read without rounding errors
provided they appear as valid integers in tae input {.e without
decimal point or exponent parts. To allow the possibility of
reading a file of unkncwn leagth, the second form given above
may be used. In the event of Passing the end of file control is
passed to the label. The name {s not preceded by the LABEL

- -

RESEARCH MACHINES | 280 aLGor

indication ,4 the compiler knows thae the second Parameter must
be a labe] or a designational éxpression. End o file 1s , legal
terminator; the Jump will noe happen unless another reaq is
done. If the optional labe] is not given 4 runctime error occurs
if end of f1)e is passed. Examples of valid number formats are;

0.123 +1.23E <3 =123

The. read Foutine will also accept the following although the
Output routines never generate sych formats:

E-3 123 =123,

It may be desirable to read 4 data source containing text
Comments. The read routipe can be instructed to ignore any
character Preceding the number which cannot be Part of the
Number by the call:

E-§ O: 45

are no longer valig, The leading "gv or ".n 44 regarded as
comment; the actual npumbers read in this case would be -6 and
45. To Teturn to the default mode where comments are pot
permitted cal);

i0c(19);

PROCEDURE text(dev,"atring");

Output a String to dev. See the Section on. strings regarding
interpretation of format and control characters, The string may
also be a String parameter of the Procedure {p which text is
called, {ip which case the actual Parameter i{s the string

PROCEDURE message(s); STRING 8;
BEGIN text(l,s); tecenes "

PROCEDURE chou:(dev.ival):

Outputs 3 Single byte to dev. If a character is to be outpute,
ies Ascrz value must be used. This can be found by using the
character literal facility. For example.

chout(l,&X);

will print X op the terminal.

RESEARCH MACHINES _ 280 ALGOL

PROCEDURE vrice(dev,ival);

or
PROCEDURE write(dev,ival,radix);

Prints {val as an integer on dev. The default radix is decinal.
Non-sigqificant characters are not printed. 1If formacted print
is required use rwrite. Output 1ir octal or hexadecimal is
possible by including the optional third parameter.

radix=Q for decimal
radix=] for octal
radix=2 for hexadecimal

Any other value for radix will lead to a runtime error.

PROCEDCRE rwrite(dev,val,a,b);
or
PROCEDURE rwrite(dev,val);

Floating point output to dev. val is the value to output, a and
b define the format such that:

a= total number of characters including sign and decimal point.
b= number of digits after the decimal point.

If b is zero then we have formatted integer output. If the value
of a i{s inconsistent with that of b some large value will oe
substituted.

If a=0 then exponent format 1s used with b decimal digits.

If both a and b are zero or if they are omitted altogether as in

the above example then the program defaults to exponent format
with 6 decimal digits.

Various aspects of the output formatting camn be controlled by,
calls to the predeclared procedure ioc. These calls have the effect of
setting flags within the runtime system which remain in effect until
some further ' call {s made to change then. These calls to ioc can be
considered in 3 groups. The first of each group 1s the default state in

effect when the program starts. The various calls within each group are
mutually exclusive. :

The first group is concerned with what action is to be taken 1if

the value to be output 1s too large to be accomodated by the specified
format.

ioc(6)
The routine first attempts to accomodate the number by moving
along the decimal point while maintaining the total field width
constant. If this fails the routine will wuse exponent format

provided the field width can be maintained else a row of
asterisks "#**x" i3 princed indicating an out of range number.

-+

29

RESEARCH MACHINES

1oc(7)

No format changes vhatsoever are allowed. 1f the number cannot
be accomodated then a roy of asterigks is printed.

1oc(8)

No error Print allowed. When this f1o¢ call {s in effect the

€rror prine indicated by a row of asterisks ig never used.
Format changes are allowed; i1f Necessary éxponent prine will bpe
used Tegardless of the field width Specified,

The second group ig concerned with the Tepresentation of spaces
within the output forqat.

1o0c(9)

Set the "defaule 8Pace character" o Space (ASCII 32), Leading
Zeros are Printed ag Spaces,) :

10c(10)

Set the "defayle Space character” ¢o null (ASCIT 0). Leading

Zeros will e Suppressed. The number ig 1.g, Justified., (The
null character is trapped by the routine and not actually sent

to the output Stream),

The third group ig coacerned with the representation of positive
dumbersg, -

loec(11)

Use the current default S8pace character (see group 2 ahove)
where a Positive sign 1g expected. Initially the default Space
character 1g 8pace. 1If loc(11l) {s called after 10c¢(10) the

result {5 ¢o Suppress the character sio¢ reserved to indicate a
Positive resule,

ioc(12) R ‘ - :

Print "4 ¢o indicate a positive number.
NOTE: calis to Iwrite and write are terminated by printing the "defaule
8pace character” (see 8roup 2 above). Thig is initially set ¢o space

which serves ag 4 terminator to Separate output such that {1 can be
reread by the read routine,

RESEARCH MACHINES Z80 ALcoL

INPUT OUTPUT SELECTION

The RML Algol System allows the user the ability to select
input/output files or devices from vithin .the program or from the
console keyboard. For thig purpose there exists a buffer into which 1/0
selections are placed through 1/0 Stream number 7, or through a number
of calls to ioc. The basic sequence of events consists of:

1. Place an 1/0 selection string into the buffer.

2. Call a command string interpreter to read the coatents
of the buffer and copy the string into an "input list"
and/or "output 1list" as appropriate.

3. A call of predeclared procedures "input" or "output"
reads the npext eatry in the "input list" or "output
1ist" and returns to the program the appropriate streanm
number, having opened or Created any necessary files.

Input from stream 7 1s buffered and only made available to the
program when a carriage return character 1is entered. Incorrect
characters can be removed using the rubout key which on the RMI 3802 is
done rather more elegantly than on the pure CP/M version. There are two
pointers associated with Streanm 7, one with input and the other output.
4s - characters are entered or read from tte buffer the appropriate
pointer 1is advanced by 1. These polaters may be reset using the
following ioc calls.

1o0c(0)

Reset the input pointer. The next call of chin(?) will return
the value of the first character in the buffer.

“doc(l)

Reset outpuyt pointer and write a string terminator into the
first buffer position. The next call of chout(7,char) will place
the value of char iato the first position of the buffer aad

advance the position of the string terminator. Note that
following the use of 1oc(2) through foc(5) described below,
before reading from stream 7 the programmer should issue both an
10c(0) and an foc(l) to reset the pointer and wipe out the
current buffer contents. :

The following ioc calls allow input or output lists to be entered.
. 1oe(2)
This produces a prompt on the console of the form:
OUT=IN?
The user then enters a command string of the general forn:

outputlist=inputlist <ecr>

a1

Z80 ALcoL

whgn the carriage return <er> character ig 8iven ¢o terminate

the commang line the Command string interpreter is called.
Every character up to the Separating €qual sigq (or carriage
return {f pq €qual gjigg Present) jg copied and Stored as the
current "outpue list" apg éverything afcer the equal sign {4
copied ang Stored as ¢he current "inpye lise", 4 Pointer ig

the stare of that lise, The detailed form of these lists 1g
described later.

loc(3)

This ig Similar ¢o 10c(2) bye the text 14 taken ditectly from
the contents of the buffer without any user Prompt. A typical
Calling Sequence ¢o set up ap input/oucput lise might be;

loc(1); text(7,”outputlist-inputliat"): 1oc(3);

1oc(4);

inputlise <ecr>

This 8tring then becomes the current "inpye lise™, the output
list Temaining unchanged, v

1oc(S)

This is similar ¢o 1oc(4) but the text 1s taken directly from
the contents of the buffer without any user Prompt. a typical
calling Sequence might be:

loc(l); :ex:(?,"inputlist”); 1oc(5);

Note: A call of {oc(3) or 1oc(5) leaves the contents of the buffer
unaffected. The same String may if desired be parsed twice to set
both input and output files of the same names. Thisg 14 in fact done

The general form of the input and output ligeg consists of , Sequence of
one or more device or file Specificationg Separated by commas e.g,

CON:,A:OUT1, ,LST: mDATA. AT [B],RDR:

In the above example 4 Output channels and 2 input channels ‘are
Specified. , call of the Pre~declared PToledures input or output
(decribed later) will scan the appropriate 11s¢ from the Current
Position Up to the next occurrence of 4 comma or end of 11ist {ndiecaram

RESEARCH MACHINES

280 ALGOL

A list of the device mnenonics used and their corresponding stream
aumbers 1is given 1n appendix 2.

A CP/M file specification is of the general forn:

DRIVE:FILENAME.EXT
The characters recognised within file names are letters, digits, “$° and
°?°; the latter should be reserved for specifying ambiguous file nages.
Lower case letters are converted to upper case as per the normal CP/M

convention. All characters less than space (ASCII O to 32) are ignored
within I/0 lists.

The FILENAME consists of - from l to 8 characters. The file
extension ".EXT" 1f present consists of from 1 to 3 characters. If no
extension is given a default value will be assumed; this is initially

set to three spaces. The method of changing the default file extension
is described under library procedure "“swlist" in the section
"Input/Output directly to or from memory"”. It 1s possible to force the

use of the default file extension regardless of what is given by the
call:

1o0c(20)

In order to return to the default situation where a specified file
extension takes precedence call:

ioc(21)

The DRIVE: consists of one of A:, B:, C:, D: or may be omitted. If
omitted a default 1s assumed according to the following rules. At the

start of each list the assumed drive is the “logged on drive" when the
program is first entered. Any subsequent drive specified within the 1list
rhen becomes the default for following entries.

Switch options may be added to any 1input/output device or file
specification and consists of a series of up to 12 characters enclosed
within square brackets. Lower case letters are converted to upper case.
Switch options must not contain a comma or equal sign. Certain switches
are recognised by the runtime system and acted upon; 1in the example
given above the input file DATA.DAT[B] the switch (B] causes the file to
be opened for 'random access" reading. Other switches not used by the
system may be used by the program. A facility exists for the program to
read the switch list directly.

The occurrence of two adjacent commas within an I/0 1list {is
equivalent to specifying the "null" input/output device NL: (stream 0).

The ioc calls described above will have set up input/output lists.

These 1ists may now be used to assign files or devices through the
predeclared procedures input and output.

