
VERSION 31)

he Ultimate Pascal Development Environmen

Borland's No-Nonsense License Statement!

This software is protected by both United States Copyright Law and
International Treaty provisions. Therefore, you must treat this software
just like a book with the following single exception: Borland International
authorizes you to make archival copies of the software for the sole
purpose of backing up your software and protecting your investment from
loss.

By saying, "just like a book," Borland means, for example, that this
software may be used by any number of people and may be freely moved
from one computer location to another so long as there is No Possibility of
it being used at one location while it's being used at another. Just like a
book that can't be read by two different people in two different places at
the same time, neither can the software be used by two different people in
two different places at the same time. (Unless, of course, Borland's
Copyright has been violated.)

WARRANTY

With respect to the physical diskette and physical documentation
enclosed herein, BORLAND INTERNATIONAL, INC. ("BORLAND")
warrants the same to be free of defects in materials and workmanship for
a period of 60 days from the date of purchase. In the event of notification
within the warranty period of defects in material or workmanship,
BORLAND will replace the defective diskette or documentation. The
remedy for breach of this warranty shall be limited to replacement and
shall not encompass any other damages, including but not limited to loss
of profit, special, incidental, consequential, or other similiar claims.

BORLAND INTERNATIONAL, INC., SPECIFICALLY DISCLAIMS ALL
OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING BUT NOT
LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO DEFECTS IN
THE DISKETTE AND DOCUMENTATION, AND THE PROGRAM LICENSE
GRANTED HEREIN. IN PARTICULAR, AND WITHOUT LIMITING
OPERATION OF THE PROGRAM LICENSE WITH RESPECT TO ANY
PARTICULAR APPLICATION, USE, OR PURPOSE. IN NO EVENT SHALL
BORLAND BE LIABLE FOR ANY LOSS OF PROFIT OR ANY OTHER
COMMERCIAL DAMAGE, INCLUDING BUT NOT LIMITED TO SPECIAL,
INCIDENTAL, CONSEQUENTIAL OR OTHER DAMAGES.

GOVERNING LAW

This Statement shall be construed, interpreted and governed by the laws
of the State of California.

First Edition, August 1985
Printed in the United States of America

9 8 7 6

Turbo Pascal
version 3.0

Reference Manual

Copyright @1983
Copyright @1984
Copyright @1985

by

BORLAND INTERNATIONAL Inc.
4585 Scotts Valley Drive
Scotts Valley, CA 95066

TABLE OF CONTENTS

INTRODUCTION 	 1
The Pascal Language 	 1
TURBO Pascal 	 1
Structure of This Manual 	 2
Typography 	 4
Syntax Descriptions 	 4

Chapter 1. USING THE TURBO SYSTEM 	 7
.COM and .CMD files 	 7
BEFORE USE 	 7
IMPORTANT NOTE I!! 	 7
Files On The Distribution Disk 	 8
Starting TURBO Pascal 	 10
Installation 	 12

IBM PC Screen Installation 	 12
Non-IBM PC Screen Installation 	 12
Installation of Editing Commands 	 13

The Menu 	 14
Logged Drive Selection 	 15
Work File Selection 	 15
Main File Selection 	 16
Edit Command 	 17
Compile Command 	 17
Run Command 	 17
Save Command 	 17
Directory Command 	 18
Quit Command 	 18
compiler Options 	 18

The TURBO Editor 	 19
The Status Line 	 19
Editing Commands 	 20
A Note on Control Characters 	 22
Before You Start: How To Get Out 	 22
Basic Movement Commands 	 22
Extended Movement Commands 	 25
Insert and Delete Commands 	 26
Block Commands 	 28
Miscellaneous Editing Commands 	 30

TABLE OF CONTENTS

The TURBO editor vs. WordStar 	 34
Cursor Movement 	 34
Mark Single Word 	 34
End Edit 	 35
Line Restore 	 35
Tabulator 	 35
Auto Indentation 	 35

Chapter 2. BASIC LANGUAGE ELEMENTS 	 37
Basic Symbols 	 37
Reserved Words 	 37
Standard Identifiers 	 38
Delimiters 	 39
Program Lines 	 39

Chapter 3. STANDARD SCALAR TYPES 	 41
Integer 	 41
Byte 	 41
Real 	 42
Boolean 	 42
Char 	 42

Chapter 4. USER DEFINED LANGUAGE ELEMENTS 	 43
Identifiers 	 43
Numbers 	 43
Strings 	 44

Control Characters 	 45
Comments 	 46
Compiler Directives 	 46

Chapter 5. PROGRAM HEADING AND PROGRAM BLOCK 	 47
Program Heading 	 47
Declaration Part 	 47

Label Declaration Part 	 48
Constant Definition Part 	 48
Type Definition Part 	 49
Variable Declaration Part 	 49
Procedure and Function Declaration Part 	 50

Statement Part 	 50

ii 	 TURBO Pascal Reference Manual

Chapter 6. EXPRESSIONS 	 51
Operators 	 51

Unary Minus 	 51
Not Operator 	 52
Multiplying Operators 	 52
Adding Operators 	 53
Relational Operators 	 53

Function Designators 	 54

Chapter 7. STATEMENTS 	 55
Simple Statements 	 55

Assignment Statement 	 55
Procedure Statement 	 56
Goto Statement 	 56
Empty Statement 	 56

Structured Statements 	 57
Compound Statement 	 57
Conditional Statements 	 57

If Statement 	 57
Case Statement 	 58

Repetitive Statements 	 59
For Statement 	 60
While statement 	 61
Repeat Statement 	 61

Chapter 8. SCALAR AND SUBRANGE TYPES 	 63
Scalar Type 	 63
Su brange Type 	 64
Type Conversion 	 65
Range Checking 	 65

Chapter 9. STRING TYPE 	 67
String Type Definition 	 67
String Expressions 	 67
String Assignment 	 68
String Procedures 	 69

Delete 	 69
Insert 	 69
Str 	 70
Val 	 70

TABLE OF CONTENTS 	 iii

String Functions 	 71
Copy 	 71
Concat 	 71
Length 	 72
Pos 	 72

Strings and Characters 	 73

Chapter 10. ARRAY TYPE 	 75
Array Definition 	 75
Multidimensional Arrays 	 76
Character Arrays 	 77
Predefined Arrays 	 77

Chapter 11. RECORD TYPE 	 79
Record Definition 	 79
With Statement 	 81
Variant Records 	 82

Chapter 12. SET TYPE 	 85
Set Type Definition 	 85
Set Expressions 	 86

Set Constructors 	 86
Set Operators 	 87

Set Assignments 	 88

Chapter 13. TYPED CONSTANTS 	 89
Unstructured Typed Constants 	 89
Structured Typed Constants 	 90

Array Constants 	 90
Multi-dimensional Array Constants 	 91
Record Constants 	 91
Set Constants 	 92

Chapter 14. FILE TYPES 	 93
File Type Definition 	 93
Operations on Files 	 94

Assign 	 94
Rewrite 	 94
Reset 	 94
Read 	 95
Write 	 95
Seek 	 95
Flush 	 96
Close 	 96

iv 	 TURBO Pascal Reference Manual

Erase 	 96
Rename 	 96

File Standard Functions 	 97
EOF 	 97
FilePos 	 97
FileSize 	 98

Using Files 	 98
Text Files 	 101

Operations on Text Files 	 101
ReadLn 	 101
WriteLn 	 101
Eoln 	 102
SeekEoln 	 102
SeekEof 	 102

Logical Devices 	 104
Standard Files 	 105

Text Input and Output 	 108
Read Procedure 	 108
Readln Procedure 	 110
Write Procedure 	 111

Write Parameters 	 112
Writeln Procedure 	 113

Untyped Files 	 114
BlockRead / BlockWrite 	 114

I/O checking 	 116

Chapter 15. POINTER TYPES 	 119
Defining a Pointer Variable 	 119
Allocating Variables (New) 	 120
Mark and Release 	 120
Using Pointers 	 122
Dispose 	 124
GetMem 	 125
FreeMem 	 125
MaxAvail 	 126

TABLE OF CONTENTS

Chapter 16. PROCEDURES AND FUNCTIONS 	 127
Parameters 	 127

Relaxations on Parameter Type Checking 	 129
Untyped Variable Parameters 	 130

Procedures 	 131
Procedure Declaration 	 131
Standard Procedures 	 133

ClrEol 	 133
CIrScr 	 133
Crtlnit 	 133
CrtExit 	 134
Delay 	 134
DelLine 	 134
InsLine 	 134
GotoXY 	 134
Exit 	 135
Halt 	 135
LowVideo 	 135
Norm Video 	 135
Randomize 	 135
Move 	 136
FillChar 	 136

Functions 	 137
Function Declaration 	 137
Standard Functions 	 139

Arithmetic Functions 	 139
Abs 	 139
ArcTan 	 139
Cos 	 139
Exp 	 140
Frac 	 140
Int 	 140
Ln 	 140
Sin 	 140
Sqr 	 141
Sqrt 	 141

Scalar Functions 	 141
Pred 	 141
Succ 	 141
Odd 	 141

vi 	 TURBO Pascal Reference Manual

Transfer Functions 	 142
Chr 	 142
Ord 	 142
Round 	 142
Trunc 	 142

Miscellaneous Standard Functions 	 143
Hi 	 143
KeyPressed 	 143
Lo 	 143
Random 	 143
Random(Num) 	 143
SizeOf 	 144
Swap 	 144
UpCase 	 144

Forward References 	 145

Chapter 17. INCLUDING FILES 	 147

Chapter 18. OVERLAY SYSTEM 	 149
Creating Overlays 	 152
Nested Overlays 	 154
Automatic Overlay Management 	 155
Placing Overlay Files 	 155
Efficient Use of Overlays 	 155
Restrictions Imposed on Overlays 	 156

Data Area 	 156
Forward Declarations 	 156
Recursion 	 156
Run-Time Errors 	 156

Chapter 19. IBM PC GOODIES 	 159
Screen Mode Control 	 i... 160

Text Modes 	 160
Color Modes 	 161

TextColor 	 161
TextBackground 	 162

Cursor Position 	 162
WhereX 	 162
WhereY 	 162

TABLE OF CONTENTS 	 vii

Graphics Modes 	 163
GraphColorMode 	 163
GraphMode 	 164
HiRes 	 164
HiResColor 	 164
Palette 	 165
Graph Background 	 166

Windows 	 168
Text Windows 	 168
Graphics Windows 	 169

Basic Graphics 	 171
Plot 	 171
Draw 	 171

Extended Graphics 	 172
ColorTable 	 172
Arc 	 173
Circle 	 173
GetPic 	 173
PutPic 	 174
GetDotColor 	 174
FillScreen 	 175
FillShape Procedure 	 175
FillPattern 	 175
Pattern 	 176

Turtlegraphics 	 177
Back 	 178
ClearScreen 	 179
Forward 	 179
Heading 	 179
HideTurtle 	 179
Home 	 179
NoWrap 	 180
PenDown 	 180
PenUp 	 180
SetHeading 	 180
SetPenColor 	 181
SetPosition 	 181
ShowTurtle 	 181
Turn Left 	 181
TurnRight 	 181
TurtleWindow 	 182
TurtleThere 	 183
TurtleDelay 	 183
Wrap 	 184
Xcor 	 184

viii 	 TURBO Pascal Reference Manual

Ycor 	 184
Sound 	 185
Editor Command Keys 	 186

Chapter 20. PC-DOS AND MS-DOS 	 187
Tree-Structured Directories 	 187

On the Main Menu 	 187
Directory-related procedures 	 189

ChDir 	 189
MkDir 	 189
RmDir 	 189
GetDir 	 189

Compiler Options 	 190
Memory / Com file / cHn-file 	 190

Minimum Code Segment Size 	 191
Minimum Data Segment Size 	 191
Minimum Free Dynamic Memory 	 192
Maximum Free Dynamic Memory 	 192

Command Line Parameter 	 192
Find Run-time Error 	 192

Standard Identifiers 	 193
Chain and Execute 	 193
Overlays 	 196

OvrPath Procedure 	 196
Files 	 198

File Names 	 198
Number of Open Files 	 198
Extended File Size 	 199
File of Byte 	 199
Flush Procedure 	 199
Truncate Procedure 	 199
Text Files 	 200

Buffer Size 	 200
Append Procedure 	 200
Flush Procedure 	 200
Logical Devices 	 200
I/O redirection 	 201