3

RESEARCH MACHINES ‘ 280 ALGor

dev:ainpyt

will read the next entry in the "input 1lise". If the entry 44
found to pe a2 device thep dev will bpe assigned a valye
corresponding to that device name. If a digk file was specified
then that file will be opened. A buffer region will pe allocated
to contain the fi1]e control block and Sector buffer (if serial
access). The Stream number returned will be fromg 64 upwards, the

A negative value for dev indicates gan error e.g. bad

syntax, no entry found in input list or no file found of that
name.

dev:i=output

loe(13)

loc(14)

loc(1S)

Similar to input but for output files or devices. A number of
options exist regarding what action is to be taken if an output

file name Specified 1s found already tc exist. Thesge options are
selected by calls "0 ‘oc which set the appropriate flags within
the runtime System. The first is tie default case.

No checks are made. A second file of the same npame will be
created. A problenm may be encountered later on trying to access
such files.

The existing file of the name specified will de deleted before
the new file 1s Created.

If a file name {s found to already exist the call of output will

return a streanm number of -100. No new file is created.

CLOSING AND DELETING FILES

When the use of a file 1s completed it should be closed by a2 eall

of the predeclared Procedure;

'

close(dev)

3

This will close the file assoclated with Stream dev by g4
Previous input or output call. If dev does not correspond to a
disk file nothing happens. NOTE: If an oOUTPUT FILE 13 not closed
its contents wil]l be LOST. Input files should also be closed,
as this call also serves to release the buffer and file control
block associated with that file and makes 1t available for
further use. :

-~

RESEARCH MACHINES 280 ALcoL

.

delete(dev)

This will delete the file assoclated with dev by a previcus

input or Output call apnd release the fi}e control block ani
buffer for reuse.

INPUT/OUTPUT SUPPORT ROUTINES

The following additional procedures are recognised by the runtize

system and are made known to the compiler by including the text of
ALIB.ALG with the program source.

revind(dev);

The serial input or output file associated with dey is (firsc
closed in the case of output files and) rewound for reading fron
the beginning.

dev:-findinput(“stting");

This call wil} open the file or device d2fined 1in "string" for
input on stream dev. If the first character of "string" is found

to be a question mark ‘?° then the effect is as follows. The
remainder of the string 1is printed on the console as a prozpt ta
the operator who enters the required Input file or device name.
dev:-findinput("?Source file=");
vill prompt the operator:
Source file= ‘ ’
who then enters the required name.
dev:-findinpuc("DArA.DAI");
opens the file DATA.DAT on the logged on drive.
The input specification may in fact cotsist of an "{nput 1is:c"
the first entry of which will be used and assigned to dev. Yota

that the use of this procedure will vipe out any previous ° input
specifications waiting i{n the input list, -

dev:-findou:put("sttingf)
' This is analogous to findinput but for output. The output

specification may if desired be generalised to be a corplete
input/output 1list as described under 10c(2) and 10e(3) above.

35

s

RESEARCH MACHINES 280 aLcoLr

1:-rename;

This procedure renames a file. The old filename and drive
information 1s taken a8 the next entry in the "inputlist™. The

new filename is taken from the next entry in . the "outpuclist",
e.so

foc(l);

text (7,"FRED.ABC=B: JOE. XYZ");
1oc(3);

1:-rename;
will rename file JOE.XYZ on drive B: as FRED.ABC. Note that .
the CP/M rename utility will rename all files that satisfy the
input specification. On exit

ima] implies a failure e.g. file not found or illegal

syntax. ‘ .
1=255 cp/ reply from rename regardless of success or
failure.
The default file extension will be used 1if none 1is specified, or
1f 10c(20) 1s in effect, will be used regacdless. If a file of
the same name as the new name given is found already to exist
then the result will be the same as described under procedure
"output" with regard to calls of 1oc(13) to 1oc(15), namely:
10c(13) No checks are made. - -
ioc(14) Erase any pre-existing files of the same name.
i0c(15) Return the value =100 1n {.
i:enewext (§,"xYZ")

The file associated with stream j by a previous call of input or

output is closed and {ts file extension changed to the
character string given as the second parameter. This string
becomes the default file extension e.g. °

j:-findinput("FRED.ABC");
i:-newext(j,"XYZ");

w111~reuame the file FRED.ABC as FRED.XYZ. No checks are made
@8 to the pre-existence of files of the same name. A negative
result in { implies a failure; the eéxpected reply 1s 255.

$=bios(n,bc)

This procedure performs a direct call through the BIOS Jump
vector where

-
.

n = entry in the jump table (0 to 14)
bc= contents of BC register pair om entry.

@ = contents in A register on exit,

Refer to the cP/M System Alteration Guide for daradle

RESEARCH MACHINES. 280 ALGOL

a:=cpu(c,de)

This procedure performs a direct call to CP/M where
¢ = contents of C register on entry (0 to 27)
de= contents of DE register pair on eatry.

4 = result {n A register ‘on exit.

Refer to the CP/M Interface Guide for details.

i:=fcblock(dev);

This returns in 1 the address of the file control block
associated with file Stream dev. This can be useful only to
users who wish to manipulate CP/M facilities directly.

{i=exflt(a,t);

Extend the file control block list. The RML ‘Algol system is
initially set up. to allow 4 serial files and 2 random access
files open at any time. Should users Tequire more than this
number of files then this pProcedure may be used to extend the
list of file control blocks available. Each call extends thea
length of the 1list by one. On exit a negative value in i

\- 1ndicates an attempt has been made to extend beyond its wmaximum
“length of 16 entries. The parameters to exflt are:

@ = address of buffer to use
t = file type
If t=0 then serial file else random access

The buffers used are user declared arrays, the address of which
is found using procedure location e.g.

BEGIN BYTE ARRAY buf(0§l60];
' :-exflt(location(buf[0]),0);

The buffer sizes required are for serial files 161 bytes (33 for
file control block + 128 for sector buffer) and for randon
access files 33 bytes. It is the user’s responsibility to ensure
that the array is large enough to accommodate the buffer and
that such buffers do not overlap or become overwritten.

INPUT/OUTPUT DIRECTLY TO OR FROM MEMORY

" As an aid to text Processing and related manipulation e.g. setting
up file extensions or reading the switch list a facility exists to reacd
or write using the standard input output routines directly to or from
anywhere in memory. Such I/0 is associated with stream number 10. A

number of string handling routines relevant to the following are
described in the section on "library procedures". Before I/0 can be

37

nNecessary for the user ¢to Set up pointers to
where inpu:/output is to occur. As each character is read/wricten the
corresponding Pointer (g advanced by one. The folloving PTocedures ¢to
Banipulate these Pointers are in ALIB.ALG,

seti(a)

In practice 4 call of location would Probably have been uged to

find the address, In order to find the current valyes of the
input/output pointers:

i:=1{point

Returns in ¢ the curreqnt add;ess of rhe input pointer.

1:=0point

A typical Sequence might pe; _ ° ST

BEGIN ByTE ARRAY buf[O:lOOO]; : A
seto(location(buf[O]); : ' -
seti(location(buf[O]):
mite(lo,x,0,6); ®ccesee
i:'OpOint; ®sses00
X:i=read(10); '

It 1{s the uset’s.responsibilit} to ensure that such 1/0 Stays within the
declared'bounds of the array buffer usged, '

1:=gulise
Returns in 1 the address of the switch lise.

The user cap check 1f any switch options have been Specified following a
call of "input" or "outpue" by reading the contents of thig switch lise,
These Switches (a maximum of]2 characters) can be read using fnpye
8tream 10, A typical Sequence might be:

seti(svlisc):
i:-ehin(lo);;

The firse switch is pow in 1. The list 1g terminated wich a8 zero valye.

The switch list always contains information relevant to the most recent
call of the Procedures "ippyen or "outpue",

RESEARCH MACHINES. Z80 ALGOL

characters into the appropriate buffer by means of Output to stream 10
.lg'

seto(swlist+l3);
text (10,"xy2");

This sequence will set the default file extension to Xyz. On entry the
default extension is set to null, 1i.e. 3 spaces.

This technique can also be used as a way of reading small quantities of
data in a manner similar to the DATA statement of BASIC. E.g.

seti(sloc("1.32 99.¢ ceese™));
FOR 1:=1 STEP 1 UNTIL 20 Do x(1) :=read(10);

The procedure sloc is described in the section on library procedures.
Another example involving text can be found in the pProgram VDU.ALG oa
the distribution disk. : .

RANDOM ACCESS FILES

A file may be opened to bYe read by random access rather than
serial access. Such files are opened as "input" files with a switch [B]

set to signify block 1/0. If the file 1s to be updated i.e. written to
then an additional switch is needed (BM] where the M indicates "modify".
These rules imply that only pre-existing files may be opened for random
access. As example of an “input" specification.

DATAI.DAT[B],DATAZ.DAT[BH]

The first file is opened for random access reading and the secound for
reading/writing.

i:=rblock(dev,a,b,n)

will read n blocks from the disk file associated with stream
dev, starting at block number b, writing the contents in memory
starting at address a. The length of the transfer is 128#q

bytes. The firse block of the file is block number 0. The
address in general will correspond to part of an array set up by

means of procedure location (see section on library procedures)
e-g.

:-rblock(dev,location(buf[0]),b.10);
On exit 1 will have the following meaning.
i=0 successful read.
i=]1 read past end of file.
i=2 reading unwritten data.

i=3 hard error.

The user should ensure that the declared arrav is large enough

39

{
¢

RESEARCH MACHINES 280 ALGoL

to accept the transfer. Any part of g, Selected transfer
extending beyond the end of file will be set to Zero.

18Wb10¢k(devnasbln)3

Will write g blocks to disk; the parameters are the saﬁe as for
rblock. On completion { can take the following values.

i=0 successful write.

i=1 error in extending fi]e.
i=2 end of disk file.

i=3 harg error.,

1=255 0o more directory 8pace available.

LIBRARY PROCEDURES

The following Procedures are buiilt into the runtime System and can be

made: known to the compiler by including the Source of file "ALIB.ALG"
with the Program. Some of “he following are machine dependent but all

are available for the BML 380Z. See the listing of "ALIB.aALG" in

This returns with 1 set to the address of variable x; x may be
REAL, INTEGER, or &8 array element of type REAL, INTEGER, or
" BYTE. In the case of REAL or INTEGER arguments the address
Teturned 1s that of the slot assigned to that variable (see
description of the workings of the runtime system). Each slot

address containing the integer. Array elements 4s arguments
always return the correct address. The Procedure works by
recalling the most recent variable address computed; as the
argument is called by value the compiler will f{n fact accept any
éxpression as the actual parameter, although the result will
correspond to the final variable specified. Users who wish to to
find the address of Boolean variableg kay construct a similar
Procedure with the same body as 1location but with a formal
Parameter of type Boolean by value.

1:=fspace

This returns the number of bytes free (allowing for 4 safety
margin for stack operations). Note that on large systems the
result may exceed 32K and thus appear to have a negative value
in two’s complement representation.

blmove(s,f,len)

Block move of len bytes Starting at sgldress s to the block

Starting at address f. In general the use of procedure location
(see above) would be used to set up the addresses e.g8.

RESEARCH MACHINES Z80 ALGOL

bluove(locacionﬁa[O]).locacion(b(Ol).lOO)

It is the user’s responsibility to ensure that such block wmoves
stay within che lirmits of the declared arrays. This procedure
will work correctly if the two blocks overlap.

1:=peek(a)
Returns the byte value contained within the address given by a.

poke(a,1)

Sets the contents of address given by a to the value of (the 8
least significant bits of) 1.

a:=in(c)

Input from a port. This procedure executes an IN 4A,(C)
instruction.

out(c,a)

Output to a port. This Procedure " executes an OUT (€),A
instruction. .

b:=parity(1)

This Boolean procedure returns TRUE if the character value of 1
(8 least significant bits) has EVEN parity else FALSE.

SHIFTS AND ROTATES
In the following procedures v is the value (type INTEGER) and n
is the number of Places to shift or rotate. Note that only the
4 least significant bits of n are used so its value should be in
the range 0 to 15.

t=shl(v,n) Shift LEFT.
i:=1sr(v,n) Logical shift RIGHT.
1:=asr(v,n) Arithmetic shifc RIGHT.
{i=rotl(v,n) Rotate LEFT.

i:=rotr(v,n) Rotate RIGHT.

Arithmetic shift right extends the sign bic whereas logical
shift right always places zeros into vacated positions.

x:=random g

Returns a'pseudorandon number in the rarge 0 to 1.

41

RESEARCH MACHINES

280 ALGOL

clarr(a,len)

Clear array area of length len bytes starting at address a.

'dpb(u,t,s,as

Set up the disk parameters, u=unit number (0 to 3), t=track,
S=sector, a=DMA address.

1:=rdisk

Read the disk directly using information set Up in a previous
call to dpb. The result from the CP/M call will be in {.

1:mydisk

Write to disk directly using information set uwp by a previous
call to dpb. The result from the CP/M call will be in {¢.

t=sloc("string™)

Returns in 1 the address of the start of the string. The actual ..
parameter may also be a string parameter of a procedure e.g.

PROCEDURE x(s); STRING 8;
BEGIN INTEGER i;

i:=gloc(s);
1:=sloc("xY2");

e

Strings consist of a series of characters stored in sequential
bytes terminated by a zero.

atext(dev,s);

This is similar to the pre-declared procedure "text" but the
second parameter is the address of the string. e.g.

text (dev,"XY2"); is equivalent to a:ext(dev,hloc(”xtz”));

i=tlen(s)

Returns the length of the string whose address is at s. E.g. .

L:stlen(sloc("Xyz")); >,

returns the value 3.

1:-smatch(long,shott) :

This procedure compares two strings looking for the first macch
within the long string corresponding to the contents of the
short string. The Parameters are the addresses of the strings.
If a match is found the value of { ig set to the address within
the 1ane etrwd o ~ o o R

RESEARCH MACHINES. 280 ALGOL

match 1s found 1 wil]l be set to zero. Additional matches may be
found by giving as the starting address of leng the value one
greater than the result of the previous match.

Th? following procedures are only available for the FML 3802z.

i:=emt(n)

The program executes an "EMT n" instruction; on exit 1 contains
the value returned in the accumulator. '

wvait(n)

Delay for 10#qg msecs, with o in the range 1 to 255.

The following procedures are concerned with low resolution graphics on
che RML 380z. :

chpos(x,y)

The values of x and y define a coordinate position on the VT
screen with the origin set 4 lines up. The valid ranges for x
and y corresponding to the screen are thus

0<=x <40 , =4 <my <20

Output can now be directed to the screen starting at the

specified position through device stream 11. As each character
is written the x coordinate 1s advanced one position to the

right. Once text extends beyond the limits of the screen it-

stays off for all subsequent text until reset by a further call
of chpos or point (see below). The use of graphics will {in
. general be associated with a call of emt(13) to clear the Screen
and set the 4 line scroller (see COS manual). Data may also be
read back from the screen through device stream 11; again the x
. coordinate is advances after each character read. Once beyond
the screen the value returned will be CONTRCL-Z. For example to
write "Hello" in the middle of the screen:

1:=emt (13);
chpos(17,8);
text(11,"Rello");

point(x,y,z)

This procedure plots a point on the screen of intensity 2z at
position (x,y), where:

z=0 dot off

z2=] dim dot B

z=2 bright dot

2>2 plot the character value of 2

) -

RESEARCH MACHINES Z80 ALGOL

In this case the coordinates (x,y) are in terms of the basic
graphical unit, again with the origin 4 lines up, so that:

0<=x<8 ,~12<1y <60

This routine also set the screen coordinates for 1/0 through
device stream 1] as described under Procedure chpos.

line(xl,yl,x2,y2,z)

This procedure draws a line from position (x1,y1) to position
(x2,y2) where the values of x, Y, and z are as defined for
point. :

LIBRARY INSERTS

A facility exists which allows the contents of "library" cﬁutce
files to be included with the body of the program at compile time, e.g.

LIBRARY "B:ALIB.ALG"

or, using the upper case convention,
‘LIBRARY’ "B:ALIB"

The effect at compile time is that on encountering the lgnguage,key wvord
LIBRARY the compiler looks for an 1input file specification enclosed
vithin string quotes. This file is opened and its contents included vich
the program source at the points the call is found. 1In the above case
the file ALIB.ALG on drive B: is read, the default extension being

".ALG". The default drive 1s the logged on drive. This facility allows
the user to construct libraries of frequently used procedures thus
avoiding duplication of text and excessive editing.

BEGIN INTEGER i1,,k;

LIBRARY "ALIB"
LIBRARY "IOLIBR"

LIBRARY "STATLIB"

PROCEDURE abc; secene

This example would include the contents of three library files in turn
when compiling. These files may if desired themselves contain LIBRARY
directives. The limit on the depth of such calls is set by the maximum
number of input and output files that may be open at any one time. In
the compiler as distributed this limit 1s set to five.

RESEARCH MACHINES. 280 ALGOL

EXAMPLE PROGRAMS

The following exaoples {llustrate various aspects of the language.
The first four are fairly straightforward; the final two examples assume

a 'fairly advanced knowledge of mathematics. Further examples can be
found on the distribution disk.

The first example 1lists a table of the integers up to 20, together
with their square roots, on the console.

BEGIN INTEGER {;

FOR 1{:=0 STEP | UNTIL 20 DO
BEGIN rwrite(1,1,5,0);
rwrite(l,sqtc(i).o.é);
skip(1)
END
END
FINISH

The second example simply 1lists a file oa the console. On
detecting the end of file {1t loops back for further files to 1list.

BEGIN INTEGER 1,d;

{get input file)
loop: 1ioc(4); d:=input;
{check if valid file)
IF d<64 THEN text(1l,"*NTry Again")
ELSE . .
BEGIN (list file on console)
FOR {:=chin(d) WHILE i#8~Z DO chout(1,1);
close(d); {release FCB)
END;
GOTO loop; {go round again)
END
FINISH -

L4

The next example is a procedure to i{llustrate string handling. The
routine makes use of several procedures from ALIB.ALG. The procedura
8cans a pilece of text starting at address "old" and substitutes ‘every
occurrence of a given string "olds" by that given in "news". The source
is 1itself 1in the form of a string, {.e. terminated with a zero value.
The resultant string will scart at address "new". The calling sequence

i
¢

RESEARCH MACHINES 280 ALGOL

la:-locazibn(a[OJ);

lb:-location(bIOJ); :
substitute(lb,la."Jack".”Zl"):
substitu:e(la,lp,"Jill"."zz");

will replace évery occurrence of "g" by "Jack"™ and "go» by "J111v,

Both the initia) String text and the resultant 8tring start a¢ location
a(0). The array b is used as working space.

PROCEDURE substitu:e(new,old,news.olda);
VALUE new,old; INTEGER new,old;
STRING news,olds;

BEGIN INTEGER 1.j,ns,os,nl,ol.oldfin;

B8 :=sloc(news);

os:i=sloc(olds); {addresses of strings)
nl:-tlen(ns);
Ol:=tlen(os); {lengths of strings)

{address of closing zero of input string)
oldfin:-tlen(old)+old+1;

{look for matches)
FOR 1:-smatch(old,os) WHILE 1#0 DO

BEGIN Ji=i-01d; {length of text to copy)
blmove(old,new,j) {move over portion of text)
new:=newtj; {update pointers)
old:-old+j+ol: : {skip old string)
blmove(ns,new,nl): {copy 1n new string)
new:=newtnl; {update pointer)

END ; o

blmove(old,new,oldfin-old); {copy remainder)

END substitute;

The fourth example, quicksort, is a sorting algorithm originally
developed by C.A.R. Hoare. An array of values i8 sorted into ascending
order. The method involves Teordering terms such that 1t can be
partitioned in the forn

a[lov],a(low+1],...a(i-1] < a[l) <= a[1+1],a(1+2]...;a[high)

The pivot value in this case is arbitarily chosen ag the value of the
final element on entry. The procedure then calls itself recursively for
each side of the above expression until each partition contains only one

value of the loop variable on exit from a loop will be that which led to

the loop’s termination. This may not be the case on other Algol
compilers. :

RESEARCH MACHINE§ ' 280 ArcoL

PROCEDURE quicksort(a,lov,high);

VALUE low,high; INTEGER low,high;

INTEGER ARRAY a;

IF low<high THEN

BEGIN INTEGER i.J,pivot,x,y;

‘ i:=]low-]; J:=high; Pivot:=a(y);

loop: 1:=1+]; ;
FOR x:=a[1) WHILE x<pivot DO Li=1+];
Ji=j-1;
FOR y:=a[j] WHILE j>1 AND y>=pivot DO Jimg-1;
IF 1<j THEN
BEGIN a(i]:=y; alj]:=x; GoTO loop;
END ;
{move pivot to centre)
‘y:=a(high]; alhigh):=x; afi):ay;
{alwvays deal with the smaller partition
first to minimise depth of recursion)
IF i~-low<high-i+2 THEN
BEGIN quicksor:(a,low,i-l);

quicksort(a,i+l,high)
E

BEGIN quicksort(a,i+l,high);
quicksort(a,low,i-l)

END qdicksort;

The next example is a Statistical test. Observations are made 1n -
pairs, the first of each pair belonging to one §roup and the second to
another. To find out if there is any difference between the two groups,
wve first find cthe total difference between thex. We calculate the
pProbability of getting this difference by chance, 1if the pairs of
observations had been assigned randomly to each group, rather than
always the first of the pair to the firse group. If there are J pairs,
there :zre 2§ ways of assizning the pairs into the groups. Each
combination must be tested by finding the total difference betwveen the
groups and counting the number of occasions on which this difference is
greater than or equal to that actually observed. This count divided by

Program, the differences between the observatiors in each pair are held
in the array d. The procedure br adds to the sum the difference
indicated by the parameter n with sign indicated by s. Unless n
indicates the last difference, it generates two more sums, one with a
positive difference and one with a negative difference. Each time
reaches 1 the total sunm 1s checked to sce if it 1s greater than or equal
to the observed sum of differences.