Absolute Variables 	 203
Absolute Address Functions 	 204

Addr 	 204
Ofs 	 204
Seg 	 204
Cseg 	 205
Dseg 	 205
Sseg 	 205

TABLE OF CONTENTS 	 ix

Predefined Arrays 	 205
Mem Array 	 205
Port Array 	 206

With Statements 	 206
Pointer Related Items 	 206

MemAvail 	 206
Pointer Values 	 207

Assigning a Value to a Pointer 	 207
Obtaining The Value of a Pointer 	 207

DOS Function Calls 	 208
User Written I/O Drivers 	 209
External Subprograms 	 210
In-line Machine Code 	 211
Interrupt Handling 	 214

Int procedure 	 214
Internal Data Formats 	 216

Basic Data Types 	 216
Scalars 	 216
Reals 	 217
Strings 	 217
Sets 	 218
Pointers 	 218

Data Structures 	 219
Arrays 	 219
Records 	 219
Disk Files 	 220

File Interface Blocks 	 220
Random Access Files 	 221
Text Files 	 221

Parameters 	 221
Variable Parameters 	 223
Value Parameters 	 223

Scalars 	 223
Reals 	 223
Strings 	 223
Sets 	 224
Pointers 	 224
Arrays and Records 	 224

Function Results 	 224
The Heap and The Stacks 	 225

Memory Management 	 226

x 	 TURBO Pascal Reference Manual

Chapter 21. CP/M-86 	 227
Compiler Options 	 227

Memory / Cmd file / cHn-file 	 227
Minimum Code Segment Size 	 228
Minimum Data Segment Size 	 229
Minimum Free Dynamic Memory 	 229
Maximum Free Dynamic Memory 	 229
Command Line Parameter 	 229
Find Runtime Error 	 229

Standard Identifiers 	 230
Chain and Execute 	 231
Overlays 	 233

OvrDrive Procedure 	 233
Files 	 235

File Names 	 235
Untyped files 	 235
Text Files 	 235

Buffer Size 	 235
Absolute Variables 	 236
Absolute Address Functions 	 237

Addr 	 237
Ofs 	 237
Seg 	 237
Cseg 	 237
Dseg 	 238
Sseg 	 238

Predefined Arrays 	 238
Mem Array 	 238
Port Array 	 239

With Statements 	 239
Pointer Related Items 	 239

MemAvail 	 239
Pointer Values 	 239

Assigning a Value to a Pointer 	 240
Obtaining The Value of a Pointer 	 240

CP/M-86 Function Calls 	 240
User Written I/O Drivers 	 241
External Subprograms 	 242
In-line Machine Code 	 243
Interrupt Handling 	 245

Intr procedure 	 245

TABLE OF CONTENTS 	 xi

Internal Data Formats 	 246
Basic Data Types 	 246

Scalars 	 247
Reals 	 247
Strings 	 248
Sets 	 248
Pointers 	 249

Data Structures 	 249
Arrays 	 249
Records 	 250
Disk Files 	 250

File Interface Blocks 	 250
Random Access Files 	 251
Text Files 	 252

Parameters 	 252
Variable Parameters 	 253
Value Parameters 	 253

Scalars 	 254
Reals 	 254
Strings 	 254
Sets 	 254
Pointers 	 254
Arrays and Records 	 254

Function Results 	 255
The Heap and The Stacks 	 255

Memory Management 	 256

Chapter 22. CP/M-80 	 259
eXecute Command 	 259
compiler Options 	 259

Memory / Com file / cHn-file 	 260
Start Address 	 261
End Address 	 261
Command Line Parameter 	 262
Find Runtime Error 	 262

Standard Identifiers 	 263
Chain and Execute 	 263
Overlays 	 265

OvrDrive Procedure 	 265
Files 	 267

File Names 	 267
Text Files 	 267

Absolute Variables 	 267
Addr Function 	 268

xii 	 TURBO Pascal Reference Manual

Predefined Arrays 	 268
Mem Array 	 268
Port Array 	 269

Array Subscript Optimization 	 269
With Statements 	 269
Pointer Related Items 	 270

MemAvail 	 270
Pointers and Integers 	 270

CP/M Function Calls 	 271
Bdos procedure and function 	 271
BdosHL function 	 271
Bios procedure and function 	 272
BiosHL function 	 272

User Written I/O Drivers 	 272
External Subprograms 	 274
In-line Machine Code 	 274
Interrupt Handling 	 277
Internal Data Formats 	 278

Basic Data Types 	 278
Scalars 	 278
Reals 	 278
Strings 	 279
Sets 	 279
File Interface Blocks 	 280
Pointers 	 281

Data Structures 	 281
Arrays 	 281
Records 	 282
Disk Files 	 282

Random Access Files 	 282
Text Files 	 283

Parameters 	 283
Variable Parameters 	 283
Value Parameters 	 283

Scalars 	 283
Reals 	 284
Strings 	 284
Sets 	 284
Pointers 	 285
Arrays and Records 	 285

Function Results 	 285
The Heap and The Stacks 	 286

TABLE OF CONTENTS 	 xiii

Memory Management 	 288
Memory Maps 	 288

Compilation in Memory 	 288
Compilation To Disk 	 289
Execution in Memory 	 290
Execution of A Program File 	 291

Chapter 23. TURBO BCD PASCAL 	 293
Files On the TURBO BCD Pascal Distribution Diskette 	 293
BCD Range 	 293
Form function 	 294

Numeric Fields 	 294
String Fields 	 297

Writing BCD Reals 	 297
Formatted Writing 	 298

Internal Data Format 	 298

Chapter 24. TURBO-87 	 301
Files On the TURBO-87 Distribution Diskette 	 301
Writing 8087 Reals 	 302
Internal Data Format 	 302

Appendix A. SUMMARY OF STANDARD
PROCEDURES AND FUNCTIONS 	 303
Input/Output Procedures and Functions 	 303
Arithmetic Functions 	 304
Scalar Functions 	 304
Transfer Functions 	 304
String Procedures and Functions 	 305
File Handling Routines 	 305
Heap Control Procedures and Functions 	 306
Screen Related Procedures and Functions 	 306
Miscellaneous Procedures and Functions 	 307
IBM PC Procedures and Functions 	 308

Basic Graphics, Windows, and Sound 	 308
Extended Graphics 	 309

Turtlegraphics 	 309

Appendix B. SUMMARY OF OPERATORS 	 311

xiv 	 TURBO Pascal Reference Manual

Appendix C. SUMMARY OF COMPILER DIRECTIVES 	 313
IMPORTANT NOTICE 	 313
Common Compiler Directives 	 314

B - I/O Mode Selection 	 314
C - Control C and S 	 314
/ - I/O Error Handling 	 314
/ - Include Files 	 314
R - Index Range Check 	 315
V - Var-parameter Type Checking 	 315
U - User Interrupt 	 315

PC-DOS and MS-DOS Compiler Directives 	 316
G - Input File Buffer 	 316
P - Output File Buffer 	 316
D - Device Checking 	 316
F - Number of Open Files 	 317

PC-DOS, MS-DOS, and CP/M-86 Compiler Directive 	 317
K - Stack Checking 	 317

CP/M-80 Compiler Directives 	 318
A - Absolute Code 	 318
W - Nesting of With Statements 	 318
X - Array Optimization 	 318

Appendix D. TURBO VS. STANDARD PASCAL 	 319
Dynamic Variables 	 319
Recursion 	 319
Get and Put 	 319
Goto Statements 	 319
Page Procedure 	 320
Packed Variables 	 320
Procedural Parameters 	 320

Appendix E. COMPILER ERROR MESSAGES 	 321

Appendix F. RUN-TIME ERROR MESSAGES 	 325

Appendix G. I/O ERROR MESSAGES 	 327

Appendix H. TRANSLATING ERROR MESSAGES 	 329
Error Message File Listing ... 	 330

Appendix I. TURBO SYNTAX 	 333

TABLE OF CONTENTS
	

XV

Appendix J. ASCII TABLE 	 339

Appendix K. KEYBOARD RETURN CODES 	 341

Appendix L. INSTALLATION 	 345
Terminal Installation 	 345

IBM PC Display Selection 	 345
Non-IBM PC Installation 	 346

Editing Command Installation 	 350

Appendix M. CP/M PRIMER 	 355
How to use TURBO on a CP/M system 	 355
Copying Your TURBO Disk 	 355
Using Your TURBO Disk 	 356

Appendix N. HELP!!! 	 357

Appendix 0. SUBJECT INDEX 	 363

xvi 	 TURBO Pascal Reference Manual

LIST OF FIGURES

1-1 Log-on Message 	 10
1-2 Main Menu 	 11
1-3 Installation Main Menu 	 12
1-4 Main Menu 	 14
1-5 Editor Status Line 	 19

15-1 Using Dispose 	 124

18-1 Principle of Overlay System 	 149
18-2 Largest Overlay Subprogram Loaded 	 150
18-3 Smaller Overlay Subprogram Loaded 	 151
18-4 Multiple Overlay Files 	 153
18-5 Nested Overlay Files 	 154

19-1 Text Windows 	 169
19-2 Graphics Windows 	 170
19-3 Turtle Coordinates 	 178
19-4 Turtle Coordinates 	 183

20-1 TURBO Main Menu under DOS 2.0 	 187
20-2 Options Menu 	 190
20-3 Memory Usage Menu 	 191
20-4 Run-time Error Message 	 192
20-5 Find Run-time Error 	 192

21-1 Options Menu 	 227
21-2 Memory Usage Menu 	 228
21-3 Run-time Error Message 	 230
21-4 Find Run-time Error 	 230

22-1 Options Menu 	 260
22-2 Start and End Addresses 	 261
22-3 Run-time Error Message 	 262
22-4 Find Run-time Error 	 262
22-5 Memory map during compilation in memory 	 288
22-6 Memory map during compilation to a file 	 289
22-7 Memory map during execution in direct mode 	 290
22-8 Memory map during execution of a program file 	 291

L-1 IBM PC Screen Installation Menu 	 345
L-2 Terminal Installation Menu 	 346

TABLE OF CONTENTS 	 xvli

LIST OF TABLES

1-1 Editing Command Overview 	 21

14-1 Operation of EOLN and Eof 	 105

19-1 Text Mode Color Scale 	 161
19-2 High Resolution Graphics Color Scale 	 165
19-3 Color Palettes in Color Graphics 	 165
19-4 Color Palettes in B/W Graphics 	 166
19-5 Graphics Background Color Scale 	 167
19-6 IBM PC Keyboard Editing Keys 	 186

K-1 Keyboard Return Codes 	 343

L-1 Secondary Editing Commands 	 353

xviii 	 TURBO Pascal Reference Manual

INTRODUCTION

This book is a reference manual for the TURBO Pascal system as imple-
mented for the PC-DOS, MS-DOS, CP/M-86, and CP/M-80 operating
systems. Although making thorough use of examples, it is not meant as
a Pascal tutorial or textbook, and at least a basic knowledge of Pascal is
assumed.

A TURBO Pascal Tutorial, however, is also available from Borland.
Please see page 3 for ordering information.

The Pascal Language

Pascal is a general-purpose, high level programming language originally
designed by Professor Niklaus Wirth of the Technical University of Zur-
ich, Switzerland and named in honor of Blaise Pascal, the famous
French Seventeenth Century philosopher and mathematician.

Professor Wirth's definition of the Pascal language, published in 1971,
was intended to aid the teaching of a systematic approach to computer
programing, specifically introducing structured programming. Pascal has
since been used to program almost any task on almost any computer
and it is today established as one of the foremost high-level languages;
whether the application is education, hobby, or professional program-
ming.

TURBO Pascal

TURBO Pascal is designed to meet the requirements of all categories of
users: it offers the student a friendly interactive environment which
greatly aids the learning process; and in the hands of a programmer it
becomes an extremely effective development tool providing both compi-
lation and execution times second to none.

TURBO Pascal closely follows the definition of Standard Pascal as
defined by K. Jensen and N. Wirth in the Pascal User Manual and
Report. The few and minor differences are described in Appendix D. In
addition to the standard, a number of extensions are provided, such as:

INTRODUCTION 	 1

Absolute address variables
Bit/byte manipulation
Direct access to CPU memory and data ports
Dynamic strings
Free ordering of sections within declaration part
Full support of operating system facilities
In-line machine code generation
Include files
Logical operations on integers
Overlay system
Program chaining with common variables
Random access data files
Structured constants
Type conversion functions

IBM PC and compatibles only:

Colors
Graphics
Turtlegraphics
Windows
Sound

Furthermore, many extra standard procedures and functions are includ-
ed to increase the versatility of TURBO Pascal.

Structure of This Manual

As this manual describes slightly different TURBO Pascal implementa-
tions, namely PC-DOS, MS-DOS, CP/M-86, and CP/M-80, the reader
should keep the following structure in mind:

1: Chapter 1 describes the installation and use of TURBO Pascal, the
built-in editor, etc. This information applies to all implementations.