To solve this problem without recursion involves a number of
nested FOR loops equal to the number of data pairs. Thus, a separate
Program would have to be kept for each nunber of data pairs.

RESEARCH MACHINES

280 ALGOL

BEGIN INTEGER 1.j.ccunt;
REAL a,b,obs;
ARRAY d(1:100);

PROCEDURE br(n,s,sum);
VALUE n,s,sum;
INTEGER n,s; REAL sum;
BEGIN Sum:e=sumtd [n]*g;
IF n=1 AND abs(sum)>-abs(obs) THEN count:=count+l ELSE
IF nf1 THEN
BEGIN bt(n-l,l.suu); br(n-1,-1,sum)
m .

END br;

text (1,"*Nnumber of pairs?"); Ji=read(7);
obs:=0; o :

FOR 1:=]1 STEP 1 uNTIL J po

BEGIN a:=read(7); b:-read(7):
obs:-obs+a-b; d[i):-abs’a-b);

END ; '
text (1,"*Nsum of differences");

terCe(l,obs,8,2); count:=Q;

br(J.-l,O); bt(J91’O);

text(1,

"*NProbabilicy of same or greater with random signs ");
rvrite(l,count/2“1,7.3);

FINISH

The

ansvers are left in the right hand side vector. The method uses a
Gaussian elimination with partial pivoting.

RESEARCYH MACHINES. 280 ALGoL

PROCEDURE solve(order,lhs,ths,fail);

VALUE order; .

INTEGER order; ARRAY lhs,rhs;

LABEL fail;

BEGIN INTEGER row,col,tovl,orderl,i,j;
REAL max;

FOR orderl:=order STEP -1 uNTIL 2 po
BEGIN max:=Q;

FOR j:=] STEP 1 UNTIL order! Do
IF abs(lhs[J,orderl})>max THEN
BEGIN max:-abs(lhs[j,orderl]); row:mj;
EMD ;
IF rowforderl THEN
BEGIN max:=rhs(orderl];
rhs(orderl]:-ths[row];
rhs(tov]:-max;
FOR col:=] STEP } UNTIL orderl O
BEGIN max:=lhs[ordet1,col];
lhs[orderl,col]:-lhs[row,col];
lhs [row,col] : =pax
END :
END 8Wop ‘equations;
IF lbs[otdetl,orderll-o THEN
nosol: BEGIN text(l,"*Nno solution”);
GOTO fail
END ;
FOR §:=STEP 1 UNTIL orderl-l DO
BEG max:-lhs[J,orderl)/lhs[otderl,order!];
rhs[J]:-rhs[J]-rhs[orderl]*max;
FOR col:=] STEP } UNTIL orderl DO
BEGIN lhs[j,col]:=
lhs[j,col]-lhs[orderl,col]*nax
END zero one element;
END zero one column;
END triangularise the left hand side;
IF lhs[1,1])=0 THEN GOTO nosol;
FOR row:=] STEPp | UNTIL order DO
BEGIN rhs(row}:-rhs[tow]/lhs[tou,row];
FOR rowl:=row+] STEP 1 UNTIL order DO
rhs{rowl]:-rhslrowll—lhs[rowl,rou]*rhs[row];
END ;
END solve simultaneous equations;

49

RESEARCH MACHINES Z80 ALGOL

COMPILING AND RUNNING PROGRAMS UNDER cP/M

Running RML Algol 1s 4 two stage process:

1.Compiling: The program Source 13 read by the compiler ¢to

) Produce anp output file in a form to be read by
the runtime sSystem.

2.Running: This stage loads the fy11e output from the
compiler and rupnsg b §

The simplest sequence of Sfumands given a program source
file "PROG.ALG" would consist of: 8 prog ‘ ia a single

To compile program:
ALGOL PROG
To run program:

ARUN PROG

We will now consider these activities in more detail. The two basiec
files involved are:

The compiler ALGOL.COM
The runtime System ARUN.COM

The default disk drive for input and output files 1s the logged on
drive. The default file extensions are: .

Source files <ALG

Compiler output «ASC

Monitor file " «MON
COMPILING

In the simplest case given above the compiler reads the program
8ource from the file Specified; if no file eéxtension 1s given then the
default will pe used. The output file created ie g8iven the same name as
the source file byt with the extension "<ASC". Any pPre-existing file of

the same name as the output file will be deleted before the new output
file 18 created. If the compiler detects any errors in the program

source the output file is deleted but compilation continues until the

end of the Source, checking for further errors. Error messages are gent
to the console. At the the of compilation the size of the resulting
pProgram 1is printed and control is returned to CP/M. '

A more general form of calling the compiler is:
ALGOL outlist=inlist
For example:

ALGOL OUT-IOLIB.B:MATHS,PROG

NNedme thda — o2 o

RESEARCH HACHIN£§ 280 ALGOL

procedures, ending with the file containing the Program. It should be
remembered that the overall source should correspond to the required
Algol bHlock Structure, from the first BEGIN to the final corresponding
END and FINISH. Files may be taken from Several drives; if the drive 1g
not specifically included then the current default wil] be used. This {s
discussed 1in the section on I/0 selection. In the eéxample IOLIB.ALG ig
taken from the logged on drive and MATHS.ALG and PROG.ALC from drive B:,
The output OUT.ASC g0eés to the 1logged on disk. An alternative (and
perhaps better) way of combining source files 1is by the use of the
LIBRARY facilicy Previously discussed. It must be rememberad however
that the use of such library calls {g restricted to the final file
specified in the input 1list otherwise the femaining input file
specifiers will be overwritten. This {1s discussed in the details of
library procedure "findinput",

If a second Output stream ig specified then a listing of the
compiler didentifier tables will be generated. Compiler e€Iror messages
will also be sent to this stream along with an indication of the maximun
table size the System can support.

ALGOL OUT1,0UT2=PROG

will send the compiler output to OUT1.ASC, and all compiler error
messages and identi{fier tables go to 0UT2.MON.

ALGOL OUT1,CON:=PROG
will send errors and identifier tables to the console.

If no input/output s specified in the call, or if an error exists
€<g« bad syntax or a non-existent source file is given, then the

compiler will proapt for 1/0. For example a call of the form:

ALGOL

will result in g proopt of the form:

OUT=IN?

The user may now specify a list of input and output files as for the
above case. .

The output from the compiler is about the same length as the
corresponding source text. -

£ the I/0 files were specified in the initial calling 1line {.e.
"ALGOL PROG" theq upon complecion the compiler will return to CP/M. If
the 1/0 files were glven' as the result of a prompt from che compiler,
then "upon completion the compiler will be restarted, to allcw further
programs to be compiled., 4 reply of CONTROL-C in this case will retum
control to CP/M.

- s1

RESEARCH MACHINES 280 ALGOL

RUNTIME SYSTEM

Given a Successfully compiled Program, the output file 80 created
may now be run by a calling the funtime system as follows:

ARUN filename

The assumed file extension is ".ASC". The file specified will be loaded
and then executed. If no input is Specified or {f an error 1s found e.g. .
bad syntax or non-existent filename then the runtime System will prompt
the user for an input file. For example a call of the form:

ARUN
will prompt for input:

INPUT=
to which the user responds with the required filename.

Upon completion of the program the fystem prints "~n o the
console and waits for 4n operator response. Typing CONTROL-P will rerun
the program or CONTROL-C will return control to Ccp/M.

1f 8 runtime error is detected then suitable diagnostic
information is sent to the comnsole (see section on runtime errors).

Unless the user is making use of the error handling facility (see
procedure "error" in library section) the system will now wait for the
operatdr to investigate the cause of the error. The pProgram may be rerun
from the beginning by typing CONTROL-P or control returned to CP/M by
typing CONTROL-C.

The ‘return to CP/M upon completion or upon detecting a runtime
error can be made automatic by a call of

{0c(22)
within the program. . :
A call of the form -
10c(60) "

causes an immediate restart of the program from the beginning. Any files
open at the time will not be closed although all file control blocks are

released.

RESEARCH MACHINES) Z80 ALGOL

CORE IMAGE FILES

If che user intends to run a-program many times it may be saved on
disk in a more compact core image format by specifying a switch [S] a:
runtime. e.g.

ARUN filename(S]

Upon loading the program the System will delete the original ".ASC" file
produced by the compiler and create a new file of the same name and
extension ia core image format. Future calls of the form

ARUN filename

will now automatically load and run from this core image file. As CP/Y
reserves a minionum of 1K bytes per file the saving mgy not be
significant for small programs (except for some saving in thke actual
loadinz time.) The original ".ASC" file was in a system independent
format, but the new core image format i{s not relocatable and sc any
changes to the runtime system which affect 1its size will make it
necessary to recompile the program.

COMPILER ERROR MESS.AGES -

FAIL X ON LINE Y IDENT Z SYMBOL §
"LINE UP TO ERRCR"

X is the failure number (see below), Y the line on which 1t
occurred, 2 the last identifier read, and S the decimal value of the
last symbol (see section entitled “compiler representation of basi-
symbols™). "LINE UP TO ERROR" 1{s a copy of the input line up to and
including the symbol at which the error was found. The compiler output
is switched off and the file deleted. The compiler however continues to
check the syntax of the remainder of the program. In all cocpllers a
-tradeoff 1s made between the amount of error information given and the
size and speed of the compiler. In this implementation the emphasis has
been to produce a compiler that can be used on a very modest sized
computer. There 1is always a danger, particularly with a one pass
compiler, that following the detection of a genuine error the systez may
fail to synchronize fully and thus produce additional spurious erraqrs.

Identifier declared twice in same block.

Undeclared identifier. w

No [after array name, except as a procedure parameter, or
ordinary procedure used as a function.

No] at end of subscript 1list.

More than 255 variables in the main program or a procedure.

No FINISH at end of program. (Too many ENDs).

No ELSE part of a conditional arithmetic expression.

No ELSE part of a conditional Boolaan or conditional
designational expression.