2: The main body of the manual, chapters 2 through 18, describe the com-
mon parts of TURBO Pascal, i.e. those parts of the language which are
identical in all three versions. These include Standard Pascal and many
extensions. As long as you use the language as described in these
chapters, your programs will be fully portable between implementations.

2 	 TURBO Pascal Reference Manual

3: Chapters 19, 20, 21, and 22 describe items which have not been
covered in previous chapters because they differ among implementa-
tions, for example special features, requirements, and limitations of each
implementation. In particular, you should notice that chapter 19 explains
all the IBM PC extensions such as colors, graphics, sound, windows,
etc. To avoid confusion, you need only read the chapter(s) pertaining to
your implementation.

Parts of chapters 20, 21, and 22 deal with technicalities such as internal
data formats, interrupts, direct memory and port accesses, in-line as-
sembly code, user written I/O drivers, etc. It is assumed that the
reader has previous knowledge of such matters, and no attempt is
made to teach these things. Remember that these chapters are imple-
mentation dependent, so programs using techniques described there are
no longer directly portable between implementations.

In fact, you need not bother with these chapters at all if your aim is to
write plain Pascal code, or if portability between the different TURBO im-
plementations is important to you.

4: Chapter 23 describes TURBO-BCD. This is a special version of TURBO
Pascal for PC-DOS, MS-DOS, and CP/M-86 which uses binary coded
decimal (BCD) arithmetic for higher precision in real operations; especial-
ly useful for business applications.

5: Chapter 24 describes the special 16-bit TURBO-87 which uses the op-
tional 8087 co-processor for added speed and extended range in Real
arithmetic.

6: The appendices are common to all implementations and contain sum-
maries of language elements, syntax diagrams, error messages, details
on installation procedures, an alphabetical subject index, etc.

7: Appendix N contains answers to a number of the most common
questions—please read it if you have any problems.

TURBO Pascal equipped with either BCD or 8087 options is available
for an additional fee at better dealers nationwide. Call (800) 556-2283
for the dealer nearest you. To order by credit card, call (800) 255-8008,
in California call (800) 742-1133.

INTRODUCTION 	 3

Typography

The body of this manual is printed in normal typeface. Special charac-
ters are used for the following special purposes:

Typewriter
Typewriter-characters are used to illustrate program examples and
screen output. Screen images are furthermore shown in rectangular
fields of thin lines.

Italics
Italics are used in general to emphasize sections of the text. In particu-
lar, pre-defined standard identifiers and elements in syntax descriptions
(see below) are printed in italics. The meaning of the use of italics thus
depends on the context.

Boldface
Boldface is used to mark reserved words; and also to highlight particu-
larly important passages in the text.

Syntax Descriptions
The entire syntax of the Pascal language expressed as Backus-Naur
Forms is collected in in Appendix I which also describes the typography
and special symbols used in these forms.

Where appropriate syntax descriptions are also used more specifically to
show the syntax of single language elements as in the following syntax
description of the function Concat:

Concat (St1 , St2 (, StN))

Reserved words are printed in boldface, identifiers use mixed upper
and lower case, and elements explained in the text are printed in italics.

4 	 TURBO Pascal Reference Manual

The text will explain that Stl, St2, and StN must be string expressions.
The syntax description shows that the word Concat must be followed
by two or more string expressions, separated by commas and enclosed
in parentheses. In other words, the following examples are legal (assum-
ing that Name is a string variable):

Concat (' TURBO' , Pascal')
Cones-I.(' TU' , 'RBO' , ' Pascal ')
Concat('T','U','R','B','0',Name)

INTRODUCTION 	 5

Notes:

6 	 TURBO Pascal Reference Manual

Chapter 1
USING THE TURBO SYSTEM

This chapter describes the installation and use of the TURBO Pascal
system, specifically the built-in editor.

.COM and .CMD files

Files with the extension .COM mark the executable program files in
CP/M-80 and PC-DOS / MS-DOS. In CP/M-86 these will instead be
marked .CMD. Thus, whenever .COM-files are mentioned in the follow-
ing, it should be understood as .CMD if your operating system is CP/M-
86.

BEFORE USE

Before using the TURBO Pascal you should, for your own protection,
make a work-copy of the distribution diskette and store the original
safely away. Remember that the User's License allows you to make as
many copies as you need for your own personal use and for backup
purposes only. Use a file-copy program to make the copy, and make
sure that all files are successfully transferred.

IMPORTANT NOTE !!!

TURBO Pascal provides a number of compiler directives to control
special runtime facilities such as index checking, recursion, etc.
PLEASE NOTICE that the default settings of these directives will op-
timize execution speed and minimize code size. Thus, a number of
runtime facilities (such as index checking and recursion) are de-
selected until explicitly selected by the programmer. All compiler
directives and their default values are described in Appendix C.
(De-selecting recursion applies to CP/M-80 only; in 16-bit versions
recursion is always possible.)

USING THE TURBO SYSTEM 	 7

Files On The Distribution Disk

Files On The Distribution Disk

The distribution disk contains the following files:

TURBO.COM
The TURBO Pascal program: compiler, editor, and all. When you enter
the command TURBO on your terminal, this file will load, and TURBO
will be up and running.

TURBO.OVR
Overlay file for TURBO.COM (CP/M-80 version only). Needs only be
present on the run-time disk if you want to execute .COM files from
TURBO.

TURBO.MSG
Text file containing error messages. Needs not be present on your run-
time disk if you will accept the system without explanatory compile-time
error messages. Errors will in that case just print out an error number,
and the manual can be consulted to find the explanation. In any case, as
the system will automatically point out the error, you may find it an ad-
vantage to use TURBO without these error messages; it not only saves
space on the disk, but more importantly, it gives you approx. 1.5 Kbytes
extra memory for programs. This message file may be edited if you wish
to translate error messages into another language as described in
Appendix H.

TINST.COM
Installation program. Just type TINST at your terminal, and the pro-
gram takes you through a completely menu-driven installation pro-
cedure. This and the following files need not be present on your run-
time disk.

TINST.DTA
Terminal installation data (not present on IBM PC versions).

TINST.MSG
Messages for the installation program. Even this file may be translated
into any language desired.

.PAS files
Sample Pascal programs.

8 	 TURBO Pascal Reference Manual

Files On The Distribution Disk

GRAPH.P
IBM PC versions only. Contains the external declarations necessary to
use the extended graphics and turtlegraphics routines contained in
GRAPH.BIN. Only necessary on the run-time disk if you want to do tur-
tlegraphics.

GRAPH.BIN
IBM PC versions only. This file contains the extended graphics and tur-
tlegraphics machine language routines. Only necessary on the run-time
disk if you want to do extended or turtle graphics.

READ.ME
If present, this file contains the latest corrections or suggestions on the
use of the system.

Only TURBO.COM must be on your run-time disk. A fully operative
TURBO Pascal thus requires only 30 K of disk space (37 K for 16-bit
systems). TURBO.OVR is required only if you want to be able to exe-
cute programs from the TURBO menu. TURBO.MSG is needed only if
you want on-line compile-time error messages. The TINST files are used
only for the installation procedure, and the GRAPH files are needed only
when you want to do extended graphics or turtlegraphics. The example
.PAS files, of course, may be included on the run-time disk if so desired,
but they are not necessary.

USING THE TURBO SYSTEM 	 9

Starting TURBO Pascal

Starting TURBO Pascal

When you have a copy of the system on your work-disk, enter the com-
mand

TURBO

at your terminal. The system will log on with the following message:

TURBO Pascal system 	Version N.NNX
[System]

Copyright (C) 1983,1984 by BORLAND Inc

No terminal selected

Include error messages (Y/N)? ■

Figure 1-1: Log-on Message

N.NNX specifies your release number and [System] indicates the
operating environment (operating system and CPU), for example
CP/M-86 on IBM PC . The second-last line tells you which screen is
installed. At the moment none - but more about that later.

If you enter a Y in response to the error message question, the error
message file will be read into memory (if it is on the disk), briefly display-
ing the message Loading TURBO. MSG. You may instead answer N
and save about 1.5 Kbytes of memory. Then the TURBO main menu will
appear:

10 	 TURBO Pascal Reference Manual

Starting TURBO Pascal

Logged drive: A

Work file:
Main file:

Edit 	Compile Run Save
Dir 	Quit compiler Options

Text: 	0 bytes
Free: 62903 bytes

Figure 1-2: Main Menu

The menu shows you the commands available, each of which will be
described in following sections. Each command is executed by entering
the associated capital letter (highlighted after terminal installation if your
terminal has that feature). Don't press < RETURN > ; the command ex-
ecutes immediately. The values above for Logged drive and memory use
are for the sake of example only; the values shown will be the actual
values for your computer.

IBM PC users who are satisfied with the 'Default display mode' can use
TURBO as it comes and may skip the following and go to page 14. If
you're an non-IBM PC user, you may use TURBO without installation if
you don't plan to use the built-in editor - but assuming that you do, type
0 now to leave TURBO for a minute to perform the installation.

USING THE TURBO SYSTEM 	 11

Installation

Installation

Type TINST to start the installation program. All TINST files and the
TURBO.COM file must be on the logged drive. This menu will appear:

TURBO Pascal installation menu.

Choose installation item from the following:

[S]creen installation 1 [C]ommand installation 1 [Q]uit

Enter S, C, or Q:

Figure 1-3: Installation Main Menu

IBM PC Screen Installation

When you hit S to perform Screen installation, a menu will appear which
lets you select the screen mode you want the TURBO environment to
use (see Appendix L for details). When you have made your choice, the
main menu re-appears, and you may now continue with the Command
installation described on pages 350 pp, or you may terminate the instal-
lation at this point by entering Q for Quit.

Non-IBM PC Screen Installation

Now hit S to select Screen installation. A menu containing the names of
the mostly used terminals will appear, and you may choose the one that
suits you by entering the appropriate number. If your terminal is not on
the menu, nor compatible with any of these (note that a lot of terminals
are compatible with ADM-3A), then you must perform the installation
yourself. This is quite straightforward, but you will need to consult the
manual that came with your terminal to answer the questions asked by
the installation menu. See Appendix L for details.

12 	 TURBO Pascal Reference Manual

Installation

When you have chosen a terminal, you are asked if you want to modify
it before installation. This can be used if you have for example an ADM-
3A compatible terminal with some additional features. Choose the
ADM-3A and add the required commands to activate the special
features. If you answer Yes, you will be taken through a series of ques-
tions as described in Appendix L.

Normally, you will answer No to this question, which means that you are
satisfied with the pre-defined terminal installation. Now you will be asked
the operating frequency of your microprocessor. Enter the appropriate
value (2, 4, 6 or 8, most probably 4).

After that, the main menu re-appears, and you may now continue with
the Command installation described in the next section or you may ter-
minate the installation at this point by entering Q for Quit.

Installation of Editing Commands

The built-in editor responds to a number of commands which are used
to move the cursor around on the screen, delete and insert text, move
text etc. Each of these functions may be activated by either a primary or
a secondary command. The secondary commands are installed by Bor-
land and comply with the 'standard' set by WordStar. The primary com-
mands are un-defined for most systems, and using the installation pro-
gram, they may easily be defined to suit your taste or your keyboard.
IBM PC systems are supplied with the arrows and dedicated function
keys installed as primary commands as described in chapter 19.

Please turn to appendix L for a full description of the editor command in-
stallation.

USING THE TURBO SYSTEM 	 13

The Menu

The Menu

After installation, you once again activate TURBO Pascal by typing the
command TURBO. Your screen should now clear and display the menu,
this time with the command letters highlighted. If not, check your instal-
lation data.

Logged drive: A

Work file:
Main file:

Edit 	Compile Run Save
Dir 	Quit compiler Options

Text: 	0 bytes
Free: 62903 bytes

> ■

Figure 1-4: Main Menu

By the way, whenever highlighting is mentioned here, it is assuming that
your screen has different video attributes to show text in different inten-
sities, inverse, underline or some other way. If not, just disregard any
mention of highlighting.

This menu shows you the commands available to you while working
with TURBO Pascal. A command is activated by pressing the associated
upper case (highlighted) letter. Don't press < RETURN > , the com-
mand is executed immediately. The menu may very well disappear from
the screen when working with the system; it is easily restored by enter-
ing an 'illegal command', i.e. any key that does not activate a command.
< RETURN > or < SPACE > will do perfectly.

The following sections describe each command in detail.

14 	 TURBO Pascal Reference Manual

The Menu

Logged Drive Selection

The L command is used to change the currently logged drive. When you
press L, this prompt:

New drive: ■

invites you to enter a new drive name, that is, a letter from A through P,
optionally followed by a colon and terminated with < RETURN > . If you
don't want to change. the current value, just hit < RETURN > . The L
command performs a disk-reset, even when you don't change the drive,
and should therefore be used whenever you change disks to avoid a fa-
tal disk write error.

The new drive is not immediately shown on the menu, as it is not au-
tomatically updated. Hit for example < SPACE > to display a fresh
menu which will show the new logged drive.

Work File Selection

The W command is used to select a work file which is the file to be used
to Edit, Compile, Run, eXecute, and Save. The W command will issue
this command:

Work file name: ■

and you may respond with any legal file name: a name of one through
eight characters, an optional period, and an optional file type of no more
than three characters:

FILENAME.TYP

If you enter a file name without period and file type, the file type PAS is
automatically assumed and appended to the name. You may explicitly
specify a file name with no file type by entering a period after the name,
but omitting the type.

Examples:
PROGRAM 	becomes PROGRAM. PAS
PROGRAM . 	is not changed
PROGRAM . FIL is not changed

USING THE TURBO SYSTEM 	 15

The Menu

File types .BAK, .CHN, and .COM/.CMD should be avoided, as TURBO
uses these names for special purposes.

When the Work file has been specified, the file is read from disk, if
present. If the file does not already exist, the message New File is is-
sued. If you have edited another file which you have not saved, the mes-
sage:

Workfile X:FILENAME.TYP not saved. Save (Y/N)? ■

warns you that you are about to load a new file into memory and
overwrite the one you have just worked on. Answer Y to save or N to
skip.

The new work file name will show on the menu the next time it is updat-
ed, like when you hit < SPACE > .

Main File Selection

The M command may be used to define a main file when working with
programs which use the compiler directive $1 to include a file. The Main
file should be the file which which contains the include directives. You
can then define the Work file to be different from the Main file, and thus
edit different include files while leaving the name of the Main file un-
changed.

When a compilation is started, and the Work file is different from the
Main file, the current Work file is automatically saved , and the Main file
is loaded into memory. If an error is found during compilation, the file
containing the error (whether it is the Main file or an include file) au-
tomatically becomes the Work file which may then be edited. When the
error has been corrected and compilation is started again, the corrected
Work file is automatically saved, and the Main file is re-loaded.

The Main file name is specified as described for the Work file name in
the previous section.

16 	 TURBO Pascal Reference Manual

The Menu

Edit Command

The E command is used to invoke the built-in editor and edit the file
defined as the Work file. If no Work file is specified, you are first asked
to specify one. The menu disappears, and the editor is activated. More
about the use of the editor on pages 19 pp.

While you may use the TURBO system to compile and run programs
without installing a terminal, the use of the editor requires that your ter-
minal be installed. See page 12.

Compile Command

The C command is used to activate the compiler. If no Main file is
specified, the Work file will be compiled, otherwise the Main file will be
compiled. In the latter case, if the Work file has been edited, you will be
asked whether or not to save it before the Main file is loaded and com-
piled. The compilation may be interrupted at any moment by pressing a
key.

The compilation may result either in a program residing in memory, in a
.COM file, or in a .CHN file. The choice is made on the compiler Options
menu described on pages 190 (PC/MS-DOS systems), 227 (CP/M-86),
and 259 (CP/M-80). The default is to have the program residing in
memory.

Run Command

The R command is used to activate a program residing in memory or, if
the C-switch on the compiler Options menu is active, a TURBO object
code file (.COM or .CMD file). If a compiled program is already in
memory, it will be activated. If not, a compilation will automatically take
place as described above.

Save Command

The S command is used to save the current Work file on disk. The old
version of this file, if any, will be renamed to .BAK, and the new version
will be saved.

USING THE TURBO SYSTEM 	 17

The Menu

Directory Command

The D command gives you a directory listing and information about
remaining space on the logged drive. When hitting D, you are prompted
thus:

Dir mask: ■

You may enter a drive designator or a drive designator followed by a file
name or a mask containing the usual wildcards * and ?. Or you may
just hit < RETURN > to get a full directory listing.

Quit Command

The Quit command is used to leave the TURBO system. If the Work file
has been edited since it was loaded, you are asked whether you want to
save it before quitting.

compiler Options

The 0 command selects a menu on which you may view and change
some default values of the compiler. It also provides a helpful function to
find run-time errors in programs compiled into object code files.

As these options vary between implementations, further discussion is
deferred to chapters 20, 21, and 22.

18 	 TURBO Pascal Reference Manual

The TURBO Editor

The TURBO Editor

The built-in editor is a full-screen editor specifically designed for the
creation of program source text. If you are familiar with MicroPro's
WordStar, you need but little instruction in the use of the TURBO editor,
as all editor commands are exactly like the ones you know from
WordStar. There are a few minor differences, and the TURBO editor has
a few extensions; these are discussed on page 34. You may install your
own commands 'on top' of the WordStar commands, as described on
page 13; and IBM PC systems come with arrows and dedicated function
keys already installed. The WordStar commmands, however, may still
be used.

Using the TURBO editor is simple as can be: when you have defined a
Work file and hit E, the menu disappears, and the editor is activated. If
the Work file exists on the logged drive, it is loaded and the first page of
text is displayed. If it is a new file, the screen is blank apart from the
status line at the top.

You leave the editor and return to the menu by pressing Ctrl-K-D; more
about that later.

Text is entered on the keyboard just as if you were using a typewriter.
To terminate a line, press the < RETURN > key (or CR or ENTER or
whatever it is called on your keyboard). When you have entered enough
lines to fill the screen, the top line will scroll off the screen, but don't
worry, it is not lost, and you may page back and forth in your text with
the editing commands described later.

Let us first take a look at the meaning of the status line at the top of the
screen.

The Status Line

The top line on the screen is the status line containing the following in-
formation:

Line n 	Col n 	Insert 	Indent 	X:FILENAME.TYP

Figure 1-5: Editor Status Line

USING THE TURBO SYSTEM
	

19

The TURBO Editor

Line n
Shows the number of the line containing the cursor counted from the
start of the file.

Col n
Shows the number of the column containing the cursor counted from
the left of the line.

Insert
Indicates that characters entered on the keyboard will be inserted at the
cursor position. Existing text to the right of the cursor will move to the
right as you write new text. Using the insert mode on/off command
(Ctrl-V by default) will instead display the text Overwrite. Text entered
on the keyboard will then overwrite characters under the cursor instead
of inserting them.

Indent
Indicates that auto-indent is in effect. It may be switched off by the
auto-indent on/off command (Ctrl-O-I by default).

X:FILENAME.TYP
The drive, name, and type of the file being edited.

Editing Commands

As mentioned before, you use the editor almost as a typewriter, but as
this is a computerized text editor it offers you a number of editing facili-
ties which make text manipulation, and in this case specifically program
writing, much easier than on paper.

The TURBO editor accepts a total of 45 editing commands to move the
cursor around, page through the text, find and replace text strings, etc,
etc. These commands can be grouped into the following four categories:

Cursor movement commands,
Insert and delete commands,
Block commands, and
Miscellaneous commands

Each of these groups contain logically related commands which will be
described separately in following sections. The following table provides
an overview of the commands available:

20 	 TURBO Pascal Reference Manual

The TURBO Editor

CURSOR MOVEMENT COMMANDS:
Character left
Character right
Word left
Word right
Line up
Line down
Scroll up
Scroll down
Page up
Page down

INSERT & DELETE COMMANDS:
Insert mode on/off
Insert line
Delete line
Delete to end of line

BLOCK COMMANDS:
Mark block begin
Mark block end
Mark single word
Copy block
Move block
Delete block
Read block from disk
Write block to disk
Hide/display block

To top of screen
To top of file
To top of file
To end of file
To left on line
To right on line
To beginning of block
To end of block
To last cursor position

Delete right word
Delete character under cursor
Delete left character

MISC. EDITING COMMANDS:
End edit
Tab
Auto tab on/off
Restore line
Find
Find & replace
Repeat last find
Control character prefix

Table 1-1: Editing Command Overview

In a case like this, the best way of learning is by doing; so start TURBO,
specify one of the demo Pascal programs as your Work file, and enter E
to start Editing. Then use the commands as you read on.

Hang on, even if you find it a bit hard in the beginning. It is not just by
chance we have chosen to make the TURBO editor WordStar compati-
ble - the logic of these commands, once learned, quickly become so
much a part of you that the editor virtually turns into an extension of
your mind. Take it from one who has written megabytes worth of text
with that editor.

USING THE TURBO SYSTEM 	 21

The TURBO Editor

Each of the following descriptions consists of a heading defining the
command, followed by the default keystrokes used to activate the com-
mand, with room in between to note which keys to use on your terminal,
if you use other keys. If you have arrow keys and dedicated word pro-
cessing keys (insert, delete, etc.), it might be convenient to use these.
Please refer to pages 13 pp for installation details.

The following descriptions of the commands assume the use of the
default WordStar compatible keystrokes.

A Note on Control Characters

All commands are issued using control characters. A control character is
a special character generated by your keyboard when you hold down
the < CONTROL > (or < CTRL >) key on your keyboard and press
any key from A through Z (well, even the [, \,], ^, and _ keys generate
control characters for that matter).

The < CONTROL > key works like the < SHIFT > key: if you hold
down the < SHIFT > key and press A, you will get a capital A; if you
hold down the < CONTROL > key and press A, you will get a Control-
A (Ctrl-A for short).

Before You Start: How To Get Out

The command which takes you out of the editor is described on page
30, but you may find it useful to know already now that the CtrI-K-D
command exits the editor and returns you to the menu environment.
This command does not automatically save the file; that must be done
with the Save command from the menu.

Basic Movement Commands

The most basic thing to learn about an editor is how to move the cursor
around on the screen. The TURBO editor uses a special group of con-
trol characters to do that, namely the control characters A, S, D, F, E, R,
X, and C.

22 	 TURBO Pascal Reference Manual

The TURBO Editor

Why these? Because they are conveniently located close to the control
key, so that your left little finger can rest on that while you use the mid-
dle and index fingers to activate the commands. Furthermore, the char-
acters are arranged in such a way on the keyboard as to logically indi-
cate their use. Let's examine the basic movements: cursor up, down,
left, and right:

E
S D

X

These four characters are placed so that it is logical to assume that
Ctrl-E moves the cursor up, Ctrl-X down, Ctrl-S to the left, and Ctrl-D to
the right. And that is exactly what they do. Try to move the cursor
around on the screen with these four commands. If your keyboard has
repeating keys, you may just hold down the control key and one of
these four keys, and the cursor will move rapidly across the screen.

Now let us look at some extensions of those movements:

E R
A SDF

X C

The location of the Ctrl-R next to the Ctrl-E suggests that Ctrl-R moves
the cursor up, and so it does, only not one line at a time but a whole
page. Similarly, Ctrl-C moves the cursor down one page at a time.

Likewise with Ctrl-A and Ctrl-F: Ctrl-A moves to the left like Ctrl-S, but
a whole word at a time, and Ctrl-F moves one word to the right.

The two last basic movement commands do not move the cursor but
scrolls the entire screen upwards or downwards in the file:

W E R
A SDF
Z X C

Ctrl-W scrolls upwards in the file (the lines on the screen move down),
and Ctrl-Z scrolls downwards in the file (the lines on the screen move
up).

USING THE TURBO SYSTEM 	 23

The TURBO Editor

Character left 	 Ctrl-S
Moves the cursor one character to the left non-destructively, without
affecting the character there. < BACKSPACE > may be installed to
have the same effect. This command does not work across line breaks;
when the cursor reaches the left edge of the screen, it stops.

Character right 	 Ctrl-D
Moves the cursor one character to the right non-destructively, without
affecting the character there. This command does not work across line
breaks, i.e. when the cursor reaches the right end of the screen, the
text starts scrolling horizontally until the cursor reaches the extreme
right of the line, in column 128, where it stops.

Word left 	 Ctrl-A
Moves the cursor to the beginning of the word to the left. A word is
defined as a sequence of characters delimited by one of the following
characters: Ispacel < > , ; . () [] ' * + — / $. This command works
across line breaks.

Word right 	 Ctrl-F
Moves the cursor to the beginning of the word to the right. See the
definition of a word above. This command works across line breaks.

Line up 	 Ctrl-E
Moves the cursor to the line above. If the cursor is on the top line, the
screen scrolls down one line.

Line down 	 Ctrl-X
Moves the cursor to the line below. If the cursor is on the second-last
line, the screen scrolls up one line.

Scroll up 	 Ctrl-W
Scrolls 'up' towards the beginning of the file, one line at a time (the en-
tire screen scrolls down). The cursor remains on its line until it reaches
the bottom of the screen.