Relational operator not found where expected. Will occur if the
first arithmetic expression of a Boolean relational expression

(- I WV P) W N

LV

(%

RESEARCH MACHINES

10

11
12
14
15

16

17
18
19

20

21
22
23
24
25
26

27

28
29

30
31
32
33
34
35
36
38

39
40
41
42
44
46
47
48
49
50

51

is cotally enclosed in round brackets.

Arithmetic Primary does not start with *1=ve0(, digit or
identifier.

a given systenm.

Statement starts incorrectly. If this occurs at the terminating
FINISH 1is means there are not enough ENDs.

Undeclared or unsuitable identifier on left of :=

Array declaration faulty.

Type specification of actual parameter is not LABEL, PROCEDURE,
REAL PROCEDURE, BOOLEAN PROCEDURE or INTEGER PROCEDURE.

Wrong number of subscripts. In the case of formal arrays, chis
€rror cannot be detected until runtime.

No) after actual parameter list,

FOR statement element not terminated by , or DO.

Procedure body not delimited by ;.

‘= not found where expected.

No THEN after IF.

VALUE specification is not the first specification of procedure
formal parameters. -

FINISH in middle of Program. Possibly an unmatched BEGIN, " or
Procedure formal parameter list not ended by).

Parameter specified twice, or is not 1in formal 1lisc, or
specification not terminated by ;.

Label/procedure list full.

UNTIL not found where expected. -

No (after name of standard procedure (except input or output),
THEN followed immediately by IF,

Procedure actual Parameter starts with an undeclared identif{ier.
Function or variable used as procedure.

procedure input or output 1s followed by a (.

Arithmetic expression coutains Boolean variable in 1llegal
context.

Parameter specified VALGE is not in formal 1ist.

Parameter specification not complete.

An array has been called by value. w
Input/output procedure call error.

Integer 1literal not in range.

Switch list does not end with ";.

Switch has more than one subscript.

Word BYTE not followed by ARRAY.

Input files exhausted without end of program recognised.

A procedure used before its declaration was assumed to be of a
type different from the actual type. Try reordering procedures
to eliminate the forward reference.

Input file specified in a LIBRARY call not found.

Sew

RESEARCH MACHINES - 280 ArgorL

COMPILER IDENTIFIER TABLE AND IDENTIFIER TYPES

The compiler may be instructed to print on the console or to the
monitor file a 1ist of all - the identifiers declared, together with
informaiion about their type and the addresses they will occupy 1in the
medory. Variables are Placed on a stack ard the variable number ig the
position on the stack relative to a pointer. The pointer 1{s held in
location PBASE 1in the tuntime program. The address of the variable is

found by zultiplying the variable number by 4 and adding this to the
contents of PBASE.

Four numbers are Printed after each idéntifier in the compiler
identifier table.

Tre first of these is the stack position eéxcept for labels and
procedures. For labels and procedures the symbolic label number is

printed. This is the digits part of a symbol such gas L123 which {s
output by the compiler.

The second number 1s the procedure number of the enclosing
procedure ia which the identifier is declared. The main program is 0,
and the procedures are aumbered serially ag they are encountered,
regardless of depth of declaration. As anp exception, the actual number
of a procedure {is printed, instead of the number of the enclosing
procedure.

The type information of the identifier {s then listed as follows.
The numbers represent the internal representation of the data types.

.

Procedure formal parameter (type not yet known)
real

integer

Boolean

real array
integer array
byte array
Boolean array
switch

10 procedure

11 real procedure

12 1integer procedure
13 Boolean procedure
14 label

BNV WN O

The compiled code of a Procedure coctains a list of the types of

the paraceters. The following types may appear, in addition to those
above,

RESEARCH MACHINES

Z80 ALGOL

4 string

21 real by name

22 1integer by name
23 Boolean by name

‘.- -

COMPILER REPRESENTATION OF BASIC SYMBOLS

These are the decima] values which are printed in a compiler error
message. Language key words are represented in the Algol source by the

If a compiler error message contains a symbol which is not on the
1list, an 1illegal compound symbol has been detected. The usual cause of
this is an unmatched single quote.

letters A-2 : 1=26:

[27 LI

] 29 .

= (exponentiation) 30 o
t= 7000 N

] . 33 - - L ‘ ’
" (string brackets) - - 34 LR e _
(not equal to) : 35 T aminet el
$ 36

b 4 (integer divide) 37

d>a (greater or equal to) .38

(40

) .. .) ’ . ‘1. el ;... __/”
* " (muleiply) - T Co42 0 7 TEeReT

+ 43

’ 44 . .

C e < B - - 45 R ‘:::-:' T RO
R : . . o L 46 R S e e
/ (real divide) 47 o .
digits 0-9 T ABes7 - sl .

: 58 e :

< (less than) 60 RS

- 61 .. o~

> (greater than) 62 L.)
<= (less or equal to) 63 - - ‘
BEGIN 8s - o

BOOLEAN 95 SR

BYTE 105 .-

AND 118 -

ARRAY) 122 .

COMMENT “ 135 -

DIFFER ; 169

DO : 175

ELSE : - 212

END 214

EQUIVALENT 217

RESEARCH MACHINES 280 ALGOL
FALSE 241
FINISH 249
FOR . ' 255
GOTO 295
IF 366
IMPLIES 373
INTEGER 374
LABEL 481
LIBRARY 489
MASK 521
MOD 535
NOT : 575
OR 618
PROCEDURE 658
REAL 725
STRING 780
STEP 780
SWITCH 783
THEN , 808
TRUE 818
UNTIL - 854 °
VALUE 881

WHILE 928

" RUNTIME ERRORS

In the event of an error conditiom being detected during ptogr;u
execution, a message i{s sent to output device 1 (console or video screen
generally) of the fornm: ' ’

ERROR n

ADD PBASE PROC LOC
aaaa bbbb pl 41
aaaa bbbd p2 d2

aaaa bbbbd 0 dé

vhere: n error number (see following list)
pl procedure number where error was detected
aaaa address of program counter

bbbb value of PBASE at error
(see section on runtime system)

dl location of program counter relative
to the start of the program

Both aaaa and bbbb are printed in hexadecimal. .

The procedure nuamber can be found by counting procedures from the
beginning of the program starctirg from l. The main program is gilven the
number 0. This information can be found in the compiler identifier table
output. If pl is noun-zero the calling sequence 1s then printed on the
following lines until the outercost level (p=0) 1is reached. This
traceback information can be used to lnves:tigate the nature of failure

)
¢

RESEARCH MACHINES 280 ALGoL

in greater detail 1f required (see section describing working of the
funtime system). The information given in dl ete can be related to the
corresponding information given {n . the compiler identifier tables to
help locate the position of errors. The program may be restarted from

the start by typing CONTROL-P Or control returned to CP/M by typing
CONTROL-C.

RECOVERY FROM RUNTIME ERRORS

In normal Cperation a program is terminated by the detection of 4
runtime error. It is possible however to continue following an error

files, 8ive more usefyl diagnostic information, values of variables and
80 on. This recovery is achieved by including a call of procedure
"error" (in ALIB.ALG) in the Program before the failure occurs e.g.

error (LABEL crash);

On detecting an error the runtime 8ystem will produce the error
information given above and then trarsfer control to the label (or
designational expression) "crash" in the user’s program. It is advisable
that the label be located at an outermost pragram level as 1t may only

crash: 1:=chin(13);
IF 1)30 TREN GOTO cpmbug ZLSB XXX

RUNTIME ERROR NUMBERS

0 Undefined error. This imi;lies that an error has been detected

1 Variable space used up (stack overflow). Probably the result of
excessive recursion or array declarations too large for the
available memory. The error traceback may fai}l under these °
circumstances (the first 11igpe should always be correct).

Overflow is checked following block or procedure entry and array
declarations.

Procedure called with the wrong number of parameters.

Procedure called where the actual and the formal parameter types
do not match.

Array used with the vrong number of subscripts.

Array subscript out of range (below base of array).

t of range (above top of array).

Integer division by zero.

Real division by zero.

Real overflow.

Real to integer conversion overflow.

Real overflow detected during normalisation after real
arithmetic operation.

T - VN wN
(Al
(-]
]
7]
e
o
(7]
0
2l
[eS
e
rn
o
[~

D
[l =

RESEARCH MACHINES

12

13
14
15

16
17
18
19
<0
21

22 .

23

280 ALGOL

Error in READ. Character read wvhich is not a legitimate part of
3 number (ASCII value 15 less than 43 1e <&§0).

As for 12 but ASCII value is greacer than 57 (ie >&9).

Error in READ. Number contains two or more decimal oceints.

grror in READ. A character + - . or E found with no associated
digits.

Square root of a negative number.

Exponential argument too large (>87).

Exponential argument marginally too large.

Logarithm of a negative number.

Logarithm of zero. :
Table item out of range (below). Found in 1foc(m), chin(n),

chout(n,c) etec where n<0.

As for 21 but where n is greater than maximum value specified in
list.

End of file detected during READ.

ERRORS IN LOADER

24 Loader syntax error. Output from compiler has been corrupted?.

25 End of input is indicated (CONTROL-Z read) but no program has
been loaded. Selecting input device 0 will produce this effect.

26 On completion of input there rerczin unresolved forward
references. Input source is corrupt?

27 Yo program present on a restart.

28 Label tables overlap program. Program is too large for
available memory.

29 Forward refererce tables full. This error should be rare but
can be avoided by reordering procedures so that they generate
fewer forward references, i.e try to arrange that procedures are
declared before they are called.

30 Non relocatable core image input file 1s not compatible with
this runtime system.

CP/M ERRORS

31 Channel number is out of range.

32 No directory space found during output.

33 Attempt to read from channel not opea for input.

34 Attempt to read from a non serial channel.

35 Attempt to read past end of file.

36 Attempt to write to a channel without write access. L

37 Attempt to write to a non serial file. '

38 Error in extending file.

39 Attempt to output to random access file without write access.

40 Attempt at random access to a serial access channel.

41 Channel not open.

42 Attempt to rewind a random access file.

43 Random access with a negative block number.

44 No slot available for input or outpuct.

45 Attempt to create an output file for random access.

46 Random access transfer actempted with a block count less thar

zero or greater than 255.

[y
)

RESEARCH MACHINES 280 ALGOL

RUNTIME STACK ORGANISATION

Some of this information wil] be useful when Algol variables are
to be accessed from machine code added to the runtime system,

The stack extends from the end of the runtime Program to the end
of available memory, as found by 1nCerrogac1ng the system. The variable
stack grows upwards from the end of the program and a wvorking stack,
used 1n evaluating eéxpressions, Passing procedure Parameters, and CALL
instructions, grows downwards from the end of memory. The variable stack
consists of a number of frames, one for the main Program and one for
each procedure call. Within each 8tack frame is an array stack, which
containsg an array frame for each depth of array declaratiom. In the
following section "word" refers to a 16 bit (2 byte) quantity,

The following pointers are used. Their addresses éan be found -
from the listing in the Section entitled "adding code sections",

PBASE points at the Current variable gtack frame

MBASE points at the main Program stack frame. When the main program
is executing locations PBASE and MBASE contain the same valye.

WSBAS points at the base of the working-stack in the current level. It
is used to delete floaters from the working stack at Algol
labels. .

ABAS points at the current array frame

FSPT points at the next free location in the variable stack.
The following registers are also of significance.

SP points at the top item of the working stack. It must be saved

and restored if used by any machine code added. It is also used
for CALL instructions.

Ix should also be restored if used. It 1s the Algol“interprecive
code program pointer.

IY must be restored 1f used. It points to a series of flags and
working space.

Each stack frame 1s divided into two parts, a variable part and
an array part. The variable part is divided into slots which are each
two words (four bytes) long. The actual address of a slot is found by
multiplying the slot number by 4 and adding this to the base address
which is held in PBASE or MBASE. In the main program frame the first
declared variable is in slot 2 and the word pointed at by MBASE contains
0, the level number of the main pProgram. In procedure level frames slot
3 is used for the result of a function and {s trused in procedures which
do not deliver ga result. The procedure Parameters occupy slots 4 and
upwards, followed by variables declared within the procedure. The firse
word of each Procedure in the compiled prooram ramrademe ob - 4 oo™

e v, e -

RESEARCH MACHINES

variable slocs required by the Procedure. The firse word of
Program points at the lase word of the compiled Program which
the number of variable slots Tequired by the main program,

In procedure frames the first three slots are used for linkin

g
informat{on. Starting gat the worg pPoincted at by PBASE (slot 0) the
wvords coantain the following information.

Word 1. The nunmber of the Procedure.
Word 2. The return addregs

Word 3, PBASE of calling level
Word 4. WSBAS of calling leve]
Word §. ABAS of calling level

evaluated.

4. Tre address of ap array or g4 switch either as a declareq
variable or 4 PTocedure paramater, The address g in the highest
addressed word of the slot, the remaining worg being unused.

5« The address of a4 string or ap unsubscripted variable for

procedure parameters cf type String -and variables called by
name.

The address in a switeh variable points to the switch vector. The
word pointed at contains the number of elements iq the switch and
subsequent words the addresses of the labels 1n the switch 1is¢.

The array Part of a stack frame contafng a8 number of array levels,
numbered by depth of declaration within a Procedure qr the main progragp.

Level o alwvays exists'and ig located immediately above the eng of the
variablas, apas Polnts at the base of the current level, which contains
the depth of that level. The next worg (except 1g level 0) countains a

pointer to the level below. Above the leve] information are the dope
vectors and array elements.

An array vVariable points at the start of its dope vector. This
contains 2#(N+1) words, where ¥ is the number of Subscripes. The firse

wvord of the dope vector contains the nuxber of bytes occupied by ea¢h

elezent (1, 2 o, 4), the Second the number of subscripts ang the third
the lowzr bound of the firse Subscripe,

There are two additiona] words for each additional subscripet., The
first c<eatains , cultiplier o, the Praviously accunulateq element
number 124 the second the lower bound of the next subscript- The final
word oI the dope vecror €ontains the address of the worg beyond the eng

of the Jr?t? elezencs., Array elements themselves are storad inmediacely
after t..e sJze vector,

61

]
L

S e et ..

e

RESEARCR MACHINES 280 ALGOL

RUNTIME OPERATION CODES

These are the operation codes which are output by the compiler,
The list gilves their number ip decimal,

Expressions are evaluated using a working stack. The top element
1s referred to asg S1, the next one down ag $2 and so0 on. The stack
‘SP’ 13 used for this stack (and alse for caLnL ins:ructiona).

Some of the interpretive routines take data fronm the pProgram. N1 refers
to the next byte after the code, N2 to the neéxt, and so on, In the
following section "word" refers to a 16 bit (2 byte) quantity,

(1] No operation.
1 Declare array. Nl=depth of declaration. N2=number of
declarations in multiple. N3=variable aumber of firse.

declaration. Né=number of bytes in each element. NS=number of
subscripts Sl=upper bound of last subscript. S2e lover bound of
last subscript, S$3, sS4 etc., bounds of other subscripts,
Formatted print. Sl=p, S2w=a, S3=value, Si=device number,

Read to S1 from input device 1n s]. '

Store local variable from §], Nl=variable uumber, .
Print string. Followed by 7 bit ASCII code, terminated by zero.
Device number is 1{n S,

Integer print Sl=radix, S2=valye, S3=device number,

Read next character to S1 from device oumber in §].

Print S] ag character, S2=device number.

Jump. Location 1s in next word.

Leave procedure.

6

7

-

9

10

11 Enter procedure vith no parameters. Address is in next word. ..
12

13

14

K wn

Get local variable to §], Nl= variable number,
Integer add. Sl:=S2+81

Get array element. Nl=procedure number, N2=variable gumber,
N3=number of subscripts. The subscripts are on the stack. The
main program ig Procedure number (.

15 Store array element. Sl=value, other information as code 14
éxcept subscripts are in S2 ete. -
16 Set 16 bit constant in S1 from N} and N2.
17 Integer negate. Sl:=-5] -
18 Real = Integer. Sl:=52"s]
19 Integer multiply, Sl:wS2%s5] o
20 Integer divide. Sl:=S2/s1
21 Integer subtrace. Sl:m=52-5]
22 Sl:=S]mQ .
23 Sl:=S]>0
24 Sl:=51<0 .
25 Get any variable to s§]. Nl= procedure number, N2=variable
number. 4
26 Store to any variable from §]. N1, N2 as for 25.
27 Standard function. Followed by another code.
2 8qrt 3 sin 4 cos
5 arctan 6 exp 7 1n

8 sign 9 entier 10 abs

RESEARCH MACHINES

28
29
30
31
32
33
34

35
36

37
38
39

40
41
42
43
44

46
47

48

49
S0
51
52
53°
-«
S5
56
57
58
59

60
61
62

64

65

280 ALGoL

Jump if S]l=FALSE. Address in pext word.

Set zero in Sl.

S1:=NOT 51

Sl:=S]1 AND S2

Sl:=S]1 OR 52

Sl:=S1 EQUIV §2

For Statement calculator. Sl= address of controlled variable.
S2= final value. S3=increment. S4=0 for no increment ag the

first test, else -]. Nl=type of control variable (O=REAL else

INTEGER). The following word contains the exit address for loop
completion.

"{oc". Paraceter in §]

Enter procedure. Nl=nunber of Parameters., Sl=type of last
parameter. S$2=Value of last Parzmeter, and so on, in reverse
order. The address of the Procedure {s in y2 and N3. The firse
word of a Procedure 1s the fixed space on the variable stack
required by the procedure. The following bytes contain the
procedure number apg the number of pParameters expected,

followed by the type specification of the Parameters, i reverse
order.

Store outer block variable from S]. Nl=varizbla number.

Fetch outer block variable to §}. Nl=variable nunber.

Set in S1 the address of the 7a.iable whose Procedure number {g
in N1, variable aumber in N2,

Skip, device number ia sl1.

Integer SI:asign(SZ-Sl)

Set § bit constant in S1 from NJ.

Fix S1.

Float s].

Set floating point constant frog next 4 program bytes.

Floating negate.

Set label in §]. Address in next word. Second word of Sl becomes
variable stack base pointer.

Evaluate switch address. Sleaddress of element 0, S2=subscript.
On exit S1 contains address.

Real = real. Sl:=52°5s]

Floating multiply. Sl:=§2%§]

Float S2.

Floating divide. Sl:=52/s1

Floating add. Sl:=S2+51

Floating subtrace. Sl:=S2-5]

Store parameter called by napae, Sl=valuye, S2=address.

Floating €l:=sign(S2-S1),

Jump to address in S1. -

Enter procedure vithout Parameters whose address is i{n s1. ..
As 58 but nucber of Parameters in N1. For 59 the rest of the
stack {s ser Up as Ior code 36.

Print String vhose address 1g 1z S1, S2=device number.

Set stack depch. Nl=procedyre number, N2=array depth required.
Fetch para=ecter called by name. Sl=address.

Stop, end of Pregras. Prints ~ on ccnsole or returns to CP/M.
Stecre aa address {n the Program in a local variable. Followed by
:hedvatiable rudber {n y) and the address ig the next whele
vard.

Juzp ta the 2ddress {, local variakle number N},

63

e P SI— ST URVAE L

. -

RESEARCH MACHINES

280 ALGOL
66 Set in Sl the address of local variable number N].
67 As for 66 but main program variable.
68 Get local array element.
69 Get main program array element.,
70 Store local array element.
71 Store main progranm array element. Codes 68-71 are folloved by

the variable number in N1, not by the level number and then the
variable number as for codes 14 and 15.

72 Read a floating point number, check for end of file. Sl=address
of label to go to on end of file. S2= device number.
73 Logical OR. S1:=S2 QR §]
74 Logical AND. S1:=S2 AND S1
) 75 Logical EXCLUSIVE OR. Sl:=52 XOR Sl.
76 Integer MOD. S1:=52 MOD Sl
77 Close file, stream number in Sl. .
78 Delete file, stream number in si.
79 Open INPUT and assign to stream number S].
80 Create OUTPUT and assign to stream number S].

ADDING CODE SECTIUNS

The most likely additions users may wish to me:e to the tuntime
system are:)

l. adding input/output device handlers
2. specialised code subroutines

. ; 3. linking the above to the runtime error handling systenm

: For each of these applications the additions can be made without ‘getting
deeply involved in the inner workings of the system. The following
listings from the runtime System are all the user needs to understand.
See the section "runtime stack organisation” where the significance of

; several of the important variables 1s discussed. Users who wish to

bypass CP/M and create a stand alone system should refer to Research
Machines for details.

Each of the above applications 1s associated with a list of items,
, Pointers to these 1lists can be found near the start of the runtime
' system. The general form of a list is :

t NAME: n tlength
. fentry 0
fentry 1

C 4 fentry n

; The first byte defines the length of the list counting from 0. (Note the

! RML assembler allows "#NAME" as a shorthand for "DEFW NAME"). The ngme
: of the 1ist has a corresponding pointer near the start of the runtime
E program. Note that the exact location and contents of these lists given
o here may differ from the actual values in the distributed system but the
pointer address will be correct. The entries in the list contain the
- addresses of the corresponding entry points. Other variables of

RESEARCH MACHINES . Z80 ALGOL

importance are:

PROGST contains the start of free Space. The program code will
start from here.
ENDLIST contains the address beyond which the lists must not
. extend.