Scroll down 	 Ctrl-Z
Scrolls 'down' towards the end of the file, one line at a time (the entire
screen scrolls up). The cursor remains on its line until it reaches the top
of the screen.

24 	 TURBO Pascal Reference Manual

The TURBO Editor

Page up 	 Ctrl-R
Moves the cursor one page up with an overlap of one line; the cursor
moves one screenful less one line backwards in the text.

Page down 	 Ctrl-C
Moves the cursor one page down with an overlap of one line; the cursor
moves one screenful less one line forwards in the text.

Extended Movement Commands

The commands discussed above will let you move freely around in your
program text, and they are easy to learn and understand. Try to use
them all for a while and see how natural they feel.

Once you master them, you will probably sometimes want to move more
rapidly. The TURBO editor provides six commands to move rapidly to
the extreme ends of lines, to the beginning and end of the text, and to
the last cursor position.

These commands require two characters to be entered: first a Ctrl-Q
and then one of the following control characters: S, D, E, X, R, and C.
They repeat the pattern from before:

E R
S D
X C

Ctrl-Q-S moves the cursor to the extreme left of the line, and Ctrl-Q-D
moves it to the extreme right of the line. Ctrl-Q-E moves the cursor to
the top of the screen, Ctrl-Q-X moves it to the bottom of the screen.
Ctrl-Q-R moves the cursor all the way 'up' to the start of the file, Ctrl-
Q-C moves it all the way 'down' to the end of the file.

To left on line 	 Ctrl-Q-S
Moves the cursor all the way to the left edge of the screen, to column
one.

To right on line 	 Ctrl-Q-D
Moves the cursor to the end of the line to the position following the last
printable character on the line. Trailing blanks are always removed from
all lines to preserve space.

USING THE TURBO SYSTEM 	 25

The TURBO Editor

To top of screen
Moves the cursor to the top of the screen.

To bottom of screen
Moves the cursor to the bottom of the screen.

To top of file
Moves to the first character of the text.

To end of file
Moves to the last character of the text.

Ctrl-Q-E

Ctrl-Q-X

Ctrl-Q-R

Ctrl-Q-C

Finally the Ctrl-Q prefix with a B, K, or P control character allows you to
jump far within the file:

To beginning of block 	 Ctrl-Q-B
Moves the cursor to the the position of the block begin marker set with
Ctrl-K-B (hence the Q-B). The command works even if the block is not
displayed (see hide/display block later), or the block end marker is not
set.

To end of block 	 Ctrl-Q-K
Moves the cursor to the position of the block end marker set with Ctrl-
K-K (hence the Q-K). The command works even if the block is not
displayed (see hide/display block later), or the block begin marker is not
set.

To last cursor position 	 CtrI-Q-P
Moves to the last Position of the cursor. This command is particularly
useful to move back to the last position after a Save operation or after a
find or find/replace operation.

Insert and Delete Commands

These commands let you insert and delete characters, words, and lines.
They can be divided into three groups: one command which controls the
text entry mode (insert or overwrite), a number of simple commands,
and one extended command.

Notice that the TURBO editor provides a 'regret' facility which lets you
'undo' changes as long as you have not left the line. This command
(Ctrl-Q-L) is described on page 31.

26 	 TURBO Pascal Reference Manual

The TURBO Editor

Insert mode on/off 	 Ctrl-V
When you enter text, you may choose between two entry modes: Insert
and Overwrite. Insert mode is the default value when the editor is in-
voked, and it lets you insert new text into an existing text. The existing
text to the right of the cursor simply moves to the right while you enter
the new text.

Overwrite mode may be chosen if you wish to replace old text with new
text. Characters entered then replace existing characters under the cur-
sor.

You switch between these modes with the insert mode on/off command
Ctrl-V, and the current mode is displayed in the status line at the top of
the screen.

Delete left character 	 < DEL >
Moves one character to the left and deletes the character there. Any
characters to the right of the cursor move one position to the left. The
< BACKSPACE > key which normally backspaces non-destructively

like Ctrl-S may be installed to perform this function if it is more con-
veniently located on your keyboard, or if your keyboard lacks a
< DELETE > key (sometimes labeled < DEL > , < RUBOUT > , or
< RUB >). This command works across line breaks, and can be used
to remove line breaks.

Delete character under cursor 	 Ctrl-G
Deletes the character under the cursor and moves any characters to the
right of the cursor one position to the left. This command does not work
across line breaks.

Delete right word 	 Ctrl-T
Deletes the word to the right of the cursor. A word is defined as a se-
quence of characters delimited by one of the following characters:
Ispacel < > , ; . () [] ' * + — / $. This command works across line
breaks, and may be used to remove line breaks.

Insert line 	 Ctrl-N
Inserts a line break at the cursor position. The cursor does not move.

Delete line 	 Ctrl-Y
Deletes the line containing the cursor and moves any lines below one
line up. The cursor moves to the left edge of the screen. No provision
exists to restore a deleted line, so take care!

USING THE TURBO SYSTEM 	 27

The TURBO Editor

Delete to end of line 	 Ctrl-O-Y
Deletes all text from the cursor position to the end of the line.

Block Commands

All block commands are extended commands (two characters each in
the standard command definition), and you may ignore them at first if
you feel a bit dazzled at this point. Later on, when you feel the need to
move, delete, or copy whole chunks of text, you should return to this
section.

For the persevering, we'll go on and discuss the use of blocks.

A block of text is simply any amount of text, from a single character to
several pages of text. A block is marked by placing a Begin block mark-
er at the first character and an End block marker at the last character of
the desired portion of the text. Thus marked, the block may be copied,
moved, deleted, and written to a file. A command is available to read an
external file into the text as a block, and a special command convenient-
ly marks a single word as a block.

Mark block begin 	 Ctrl-K-B
This command marks the beginning of a block. The marker itself is not
visible on the screen, and the block only becomes visibly marked when
the End block marker is set, and then only if the screen is installed to
show some sort of highlighting. But even if the block is not visibly
marked, it is internally marked and may be manipulated.

Mark block end 	 Ctrl-K-K
This command marks the end of a block. As above, the marker itself is
not visible on the screen, and the block only becomes visibly marked
when the Begin block marker is also set.

Mark single word 	 Ctrl-K-T
This command marks a single word as a block, and thus replaces the
Begin block - End block sequence which is a bit clumsy when marking
just one word. If the cursor is placed within a word, then this word will
be marked; if not then the word to the left of the cursor will be marked.
A word is defined as a sequence of characters delimited by one of the
following characters: Ispacel < > , ; . () [' * + — / $.

28 	 TURBO Pascal Reference Manual

The TURBO Editor

Hide/display block 	 CtrI-K-H
This command causes the visual marking of a block (dim text) to be al-
ternately switched off and on. Block manipulation commands (copy,
move, delete, and write to a file) work only when the block is displayed.
Block related cursor movements (jump to beginning/end of block) work
whether the block is hidden or displayed.

Copy block 	 Ctrl-K-C
This command places a copy of a previously marked block starting at
the cursor position. The original block is left unchanged, and the mark-
ers are placed around the new copy of the block. If no block is marked,
the command performs no operation, and no error message is issued.

Move block 	 Ctrl-K-V
This command moves a previously marked block from its original posi-
tion to the cursor position. The block disappears from its original posi-
tion and the markers remain around the block at its new position. If no
block is marked, the command performs no operation, and no error
message is issued.

Delete block 	 Ctrl-K-Y
This command deletes the previously marked block. No provision exists
to restore a deleted block, so be careful!

Read block from disk 	 Ctrl-K-R
This command is used to read a file into the current text at the cursor
position, exactly as if it was a block that was moved or copied. The
block read in is marked as a block. When this command is issued, you
are prompted for the name of the file to read. The file specified may be
any legal filename. If no file type is specified, .PAS is automatically as-
sumed. A file without type is specified as a name followed by a period.

USING THE TURBO SYSTEM 	 29

The TURBO Editor

Write block to disk 	 Ctrl-K-W
This command is used to write a previously marked block to a file. The
block is left unchanged, and the markers remain in place. When this
command is issued, you are prompted for the name of the file to write
to. If the file specified already exists, a warning is issued before the ex-
isting file is overwritten. If no block is marked, the command performs
no operation, and no error message is issued.The file specified may be
any legal filename. If no file type is specified, .PAS is automatically as-
sumed. A file without type is specified as a name followed by a period.
Avoid the use of file types .BAK, .CHN, and .COM/.CMD, as they are
used for special purposes by the TURBO system.

Miscellaneous Editing Commands

This section collects a number of commands which do not logically fall
into any of the above categories. They are nonetheless important, espe-
cially this first one:

End edit 	 Ctrl-K-D
This command ends the edit and returns to the main menu. The editing
has been performed entirely in memory, and any associated disk file is
not affected. Saving the edited file on disk is done explicitly with the
Save command from the main menu or automatically in connection with
a compilation or definition of a new Work file.

Tab 	 TAB/Ctrl-1
There are no fixed tab positions in the TURBO editor. Instead, tab posi-
tions are automatically set to the beginning of each word on the line im-
mediately above the cursor. This provides a very convenient automatic
tabbing feature especially useful in program editing where you often
want to line up columns of related items, like variable declarations and
such. Remember that Pascal allows you to write extremely beautiful
source texts - do it, not for the sake of the purists, but more importantly
to keep the program easy to understand, especially when you return to
make changes after some time.

30 	 TURBO Pascal Reference Manual

The TURBO Editor

Auto indent on/off 	 Ctrl-Q-1
The auto indent feature provides automatic indenting of successive
lines. When active, the indent of the current line is repeated on each fol-
lowing line, that is, when you hit < RETURN > , the cursor does not re-
turn to column one but to the starting column of the line you just ter-
minated. When you want to change the indent, use any of the cursor
right or left commands to select the new column. When auto indent is
active, the message Indent is displayed in the status line, and when
passive the message is removed. Auto indent is active by default.

Restore line 	 Ctrl-Q-L
This command lets you regret changes made to a line as long as you
have not left the line. The line is simply restored to its original contents
regardless of what changes you have made. But only as long as you
remain on the line; the moment you leave it, changes are there to stay.
For this reason, the Delete line (Ctrl-Y) command can regrettably only be
regretted, not restored. Some days you may find yourself continuously
falling asleep on the Ctrl-Y key, with vast consequences. A good long
break usually helps.

Find
	

Ctrl-Q-F
The Find command lets you search for any string of up to 30 characters.
When you enter this command, the status line is cleared, and you are
prompted for a search string. Enter the string you are looking for and
terminate with < RETURN > . The search string may contain any char-
acters, also control characters. Control characters pre entered into the
search string with the Ctrl-P prefix. Example: enter a Ctrl-A by holding
down the Control key while pressing first P, then A. You may thus in-
clude a line break in a search string by specifying Ctrl-M Ctrl-J. Notice
that Ctrl-A has a special meaning: it matches any character and may be
used as a wildcard in search strings.

Search strings may be edited with the Character Left, Character Right,
Word Left, and Word Right commands. Word Right recalls the previous
search string which may then be edited. The search operation may be
aborted with the Abort command (Ctrl-U).

When the search string is specified, you are asked for search options.
The following options are available:

USING THE TURBO SYSTEM 	 31

The TURBO Editor

B Search backwards. Search from the current cursor position towards the
beginning of the text.

G Global search. Search the entire text, irrespective of the current cursor
position.

n n = any number. Find the n'th occurrence of the search string, counted
from the current cursor position.

U Ignore upper/lower case. Regard upper and lower case aiphabeticals as
equal.

W 	Search for whole words only. Skip matching patterns which are embed-
ded in other words.

Examples:
W search for whole words only. The search string 'term' will only match

the word 'term', not for example the word 'terminal'.
BU 	search backwards and ignore upper/lower case. 'Block' will match both

'blockhead' and 'BLOCKADE', etc.
125 	Find the 125th occurrence of the search string.

Terminate the list of options (if any) with < RETURN > , and the search
starts. If the text contains a target matching the search string, the cur-
sor is positioned at the end of the target. The search operation may be
repeated by the Repeat last find command (Ctrl-L).

Find and replace 	 Ctrl-Q-A
The Find and Replace command lets you search for any string of up to
30 characters and replace it with any other string of up to 30 characters.
When you enter this command, the status line is cleared, and you are
prompted for a search string. Enter the string you are looking for and
terminate with < RETURN > . The search string may contain any char-
acters, also control characters. Control characters are entered into the
search string with the Ctrl-P prefix. Example: enter a Ctrl-A by holding
down the Control key while pressing first P, then A. You may thus in-
clude a line break in a search string by specifying Ctrl-M Ctrl-J. Notice
that Ctrl-A has a special meaning: it matches any character and may be
used as a wildcard in search strings.