The various listsg follow each other consecutively 1{n menory. To
add 1/0 handlers ot code routines the following modifications muse be
made.

1. Write the code starting at the address coatainad in PROCST.

2. Update PROGST to 2 new free space pointer

3. Make an entry in the appropriate list and update the leugth
of the list if necessary.

Each list contatns vacant slots or room left at the end for expansion.
If cthis 1is insufficient, 1t will be necessary to relocate the entira

list(s) and update the pointer(s) accordingly. Other points to observe
are:

IX and IY oust be preserved in value on exit.
SP 1s used for subroutine calls and for the working stack.

Exit from code routines is via a RET instruction and s»o
any use of SP should leave it uncorrupted and balanced
before exit.
Other registers may be used as raquired.
INPUT DEVICE HANDLERS
INLP Pointer to input 1list.
INLIST Name of input list.
Input device handlers read a byte from the input scurce to register A

then exit via a RET instruction. c:achin(n) will read a byte from the
device associated with entry "n" in the list.

OUTPUT DEVICE HANDLERS
ouUTLP | Pointer to output list.
OUTLST Name of output list.
Output device handlers output the byte in fegister A then exit via a RET

instruction. chout(n,c) will send chsracter "c" to device "a" 1inp the
list. :

I0C LIST AND CODE SUBROUTINES
I0CLST Pointer to IOC list.v

DKLST Name of I0C list.

65

RESEARCH MACHINES 280 ALGOL

ioc(n) will transfer control to the address associated with entry "a" in
the ioc list. Return 1s via a RET instruction. If the foc 1is in a
procedure body (as in ALIB examples) then access to the procedure
parameters is straightforward. (See section on runtime stack
organisation). Procedure parameters will occupy from slot 4 onwards .and

the result, if it is a TYPE procedure, will go in slot 3. The address of
the slot is given by

(contents of PBASE)+4*slot number
Thus, the first procedure parameter will be given by
(contents of PBASE)+16

The various contents of these slots are described in the section on
stack organisation. Note that integer values occupy the upper half of

the 4 byte slots and so it is necessary to add 2 to the above sunm.

EXAMPLE CODE PROCEDURE

Consider adding the "peek" procedure (already in ALIB.ALG) using the
information given 1n the listing from the runtime system that follows.
The Algol definition using the next available slot in the "ioc" list .
would be:

H . 2
INTEGER PROCEDURE peek(a);
VALUE a; INTEGER a; ioc(6l);

The code routine could be as follows.

;EXAMPLE CODE ROUTINE "PEEK"
;POINTERS IN THE ALGOL RUNTIME SYSTEM
PROGST EQU 11S5H

PSTART EQU 24EFH

DKLST EQU 17028

IOCLEN EQU 60D

PBASE EQU 1278

;UPDATE ORIGIN FOR ALGOL PROGRAM
ORG PROGST

DEFW ENDPATCH -

;UPDATE IOC LIST LENGTH . o o
ORG DKLST
DEFB IOCLEN+1

$ENTRY IN IOC LIST
ORG DKLST+2*IOCLEN+3
DEFW PEEK

sCODE ROUTINE
ORG PSTART

PEEK: LD L,4 $SLOT NUMBER
CALL GPAR sGET PARAMETER 1
EX DE.RHL -

RESEARCH MACHINES

280 ALGOL
1D ¢, (HL) iCONTENTS GF ADDRESS
LD B,0
LD L,3 sSLOT NIMBER 7OR RESULT
CALL ppir ;DUMP RESULT
RET 3BACK TO 4 GoL
.-.-Q -----
iGET INTEGER VALUE PARAMETER
iENTER WITH SLOT NMDER Iy L
SEXIT WITH RESULT 1y pE
GPAR: CALL sLap ;ADDRESS OF SLOT
: LD E, (HL)
INC HL
LD D, (HL) ;CONTENTS IN DE
RET
e
iDUMP INTEGER RESULT |
;L=SLOT NUMBER - : ' -
;BC=RESULT :
DPAR: CALL spLap
LD (HL),C
INC HL
LC (HL),B
RET
SCOMPUTE ADDRESS oF SLOT : L
SLAD: 1D H,0
ADD HL,HL
INC EL :
ADD HL, HL $SLOT*4+2
LD DE, (PBASE)
ADD WL, pE ;ADDRESS OF SLOT+2
RET :
:m—--

ENDPATCH: EXD

e
»

This program after assembly would be combined with ARUN.COM using the
CP/M utility DDT. ,

LINKING TO RUNTIME ERROR HANDLING

Another possible applicarion {s to 1ink the user written code to

the runtipe error handling meckanism. The table kas a slighcly'diffe:eut
forn thigs time.

JFAIL Contains a Jurmp to the fail routinpe.
ERRORS Points to the error table.
ERLST Name of error !is:.

For exacple, Suppose that an error ¢ondition exists 1f the negative flag
is set. A call of the followinz form would be xmade

A PRI oo 3

o e

RESEARCH MACHINES

Z80 ALGOL

ERR50: caLL M,JFAIL ;ERROR IN ...

The error list entries consist of the return address {.e, fERRS50+3 {n
this case. The fai] routine compares each item in the 1list with the

value on the top of the stack, and the position of the match gives the
"error number".

Other pointers of interest are.

INP] contains a JUMP to the input handler associated with
Stream number }.

ouUTPl contains a jump to the output device handler associated
vith stream number 1.

These are used directly by the system bypassing the gelect stream

mechanism in order to P-in. out titles and error information and for
checking for operator Tresponses,

INTERRUPT HANDLING

The RML Algol 8ystem itself does not use interrupt in any way.
There 1s no reason hovever why users should not link in code routines
vhich do use interrupt, provided care is taken to ensure that the
contents of all registers and working variables are not corrupted.
Algol variables may be modified directly if desired. The addresses cof
simple variables can be passed to code routines using a call by name
procedure parameter. The addresses of arrays (or variables) can be found
using the procedure "location". Two foc calls have been added which
allow for interrupt to be controlled while disk I/0 1s in progress.
These are

10c(16)

This call will cause interrupt to be disabled before entering CP/M.
Interrupt will be enabled on return from CP/M. -

ioc(17)

This call will restore the default situation. No action is taken with
regard to interrupts.

EXTRACT FROM ALGOL RUNTIME SYSTEM

0001 *H (ARUN.ZSM) .
0002 ;ALGOL INTERPRETER FOR z280
0003 ;CGM/RHA OCT 78
0004 ;CP/M VERSION
0005 ;19/2/79 DISK 25A
0006
o100 0007 ORG 1008

RESEARCH MACHINES 280 ALGoL
0008 RADO " ' ;OCTAL DEFAULT RADIX
0100 C35B12 0009 JP START ;PROGRAM START ADDRESS
0103 C35312 0010 JP - RESTART ;PROGRAM RESTART ADDRESS
0106 C30318 0011 INIT: Jp INITIALISE ;INITTALISATION SEQUFNCE
0109 C3D113 0012 wAIT: .Jp ° DONE ;WAITING CODE '
010C C34413 0013 JFAIL: Jp FAIL sENTER FAIL ROCUTINE
OIOF C3D51A 0014 INP1: Jp READl ;STREAM | INPUT
0112 C3DEIA 0015 OUTPl: Jp ° PRNT1 ;" " orTpyT
0115 EF24 0016 PROGST: #PSTART 3START OF PROGRAM CODE
0117 cS816 0017 INLP: #INLIST s INPUT DEVICE LIST
0119 E516 0018 OUTLP: #OUTLST iOUTPUT DEVICE LIST
011B 0217 0019 IOCLST: #DKLST ;I0C LIST
011D 9017 0020 ERRORS: #ER]IST ;ERROR LIST
Ol1F CAlS 0021 ENDLIST:#STOPLIST ;LISTS MUST STOP HERE
0121 0D29 0022 DEVTAB: #DVTAB ;DEVICE MNEMONICS
0123 0000 0023 ABAS: #0 ;ARRAY FRAME BASE
0125 0000 0024 WSBAS: %0 sWORKING STACK BASE
0127 6701 0025 PBASE: 4#T9-2 "3 PROCEDURE BASE POINTER
0129 6701 0026 MBASE: 4#T9-2 sMAIN BASE POINTER
012B C000 0027 FSPT: #0 3FREE SPACE POINTER
0573 ;INPUT DEVICES C : Ses e
16C8 Cp 0574 INLIST: 13D e e
16C9 EOL4 0575 © - DUMIN ¢ ;DUMMY, RETURYS ~2
16CB D51A 0576 #READ] " 3KEYBOARD -
16CD FO14 0577 #TTYIN ' . TELETYPE.
16CF EO14 0578 #DIMIN oMy ¢ ,
16D1 FAlD 0579 JCPMKEY ; CON L o
16D3 F81D 0580 #CP:RDR ;RDR ao
16D5 EO14 0581 #DUMIN ; DUMMY o
16D7 B216 0582 #RECIN ;RECORD INPUT
16D9 EO14 0533 #DIMIN S
16DB EO14 0584 #DUMIN -
16DD 3118 0585 #Cl01 3ARRAY BUFFER I/0 ° - =~~~
16DF EO14 0586 #DUIN
16E1 EO14 0587 #DUMIN - ' e
16E3 F413 0588 #ERNUVEB 3LATEST ERROR NUMBER
~ 0589 Dot ‘
0590 ;OUTPUT DEVICES . - -) : :
16ES CD 0591 OUTLST: 13D TS e Tt
16E6 EFlaA 0592 BN 110 % A ;DUMMY BIT BIN
16E8 DEIA 0593 - #PRNTI1 “ 7 3SCREEN ’
16EA €013 0594 #TTOUT T ° " 3TELETYPE
16EC "001B 0595 #1LPPR ;LINE PRINTER "
16EE 791D 0596 #CPUVT ;VT
16F0 F71D 0597 JCPMPUN ; PUN
16F2 ¥61D 0598 . #CPMLST ;LST
16F4 6416 0599 #RECOUT . 3RECORD CUTPUT BUFFER
16F6 EF1A 0600 JNULL
16F8 EFlA 0501 MULL
16FA 3118 0602 #c100 ;ARRAY BUFFER I/0
16FC EF1A 0603 JnrLL
16FE EF1A 0604 ENULL
1700 EFl1a 0605 #NULL

69

"‘nﬂ---h.-.—hHﬁ-H-ﬂ-ﬁd‘-ﬁn-uuH-I-i--nhﬁhduu-uuu-nﬂih-hhﬁanﬁiﬁn‘__Jhﬁill‘
-

RESEARCH MACHINES

280 ALGoL

0729 sTOPLIST: -

0730 ;

0606 ;
0607 ;10C cALLs
1702 3¢ 0608 DKLST: ¢0p ; LENGTH
1703 7816 0609 #RESETI SRESET INPUT BUFFER POINTER
1705 7F16 0610 #RESETO ; " OUTPUT " »,
1707 8816 0611 #CDECK $CALL 1/0 COMMAND DECODER
1709 9016 0612 #CDEC 3TN BTER
170B 9416 0613 #CINDK i" I """ PEYBOARD INPUT
170D 9C16 0614 #CIND "o e
170F 4B12 0615 #DEFFC ;RWRITE DEFAULT
1711 5012 0616 #NOFC : " NO FORMAT MODS
1713 5412 0617 #NOERP i " NO ERROR PRINT
1715 3c12 0618 #LEADS i " PRINT LEADING SPACES
0619 ;10
1717 3712 0620 fLEFTJ ;"
1719 4612 0621 #SPLUS L ggfziaggngrsgggnr
1777 P61E 0672 #RENAME ;RENAME PILE
1779 731F 0673 #NEWEXT iCHANGE FILE EXTENSION
: 0674 ;60 ' '
177B 5812 8675 #RERUN RERUN PROG FROM START
676 ;
1770 0677 DEFS 203 ;FOR EXPANSION
0678 ;eue
0679 ;LIST OF caLLs 10 *FAIL’
1790 2p 0680 ERLST: 45p
179E 5313 0681 FERRO+3
1740 0C14 0682 #ERR1+3
17A2 E007 0683 #ERR2+3 .
17A4 0A08 0684 #ERR3+3
17A6 F908 0685 #ERR4+3
17F2 3516 0723 fERR4 2+3
17F4 EOID 0724 #ERRS 343
17F6 621E 0725 #ERR4443
17F8 E515 0726 #ERR45+3
0727 ; . "L
17FA 0728 DEFS 10H $ROOM FOR MORE

iNO LISTS BEYOND HERE

APPENDIX 1 SUMMARY OF IoC CALLS

loc(n) FUXCTION
0 -5 input/output selection
6 - 12 rvrite format comtrol
13 - 15 output file options
16 - 17 interrupt option on disk I/0
18 - 19 read options
20 - 21 file extension options
22 reboot CP/M on completion
23 - 59 linked to Procedures in ALIB.ALG
60 Terun program from start
6l - 62 RML 3802 graphics

PRE-DECLARED PROCEDURES

NAME SECTION

1oc Pre declared identifiers

abs Standard functions

arctan . " "

cos " "

entier " " ..
" ” L

::p 1] ” -

sign n "

s in n ”

sqrt " "

chin Input/Output

chout " n

read " "

rvrite " "

skip " "

text " "

write " "

71

el ot e e

APPENDIX 1 PROCEDURES IN "ALIB.ALG"

s RO ot ot i

(to be compiled with the user’s program if required).

findinput
findoutput
rblock
wblock
rewind
‘seti
seto
ipoint
opoint
exfle
fcblock
swlist
bios
cpmd
rename
newext
error
location
fspace
blmove
peek
poke
in
out
dpd
n rdisk
wdisk
parity
shl
1sr
asr
rotl
rotr
random
clarr
. 8loe
slen
smatch
atext
emt
wait
chpos
point
line

Input/Output
” "

"
(L]
”
”
”
”

Runtime errors
Library procedures
"]

3 3 3 3I 3 233 3 333323 =

23 33 33 23 3

"

APPENDIX 2 INPUT/OUTPUT STRLCAMS

The following table defines the Stream or device numbers associated with
1/0 charnels. These aunbers point to an entrv 1in the iaput/oucsut device
lists wiich contain the address of the appropriate device handler.
Vacant slocs are available for users to add their own routines. In the
case of disk files the Stream numbers are allocated dynamically by the

system (from 64 upwards). Figures ipn brackets indicate equivalent streagz
nunbers in the pure CP/M version.

INPUT STREAMS

STREAM NAME DEVICE

0 NL: Dummy input - alvays returns an end of
file character (CONTROL-Z) . ’

Po(4) 1 Single character keyboard input.

2% (5) TTY: Teletype (S104).

3 cox: CP/M Console.

S RDR: CP/M Reader. :

7 TIB: Buffered keyboerd izput. On the rML
380Z, the line editing using the rubout
key is done =ore eleganrlx tian for the
pure CP/M version. Usad for I/0 file

. coweand lines.
10 -_— Inpct from nemory (see sati/sets library
. : procedures).
11* (0) —- Input from VT screen (3raphics rmode).
13 — Returns as the pext byte tiie latest
' runtime error number.
OUTPUT STREAMS
STREAM NAME DEVICE v

0 NL: Dumny output - a1l output 1is thrown
away.,

I (4) vT: VT Screea.

2* (5) TTI: Telecype (S104).

3* (6) LP: Lineprinter (EMT 5).

4 CON: CP/M Console.

5 PUN: CP/M punch.

6 LST: CP/M List device.

7 -— Output to 1/0 file cotnmand buffer.

10 -— Qutput to memory (see set{/seto library
procadures). w

L1* (0) —- Output to VT screen (graphics node).

* 1/0 only available oq RML 320z.

Disk drives recognised are a:, 2:, C:, and D:.

Switch options Tecognised araz; 4

8 Block 1/0 (randsm access).
M Modify access (rindom access write).

73

APPENDIX 3 DIFFERENCES FROM THE ALGOL 60 REPORT

RESTRICTIONS
W

No OWN variables.
No multiple asgignments,
No integer labels.

Variables must be declared before uge.

Call by NAME 1s restricted to the case where the actual parameter i{s ,

variable name, 1., a8 per call by reference in Fortran or call by
location in CORAL 66,

Array parameters most be called by name.
The ‘fat comma’ is not implemented.

Clues are sometimes Fequired to indicate the "type" 1n pProcedure
Parameters and conditional Statements, :

Only the firge six characters of identifiér names are significant.

EXTENSIONS ' ’
M. .

Data type: BYTE ARRAY,

Operators: MOD, !¢, DIFFER, MASK. .
Couments may be enclosed within uapching braces e.g. (like this).
Procedure names may be the result of designational expressions.

Additional functions include string handling, direct disk 1/0, block
move, clear array, graphics, etc. See appendix 1 for the full list. -

¢

anade SR ROPIYp. a-n.mmmmw W nvng.,

APPENDIN & PROGRANMS ON THE DISTRIRUTION DISK

ALCOL.CCYM and ARUN.COM

The Algol conmpiler and runtime S¥stanm.

AL38.4LC

The standard Algol library routines.

LLASE.ALG and LCASE.ASC

This program will copvert Algol source files written using
ccnvention ! (all upper case with k2y words cnclosed 1in quctes)

into convention 2 (upper/lower case). The pPregram prompes

irput and output fije names. The default file extension is

UCASE.ALG and UCASE.ASC

This ia the complereat ta LCASE.ALG just described. Files
converted from conveation 2 into convention |,

HMINDLALG and #4IND.ASC

Mastermind. Game 1 allows 6 colours and no blanks..came 2 allows

6 colours ang blanks.

VDU.ALG and VDU.aSC

This program is designed as an.editing atd for craating Alzol
Source flles. The Program prompts for an output file name,
“default extension is ".ALG". If the upper case coavention with
key words erclosed within quotes 1s required then cive a ([T}
switch option with the file Specification. Now stare typingz
your program. The program detects language zey words. As soocz

as sufficient characters have been entered to uniquely

the key word the Program will supply the rest. Correcticns can
be made to the current line bteing entered using the rubout Key.

CONTROL-U Erase the current line.

CONTROL-R Retype the current line after cleanup.

CONTROL-X Switch off the auto keyword facilicy. &
call will switch it on agzain. Thris
strings etc. to be eantered vithout
characters being added.

CONTROL-2 End of prograa. Close file and raturn
start. :

CONTROL-C In response to the prompt for

specification will} Tatura -control o CP/Y.

75

TN e e eename e eee . R T R

RESEARCH MACHINES

280 Al

BIBLIOGRAPRY
M

Peter Naur (Ed.)

ICL

Ekman Froberg

Daniel D. McCra

Revised Report on the Algorithmie Language Algol 60.

Algol: Language (Students Edition)
Technical Publication 3340 :
Obtain from:
Technical Publications Service
International Computers Ltd.
ICL House
Putney

LONDON sw1S, ENGLAND

This textbook also contains 4 CoOpy of the Algol
Report. -

Introduction to Algol Programming.
Oxford University Press.,

cken
A Guide to Algol Programming,
John Wiley and Soms Inc., New York.

>

-

TABLE OF CONTENTS

Introduction

The RML Algol language

Language key words and identifiers
Pre—&eclared identifiers

Standard functions

The structure of an Algol program
Blocks and declarqtiona ™
Program layout and style
Data types
Identifiers and symbols
Arrays
Array memory layout and bound checking
Byte arrays
Simple expressions
Strings and character literals
Assignment statements
Conditional expressions
Conditional statements
FOR statements
Dummy statements
Cbmments
LABELs, SWITCHes and GOTO statements
Designational expressions
Procedures |
Procedures with parameters
Numerical and Boolean paramaters by VAiUE

Variables called by name

String and switch procedure parameters

L B ™ T X

»

0w e O v o

10
11
13
15
15
16

16
18

18

19

20

20

21

22
22
23

Labels and Procedures as paramecars

Summary of points on procedures
Input/Output Procedures
Input/Output selection
Closing and deleting files
Input/éutput support routines
Input/Output directly to or from memory
Random access files
Library procedures
Library inserts
Example programs
Compiling and funning programs under CP/M-
Compiler error messages
Compiler identiffer tables and 1dent1fi;r types
Compiler representation of basic symbols
Runtime errors
Runtime stack organisation
Runtime operation codes
Adding code sectioni
Interrubt handling
APPENDICES
1 | Summary of 1oc calls

Pre~declared procedures
Procedures in ALIB.ALG

2 Input/Output streams
3 Differences from the Algol 60 Report
4 Programs on the distribution disk

Bibliography

24

25
27

a1

34
3s
37
39
40

44

45
50
53
55
56
57
60
62
64

68

71
14}
72
73
74
75

76