Search strings may be edited with the Character Left, Character Right,
Word Left, and Word Right commands. Word Right recalls the previous
search string which may then be edited. The search operation may be
aborted with the Abort command (Ctrl-U).

32 	 TURBO Pascal Reference Manual

The TURBO Editor

When the search string is specified, you are asked to enter the string to
replace the search string. Enter up to 30 characters; control character
entry and editing is performed as above, but Ctrl-A has no special
meaning in the replace string. If you just press < RETURN > , the tar-
get will be replaced with nothing, in effect deleted.

Finally you are prompted for options. The search and replace options
are:

B Search and replace backwards. Search and replace from the current
cursor position towards the beginning of the text.

G Global search and replace. Search and replace in the entire text, ir-
respective of the current cursor position.

n n = any number. Find and replace n occurrences of the search string,
counted from the current cursor position.

N Replace without asking. Do not stop and ask Replace (Y/N) for each oc-
currences of the search string.

U Ignore upper/lower case. Regard upper and lower case alphabeticals as
equal.

W Search and replace whole words only. Skip matching patterns which are
embedded in other words.

Examples:
N10 Find the next ten occurrences of the search string and replace without

asking.
GW Find and replace whole words in the entire text. Ignore upper/lower

case.

Terminate the list of options (if any) with < RETURN > , and the search
and replace starts. Depending on the options specified, the string may
be found. When found (and if the N option is not specified), the cursor is
positioned at the end of the target, and you are asked the
question: Replace (Y/N) ? on the prompt line at the top of the
screen. You may abort the search and replace operation at this point
with the Abort command (Ctrl-U). The search and replace operation may
be repeated by the Repeat last find command (Ctrl-L).

Repeat last find 	 Ctrl-L
This command repeats the latest Find or Find and replace operation ex-
actly as if all information had been re-entered.

USING THE TURBO SYSTEM 	 33

The TURBO Editor

Control character prefix 	 Ctrl-P
The TURBO editor allows you to enter control characters into the file by
prefixing the desired control character with a Ctrl-P, that is, first press
Ctrl-P, then press the desired control character. Control characters will
appear as low-lighted capital letters on the screen (or inverse, depending
on your terminal).

Abort operation 	 Ctrl-U
The Ctrl-U command lets you abort any command in process whenever
it pauses for input, like when Search and Replace asks Replace Y/N?,
or during entry of a search string or a file name (block Read and Write).

The TURBO editor vs. WordStar

Someone used to WordStar will notice that a few TURBO commands
work slightly different, and although TURBO contains only a subset of
WordStar's commands, a number of special features not found in
WordStar have been added to enhance the editing of program source
code. These differences are discussed in the following.

Cursor Movement

The cursor movement controls Ctrl-S, D, E, and X move freely around
on the screen and do not jump to column one on empty lines. This does
not mean that the screen is full of blanks; on the contrary, all trailing
blanks are automatically deleted. This way of moving the cursor is espe-
cially useful for example when matching indented begin - end pairs.

Ctrl-S and Ctrl-D do not work across line breaks. To move from one line
to another you must use Ctrl-E, Ctrl-X, Ctrl-A, or Ctrl-F.

Mark Single Word

Ctrl-K-T is used to mark a single word as a block which is more con-
venient than the two-step process of marking the beginning and the end
of the word separately.

34 	 TURBO Pascal Reference Manual

The TURBO editor vs. WordStar

End Edit

The Ctrl-K-D command ends editing and returns you to the menu. As
editing in TURBO is done entirely in memory, this command does not
change the file on disk (as it does in WordStar). Updating the disk file
must be done explicitly with the Save command from the main menu or
automatically in connection with a compilation or definition of a new
Work file. TURBO's CtrI-K-D does not resemble WordStar's Ctrl-K-Q
(quit edit) command either, as the changed text is not abandoned; it is
left in memory ready to be Compiled or Saved.

Line Restore

The Ctrl-Q-L command restores a line to its contents before edit as long
as the cursor has not left the line.

Tabulator

No fixed tab settings are provided. Instead, the automatic tab feature
sets tabs to the start of each word on the line immediately above the
Cursor.

Auto Indentation

The CtrI-0-1 command switches the auto indent feature on and off.

USING THE TURBO SYSTEM 	 35

The TURBO editor vs. WordStar

Notes:

36 	 TURBO Pascal Reference Manual

Chapter 2
BASIC LANGUAGE ELEMENTS

Basic Symbols

The basic vocabulary of TURBO Pascal consists of basic symbols divid-
ed into letters, digits, and special symbols:

Letters
A to Z, a to z, and _ (underscore)

Digits
0 1 2 3 4 5 6 7 8 9

Special symbols
* 	= A < > 	[{ } . 	: ; ' # $

No distinction is made between upper and lower case letters. Certain
operators and delimiters are formed using two special symbols:

Assignment operator: : -
Relational operators: <> 	>=
Subrange delimiter:. .
Brackets: (. and .) may be used instead of [and]
Comments: (* and *) may be used instead of { and)

Reserved Words

Reserved words are integral parts of TURBO Pascal. They cannot be
redefined and must therefore not be used as user defined identifiers.

* absolute 	* external 	nil 	 * shl
and 	 file 	 not 	 * shr
array 	 forward 	* overlay 	* string
begin 	 for 	 of 	 then
case 	 function 	or 	 type
const 	goto 	packed 	to
div 	* inline 	procedure 	until
do 	 if 	 program 	var
downto 	in 	 record 	while
else 	label 	repeat 	with
end 	 mod 	 set 	* xor

BASIC LANGUAGE ELEMENTS 	 37

Reserved Words

Throughout this manual, reserved words are written in boldface. The
asterisks indicate reserved words not defined in standard Pascal.

Standard Identifiers

TURBO Pascal defines a number standard identifiers of predefined
types, constants, variables, procedures, and functions. Any of these
identifiers may be redefined but it will mean the loss of the facility
offered by that particular identifier and may lead to confusion. The fol-
lowing standard identifiers are therefore best left to their special pur-
poses:

Addr
ArcTan
Assign
Aux
AuxlnPtr
AuxOutPtr
BlockRead
BlockWrite
Boolean
BufLen
Byte
Chain
Char
Chr
Close
C1rEOL
ClrScr
Con
ConlnPtr
ConOutPtr
Concat
ConstPtr
Copy
Cos
CrtExit
Crtlnit
DelLine

Delay
Delete
EOF
EOLN
Erase
Execute
Exit
Exp
False
FilePos
FileSize
FillChar
Flush
Frac
GetMem
GotoXY
Halt
HeapPtr
Hi
IOresult
Input
InsLine
Insert
Int
Integer
Kbd
KeyPressed

Length 	Release
Ln 	 Rename
Lo 	 Reset
LowVideo 	Rewrite
Lst 	 Round
LstOutPtr 	Seek
Mark 	Sin
Maxlnt 	SizeOf
Mem 	 SeekEof
MemAvail 	SeekEoln
Move 	Sqr
New 	 Sqrt
NormVideo 	Str
Odd 	 Succ
Ord 	 Swap
Output 	Text
Pi 	 Trm
Port 	True
Pos 	 Trunc
Pred 	UpCase
Ptr 	 Usr
Random 	UsrinPtr
Randomize 	UsrOutPtr
Read 	Val
ReadLn 	Write
Real 	WriteLn

Each TURBO Pascal implementation further contains a number of dedi-
cated standard identifiers which are listed in chapters 20, 21, and 22.

38 	 TURBO Pascal Reference Manual

Standard Identifiers

Throughout this manual, all identifiers, including standard identifiers, are
written in a combination of upper and lower case letters (see page 43).
In the text (as opposed to program examples), they are furthermore
printed in italics.

Delimiters

Language elements must be separated by at least one of the following
delimiters: a blank, an end of line, or a comment.

Program Lines

The maximum length of a program line is 127 characters; any character
beyond the 127th is ignored by the compiler. For this reason the TURBO
editor allows only 127 characters on a line, but source code prepared
with other editors may use longer lines. If such a text is read into the
TURBO editor, line breaks will be automatically inserted, and a warning
is issued.

BASIC LANGUAGE ELEMENTS 	 39

Program Lines

Notes:

40 	 TURBO Pascal Reference Manual

Chapter 3
STANDARD SCALAR TYPES

A data type defines the set of values a variable may assume. Every vari-
able in a program must be associated with one and only one data type.
Although data types in TURBO Pascal can be quite sophisticated, they
are all built from simple (unstructured) types.

A simple type may either be defined by the programmer (it is then called
a declared scalar type), or be one of the standard scalar types: integer,
real, boolean, char, or byte. The following is a description of these five
standard scalar types.

Integer

Integers are whole numbers; in TURBO Pascal they are limited to a
range of — 32768 through 32767. Integers occupy two bytes in
memory.

Overflow of integer arithmetic operations is not detected. Notice in par-
ticular that partial results in integer expressions must be kept within the
integer range. For instance, the expression 1000 * 100 / 50 will not yield
2000, as the multiplication causes an overflow.

Byte

The type Byte is a subrange of the type Integer, of the range 0..255.
Bytes are therefore compatible with integers. Whenever a Byte value is
expected, an Integer value may be specified instead and vice versa, ex-
cept when passed as parameters. Furthermore, Bytes and Integers may
be mixed in expressions and Byte variables may be assigned integer
values. A variable of type Byte occupies one byte in memory.

STANDARD SCALAR TYPES 	 41

Real

Real

The range of real numbers is 1 E — 38 through 1 E + 38 with a mantissa
of up to 11 significant digits. Reals occupy 6 bytes in memory.

Overflow during an arithmetic operation involving reals causes the pro-
gram to halt, displaying an execution error. An underfiow will cause -a
result of zero.

Although the type real is included here as a standard scalar type, the
following differences between reals and other scalar types should be
noticed:

1) The functions Pred and Succ cannot take real arguments.
2) Reals cannot be used in array indexing.
3) Reals cannot be used to define the base type of a set.
4) Reals cannot be used in controlling for and case statements.
5) Subranges of reals are not allowed.

Boolean

A boolean value can assume either of the logical truth values denoted
by the standard identifiers True and False. These are defined such that
False < True. A Boolean variable occupies one byte in memory.

Char

A Char value is one character in the ASCII character set. Characters are
ordered according to their ASCII value, for example: 'A' < 'B'. The or-
dinal (ASCII) values of characters range from 0 to 255. A Char variable
occupies one byte in memory.

42 	 TURBO Pascal Reference Manual

Chapter 4
USER DEFINED LANGUAGE
ELEMENTS

Identifiers

Identifiers are used to denote labels, constants, types, variables, pro-
cedures, and functions. An identifier consists of a letter or underscore
followed by any combination of letters, digits, or underscores. An
identifier is limited in length only by the line length of 127 characters,
and all characters are significant.

Examples:
TURBO
square
persons_counted
BirthDate
3rdRoot
Two Words

illegal, starts with a digit
illegal, must not contain a space

As TURBO Pascal does not distinguish between upper and lower case
letters, the use of mixed upper and lower case as in BirthDate has no
functional meaning. It is nevertheless encouraged as it leads to more le-
gible identifiers. VeryLongidentifier is easier to read for the human
reader than VERYLONGIDENTIFIER. This mixed mode will be used for
all identifiers throughout this manual.

Numbers

Numbers are constants of integer type or of real type. Integer constants
are whole numbers expressed in either decimal or hexadecimal notation.
Hexadecimal constants are identified by being preceded by a dollar-
sign: $ABC is a hexadecimal constant. The decimal integer range is
— 32768 through 32767 and the hexadecimal integer range is $0000

through $FFFF.

USER DEFINED LANGUAGE ELEMENTS 	 43

Numbers

Examples:
1
12345
-1
$123
$ABC
$123G 	illegal, G is not a legal hexadecimal digit
1.2345 	illegal as an integer, contains a decimal parts

The range of Real numbers is 1E-38 through 1 E + 38 with a mantissa of
up to 11 significant digits. Exponential notation may be used, with the
letter E preceding the scale factor meaning "times ten to the power of".
An integer constant is allowed anywhere a real constant is allowed.
Separators are not allowed within numbers.

Examples:
1.0
1234.5678
-0.012
1E6
2E-5
-1.2345678901E+12
1 legal, but it is not a real, it is an integer

Strings

A string constant is a sequence of characters enclosed in single quotes:

'This is a string constant '

A single quote may be contained in a string by writing two successive
single quotes. Strings containing only a single character are of the stan-
dard type char. A string is compatible with an array of Char of the same
length. All string constants are compatible with all string types.

Examples:
'TURBO'
'You"11 see'

44 	 TURBO Pascal Reference Manual

Strings

As shown in example 2 and 3, a single quote within a string is written as
two consecutive quotes. The four consecutive single quotes in example
3 thus constitute a string containing one quote.

The last example - the quotes enclosing no characters, denoting the
empty string - is compatible only with string types.

Control Characters

TURBO Pascal also allows control characters to be embedded in
strings. Two notations for control characters are supported:
1) The # symbol followed by an integer constant in the range 0..255
denotes a character of the corresponding ASCII value, and
2) the A symbol followed by a character, denotes the corresponding
control character.

Examples:
#10 	ASCII 10 decimal (Line Feed).
#$1B 	ASCII 1B hex (Escape).

G 	Control-G (Bell).
A l 	Control-L (Form Feed).
A[Control-[(Escape).

Sequences of control characters may be concatenated into strings by
writing them without separators between the individual characters:

#13#10
#27AU#20
AGAGAGAG

The above strings contain two, three, and four characters, respectively.
Control characters may also be mixed with text strings:

'Waiting for input! 'AGAGAW Please wake up'
#27'U '
'This is another line of text 'AMAJ

These three strings contain 37, 3, and 31 characters, respectively.

USER DEFINED LANGUAGE ELEMENTS 	 45

Comments

Comments

A comment may be inserted anywhere in the program where a delimiter
is legal. It is delimited by the curly braces { and } , which may be re-
placed by the symbols (* and *) .

Examples:
{This is a comment}
(* and so is this *)

Curly braces may not be nested within curly braces, and (* . .*) may
not be nested within (* . .*) . However, curly braces may nested within
(* . .*) and vise versa, thus allowing entire sections of source code to
be commented away, even if they contain comments.

Compiler Directives

A number of features of the TURBO Pascal compiler are controlled
through compiler directives. A compiler directive is introduced as a com-
ment with a special syntax which means that whenever a comment is al-
lowed in a program, a compiler directive is also allowed.

A compiler directive consists of an opening brace immediately followed
by a dollar-sign immediately followed by one compiler directive letter or a
list of compiler directive letters separated by commas. The syntax of the
directive or directive list depends upon the directive(s) selected. A full
description of each of the compiler directives follow in the relevant sec-
tions; and a summary of compiler directives is located in Appendix C.
File inclusion is discussed in chapter 17.

Examples:
{$I-}
{$I INCLUDE . FIL}
{$R- , B+ , V-}
(*$X-*)

Notice that no spaces are allowed before or after the dollar-sign.

46 	 TURBO Pascal Reference Manual

Chapter 5
PROGRAM HEADING AND
PROGRAM BLOCK

A Pascal program consists of a program heading followed by a program
block. The program block is further divided into a declaration part, in
which all objects local to the program are defined, and a statement part,
which specifies the actions to be executed upon these objects. Each is
described in detail in the following.

Program Heading

In TURBO Pascal, the program heading is purely optional and of no
significance to the program. If present, it gives the program a name, and
optionally lists the parameters through which the program communi-
cates with the environment. The list consists of a sequence of identifiers
enclosed in parentheses and separated by commas.

Examples:
program Circles;
program Accountant (Input , Output) ;
program Writer(Input, Printer) ;

Declaration Part

The declaration part of a block declares all identifiers to be used within
the statement part of that block (and possibly other blocks within it). The
declaration part is divided into five different sections:

1) Label declaration part
2) Constant definition part
3) Type definition part
4) Variable declaration part
5) Procedure and function declaration part

Whereas standard Pascal specifies that each section may only occur
zero or one time, and only in the above order, TURBO Pascal allows
each of these sections to occur any number of times in any order in the
declaration part.

PROGRAM HEADING AND PROGRAM BLOCK 	 47

Declaration Part

Label Declaration Part

Any statement in a program may be prefixed with a label, enabling
direct branching to that statement by a goto statement. A label consists
of a label name followed by a colon. Before use, the label must be de-
clared in a label declaration part. The reserved word label heads this
part, and it is followed by a list of label identifiers separated by commas
and terminated by a semi-colon.

Example:
label 10, error, 999, Quit;

Whereas standard Pascal limits labels to numbers of no more than 4 di-
gits, TURBO Pascal allows both numbers and identifiers to be used as
labels.

Constant Definition Part

The constant definition part introduces identifiers as synonyms for con-
stant values. The reserved word const heads the constant definition'
part, and is followed by a list of constant assignments separated by
semi-colons. Each constant assignment consists of an identifier followed
by an equal sign and a constant. Constants are either strings or
numbers as defined on pages 43 and 44.

Example:
const
Limit = 255;
Max = 1024;
PassWord = 'SESAM';
CursHome = ^['V' ;

The following constants are predefined in TURBO Pascal which may be
referenced without previous definition:

Name: 	Type and value:
Pi 	Real (3.1415926536E+00).
False 	Boolean (the truth value false).
True 	Boolean (the truth value true).
Maxint 	Integer (32767).

As described in chapter 13, a constant definition part may also define
typed constants.

48 	 TURBO Pascal Reference Manual

Declaration Part

Type Definition Part

A data type in Pascal may be either directly described in the variable de-
claration part or referenced by a type identifier. Several standard type
identifiers are provided, and the programmer may create his own types
through the use of the type definition. The reserved word type heads
the type definition part, and it is followed by one or more type assign-
ments separated by semi-colons. Each type assignment consists of a
type identifier followed by an equal sign and a type.

Example:
type

Number = Integer;
Day = (mon, tues , wed, thur, fri, sat , sun) ;
List = array[1..10] of Real;

More examples of type definitions are found in subsequent sections.

Variable Declaration Part

Every variable occurring in a program must be declared before use. The
declaration must textually precede any use of the variable so that the
variable is 'known' to the compiler when it is used.

A variable declaration consists' of the reserved word var followed by one
or more identifier(s), separated by commas, each followed by a colon
and a type. This creates a new variable of the specified type and associ-
ates it with the specified identifier.

The 'scope' of this identifier is the block in which it is defined, and any
block within that block. Note, however, that any such block within
another block may define another variable using the same identifier.
This variable is said to be local to the block in which it is declared (and
any blocks within that block), and the variable declared on the outer lev-
el (the global variable) becomes inaccessible.

Example:
var

Result, Intermediate, SubTotal : Real;
I, J, X, Y: Integer;
Accepted, Valid: Boolean;
Period: Day;
Buffer: array[0..127] of Byte;

PROGRAM HEADING AND PROGRAM BLOCK 	 49

Declaration Part

Procedure and Function Declaration Part

A procedure declaration serves to define a procedure within the current
procedure or program (see page 131). A procedure is activated from a
procedure statement (see page 56), and upon completion, program exe-
cution continues with the statement immediately following the calling
statement.

A function declaration serves to define a program part which computes
and returns a value (see page 137). A function is activated when its
designator is met as part of an expression (see page 54).

Statement Part

The statement part is the last part of a block. It specifies the actions to
be executed by the program. The statement part takes the form of a
compound statement followed by a period or a semi-colon. A compound
statement consists of the reserved word begin, followed by a list of
statements separated by semicolons, terminated by the reserved word
end.

50 	 TURBO Pascal Reference Manual

Chapter 6
EXPRESSIONS

Expressions are algorithmic constructs specifying rules for the computa-
tion of values. They consist of operands: variables, constants, and func-
tion designators combined by means of operators as defined in the fol-
lowing.

This section describes how to form expressions from the standard
scalar types Integer, Real, Boolean, and Char. Expressions containing
declared scalar types, string types, and set types are described on
pages 63, 67, and 86, respectively.

Operators

Operators fall into five categories, denoted by their order of precedence:

1) Unary minus (minus with one operand only).
2) Not operator.
3) Multiplying operators: *, /, div, mod, and, shl, and shr.
4) Adding operators: + , — , or, and xor.
5) Relational operators: = , < > , < , > , < = , > = , and in.

Sequences of operators of the same precedence are evaluated from left
to right. Expressions within parentheses are evaluated first and indepen-
dently of preceding or succeeding operators.

If both of the operands of the multiplying and adding operators are of
type Integer, then the result is of type Integer. If one (or both) of the
operands is of type Real, then the result is also of type Real.

Unary Minus

The unary minus denotes a negation of its operand which may be of
Real or Integer types.

EXPRESSIONS 	 51

Operators

Not Operator

The not operator negates (inverses) the logical value of its Boolean
operand:

not True 	= False
not False 	= True

TURBO Pascal also allows the not operator to be applied to an Integer
operand, in which case bitwise negation takes place.

Examples:
not 0 = -1
not -15 = 14
not $2345 = $DCBA

Multiplying Operators

Operator Operation Operand type Result type

* multiplication Real Real
* multiplication Integer Integer
* multiplication Real, Integer Real
/ division Real, Integer Real
/ division Integer Real
/ division Real Real
div Integer division Integer Integer
mod modulus Integer Integer
and arithmetic and Integer Integer
and logical and Boolean Boolean
shl shift left Integer Integer
shr shift right Integer Integer

Examples:
12 * 34 = 408
123 / 4 = 30.75
123 div 4 = 30
12 mod 5 = 2
True and False = False
12 and 22 = 4
2 shl 7 = 256
256 shr 7 = 2

52 	 TURBO Pascal Reference Manual

Adding Operators

Operators

Operator Operation Operand type Result type

+ addition Real Real
+ addition Integer Integer
+ addition Real, Integer Real
— subtraction Real Real
— subtraction Integer Integer
— subtraction Real, Integer Real

or arithmetic or Integer Integer
Or logical or Boolean Boolean
xor arithmetic xor Integer Integer
xor logical xor Boolean Boolean

Examples:
123+456 	 = 579
456-123.0 	= 333.0
True or False =True
12 or 22 	=30
True xor False =True
12 xor 22 	= 26

Relational Operators

The relational operators work on all standard scalar types: Real, Integer,
Boolean, Char, and Byte. Operands of type Integer, Real, and Byte may
be mixed. The type of the result is always Boolean, i.e. True or False.

▪ equal to
<> 	not equal to
• greater than
• less than
>= 	greater than or equal to
<= 	less than or equal to

Expressions 	 53

Operators

Examples:
a = b 	true if a is equal to b.
a <> b 	true if a is not equal to b.
a > b 	true if a is greater than b.
a < b 	true if a is less than b.
a >= b 	true if a is greater than or equal to b.
a <= b 	true if a is less than or equal to b.

Function Designators

A function designator is a function identifier optionally followed by a
parameter list, which is one or more variables or expressions separated
by commas and enclosed in parentheses. The occurrence of a function
designator causes the function with that name to be activated. If the
function is not one of the pre-defined standard functions, it must be de-
clared before activation.

Examples:
Round(PlotPos)
Writeln(Pi * (Sqr(R)))
(Max(X,Y) < 25) and (Z > Sqrt(X * Y))
Volume(Radius,Height)

54 	 TURBO Pascal Reference Manual

Chapter 7
STATEMENTS

The statement part defines the action to be carried out by the program
(or subprogram) as a sequence of statements; each specifying one part
of the action. In this sense Pascal is a sequential programming
language: statements are executed sequentially in time; never simul-
taneously. The statement part is enclosed by the reserved words begin
and end and within it, statements are separated by semi-colons. State-
ments may be either simple or structured.

Simple Statements

Simple statements are statements which contain no other statements.
These are the assignment statement, procedure statement, goto state-
ment, and empty statement.

Assignment Statement

The most fundamental of all statements is the assignment statement. It
is used to specify that a certain value is to be assigned to a certain vari-
able. An assignment consists of a variable identifier followed by the as-
signment operator : = followed by an expression.

Assignment is possible to variables of any type (except files) as long as
the variable (or the function) and the expression are of the same type.
As an exception, if the variable is of type Real, the type of the expres-
sion may be Integer.

Examples:
Angle := Angle * Pi;
AccessOK := False;
Entry := Answer = PassWord;
SpherVol := 4 * Pi * R * R;

STATEMENTS 	 55

Simple Statements

Procedure Statement

A procedure statement serves to activate a previously defined user-
defined procedure or a pre-defined standard procedure. The statement
consists of a procedure identifier, optionally followed by a parameter list,
which is a list of variables or expressions separated by commas and en-
closed in parentheses. When the procedure statement is encountered
during program execution, control is transferred to the named pro-
cedure, and the value (or the address) of possible parameters are
transferred to the procedure. When the procedure finishes, program ex-
ecution continues from the statement following the procedure state-
ment.

Examples:
Find(Name, Address) ;
Sort (Address) ;
UpperCase(Text) ;
UpdateCustFile (CustRecord) ;

Goto Statement

A goto statement consists of the reserved word goto followed by a label
identifier. It serves to transfer further processing to that point in the pro-
gram text which is marked by the label. The following rules should be
observed when using goto statements:

1) Before use, labels must be declared. The declaration takes place in a la-
bel declaration in the declaration part of the block in which the label is
used.

2) The scope of a label is the block in which it is declared. It is thus not
possible to jump into or out of procedures and functions.

Empty Statement

An 'empty' statement is a statement which consists of no symbols, and
which has no effect. It may occur whenever the syntax of Pascal re-
quires a statement but no action is to take place.

Examples:
begin end.
while Answer <> " do;
repeat until KeyPressed; {wait for any key to be hit)

56 	 TURBO Pascal Reference Manual

Structured Statements

Structured Statements

Structured statements are constructs composed of other statements
which are to be executed in sequence (compound statements), condi-
tionally (conditional statements), or repeatedly (repetitive statements).
The discussion of the with statement is deferred to pages 81 pp.

Compound Statement

A compound statement is used if more than one statement is to be exe-
cuted in a situation where the Pascal syntax allows only one statement
to be specified. It consists of any number of statements separated by
semi-colons and enclosed within the reserved words begin and end,
and specifies that the component statements are to be executed in the
sequence in which they are written.

Example:
if Small > Big then
begin

Tmp := Small;
Small := Big;
Big := Tmp;

end;

Conditional Statements

A conditional statement selects for execution a single one of its com-
ponent statements.

If Statement

The if statement specifies that a statement be executed only if a certain
condition (Boolean expression) is true. If it is false, then either no state-
ment or the statement following the reserved word else is to be execut-
ed. Notice that else must not be preceded by a semicolon.

STATEMENTS 	 57

Structured Statements

The syntactic ambiguity arising from the construct:

if exprl then
if expr2 then

stmtl
else

stmt2

is resolved by interpreting the construct as follows:

if exprl then
begin

if expr2 then
stmtl

else
stmt2

end

The else-clause part belongs generally to the last if statement which
has no else part.

Examples:
if Interest > 25 then

Usury := True
else
TakeLoan := OK;

if (Entry < 0) or (Entry > 100) then
begin

Write('Range is 1 to 100, please re-enter: ');
Read(Entry);

end;

Case Statement

The case statement consists of an expression (the selector) and a list of
statements, each preceded by a case label of the same type as the
selector. It specifies that the one statement be executed whose case la-
bel is equal to the current value of the selector. If none of the case la-
bels contain the value of the selector, then either no statement is exe-
cuted, or, optionally, the statements following the reserved word else
are executed. The else clause is an expansion of standard Pascal.

58 	 TURBO Pascal Reference Manual

Structured Statements

A case label consists of any number of constants or subranges separat-
ed by commas followed by a colon. A subrange is written as two con-
stants separated by the subrange delimiter ' . . '. The type of the con-
stants must be the same as the type of the selector. The statement fol-
lowing the case label is executed if the value of the selector equals one
of the constants or if it lies within one of the subranges.

Valid selector types are all simple types, i.e. all scalar types except real.

Examples:
case Operator of

‘+': Result := Answer + Result;
'-': Result := Answer - Result;
'*': Result := Answer * Result;
'/': Result := Answer / Result;

end;

case Year of
Min..1939: begin

Time := PreWorldWar2;
Writeln('The world at peace...');

end;
1946..Max: begin

Time := PostWorldWar2
Writeln('Building a new world.');

end;
else begin

Time := WorldWar2;
Writeln('We are at war');

end;
end;

Repetitive Statements

Repetitive statements specify that certain statements are to be execut-
ed repeatedly. If the number of repetitions is known before the repeti-
tions are started, the for statement is the appropriate construct to ex-
press this situation. Otherwise the while or the repeat statement should
be used.

STATEMENTS 	 59

Structured Statements

For Statement

The for statement indicates that the component statement is to be re-
peatedly executed while a progression of values is assigned to a vari-
able which is called the control variable. The progression can be ascend-
ing: to or descending: downto the final value.

The control variable, the initial value, and the final value must all be of
the same type. Valid types are all simple types, i.e. all scalar types ex-
cept real.

If the initial value is greater than the final value when using the to
clause, or if the initial value is less than the final value when using the
downto clause, the component statement is not executed at all.

Examples:
for I := 2 to 100 do if A[I] > Max then Max := A[I];

for I := 1 to NoOfLines do
begin

Readln(Line);
if Length(Line) < Limit then
ShortLines := ShortLines + 1

else
LongLines := LongLines + 1

end;

Notice that the component statement of a for statement must not con-
tain assignments to the control variable. If the repetition is to be ter-
minated before the final value is reached, a goto statement must be
used, although such constructs are not recommended - it is better pro-
gramming practice use a while or a repeat statement instead.

Upon completion of a for statement, the control variable equals the final
value, unless the loop was not executed at all, in which case no assign-
ment is made to the control variable.

60 	 TURBO Pascal Reference Manual

Structured Statements

While statement

The expression controlling the repetition must be of type Boolean. The
statement is repeatedly executed as long as expression is True. If its
value is false at the beginning, the statement is not executed at all.

Examples:
while Size > 1 do Size := Sqrt (Size) ;

while ThisMonth do
begin

ThisMonth := CurMonth = SampleMonth;
Process;
{process this sample by the Process procedure}

end;

Repeat Statement

The expression controlling the repetition must be of type Boolean. The
sequence of statements between the reserved words repeat and until is
executed repeatedly until the expression becomes true. As opposed to
the while statement, the repeat statement is always executed at least
once, as evaluation of the condition takes place at the end of the loop.

Example:
repeat

Write (AM, 'Delete this item? (YIN) ') ;
Read(Answer) ;

until UpCase (Answer) in ['Y', 'N'];

STATEMENTS 	 61

Structured Statements

Notes:

62 	 TURBO Pascal Reference Manual

SCALAR AND SUBRANGE TYPES

Chapter 8
SCALAR AND SUBRANGE TYPES

The basic data types of Pascal are the scalar types. Scalar types consti-
tute a finite and linear ordered set of values. Although the standard type
Real is included as a scalar type, it does not conform to this definition.
Therefore, Reals may not always be used in the same context as other
scalar types.

Scalar Type

Apart from the standard scalar types (Integer, Real, Boolean, Char, and
Byte), Pascal supports user defined scalar types, also called declared
scalar types. The definition of a scalar type specifies, in order, all of its
possible values. The values of the new type will be represented by
identifiers, which will be the constants of the new type.

Examples:
type
Operator 	(Plus,Minus,Multi,Divide);
Day 	= (Mon,Tues,Wed,Thur,Fri,Sat,Sun);
Month 	= (Jan,Feb,Mar,Apr,May,Jun,Jul,Aug,Sep,Oct,Nov,Dec);
Card 	- (Club,Diamond,Heart,Spade);

Variables of the above type Card can assume one of four values, name-
ly Club, Diamond, Heart, or Spade. You are already acquainted with the
standard scalar type Boolean which is defined as:

type
Boolean = (False,True);

The relational operators = , < > , > , < , > = , and < = can be ap-
plied to all scalar types, as long as both operands are of the same type
(reals and integers may be mixed). The ordering of the scalar type is
used as the basis of the comparison, i.e. the order in which the values
are introduced in the type definition. For the above type card, the follow-
ing is true:

Club < Diamond < Heart < Spade

SCALAR AND SUBRANGE TYPES 	 63

Scalar Type

The following standard functions can be used with arguments of scalar
type:

Succ(Diamond)
	

The successor of Diamond (Heart).
Pred(Diamond)
	

The predecessor of Diamond (Club).
Ord(Diamond)
	

The ordinal value of Diamond (1 [as the ordinal
value of the first value of a scalar type is 0]).

The result type of Succ and Pred is the same as the argument type. The
result type of Ord is Integer.

Subrange Type

A type may be defined as a subrange of another already defined scalar
type. Such types are called subranges. The definition of a subrange sim-
ply specifies the least and the largest value in the subrange. The first
constant specifies the lower bound and must not be greater than the
second constant, the upper bound. A subrange of type Real is not al-
lowed.

Examples:
type
HemiSphere
World
CompassRange
Upper
Lower
Degree
Wine

= (North, South, East, West);
= (East..West)
= 0..360;

= (Celc, Fahr, Ream, Kelv);
= (Red, White, Rose, Sparkling);

The type World is a subrange of the scalar type HemiSphere (called the
associated scalar type). The associated scalar type of Compassrange is
Integer, and the associated scalar type of Upper and Lower is Char.

You already know the standard subrange type Byte, which is defined as:

type
Byte = 0..255;

A subrange type retains all the properties of its associated scalar type,
being restricted only in its range of values.

64 	 TURBO Pascal Reference Manual

Subrange Type

The use of defined scalar types and subrange types is strongly recom-
mended as it greatly improves the readability of programs. Furthermore,
run time checks may be included in the program code (see page 65) to
verify the values assigned to defined scalar variables and subrange vari-
ables. Another advantage of defined types and subrange types is that
they often save memory. TURBO Pascal allocates only one byte of
memory for variables of a defined scalar type or a subrange type with a
total number of elements less than 256. Similarly, integer subrange vari-
ables, where lower and upper bounds are both within the range 0
through 255, occupy only one byte of memory.

Type Conversion

The Ord function may be used to convert scalar types into values of
type integer. Standard Pascal does not provide a way to reverse this
process, i.e. a way of converting an integer into a scalar value.

In TURBO Pascal, a value of a scalar type may be converted into a
value of another scalar type, with the same ordinal value, by means of
the Retype facility. Retyping is achieved by using the type identifier of
the desired type as a function designator followed by one parameter en-
closed in parentheses. The parameter may be a value of any scalar type
except Real. Assuming the type definitions on pages 63 and 64 , then:

Integer(Heart) = 2
Month(10) 	= Nov
HemiSphere(2) = East
Upper(14) 	=
Degree(3) 	= KeN
Char(78) 	 'N'
Integer('7') 	= 55

Range Checking

The generation of code to perform run-time range checks on scalar and
subrange variables is controlled with the R compiler directive. The de-
fault setting is ($R-}, i.e. no checking is performed. When an assign-
ment is made to a scalar or a subrange variable while this directive is ac-
tive (($R +)), assignment values are checked to be within range. It is
recommended to use this setting as long as a program is not fully de-
bugged.

SCALAR AND SUBRANGE TYPES 	 65

Range Checking

digit;

Example:
program Rangecheck;
type

Digit = 0..9;
Var

Digl,Dig2,Dig3:
begin

Digl := 5;
Dig2 := Digl + 3;
Dig3 := 47;
{$R+} Dig3 := 55;
{$R-} Dig3 := 167;

end.

(valid)
(valid as Digi + 3 < = 9)
(invalid but causes no error)
(invalid and causes a run time error)
(invalid but causes no error)

66 	 TURBO Pascal Reference Manual

Chapter 9
STRING TYPE

TURBO Pascal offers the convenience of string types for processing of
character strings, i.e. sequences of characters. String types are struc-
tured types, and are in many ways similar to array types (see chapter
10). There is, however, one major difference between these: the number
of characters in a string (i.e. the length of the string) may vary dynami-
cally between 0 and a specified upper limit, whereas the number of ele-
ments in an array is fixed.

String Type Definition

The definition of a string type must specify the maximum number of
characters it can contain, i.e. the maximum length of strings of that
type. The definition consists of the reserved word string followed by the
maximum length enclosed in square brackets. The length is specified by
an integer constant in the range 1 through 255. Notice that strings do
not have a default length; the length must always be specified.

Example:
type

FileName = string[14];
ScreenLine = string[80];

String variables occupy the defined maximum length in memory plus one
byte which contains the current length of the variable. The individual
characters within a string are indexed from 1 through the length of the
string.

String Expressions

Strings are manipulated by the use of string expressions. String expres-
sions consist of string constants, string variables, function designators,
and operators.

STRING TYPE 	 67

String Expressions

The plus-sign may be used to concatenate strings. The Concat function
(see page 71) performs the same function, but the + operator is often
more convenient. If the length of the result is greater than 255, a run-
time error occurs.

Example:
' TURBO ' + 'Pascal' 	 = 'TURBO Pascal'
'123' + 	+ '456' 	 = '123.456'
'A ' + 'B' + ' C ' + 'D ' 	= 'ABCD'

The relational operators = , < > , > , < , > = , and < = are lower
in precedence than the concatenation operator. When applied to string
operands, the result is a Boolean value (True or False). When compar-
ing two strings, single characters are compared from the left to the right
according to their ASCII values. If the strings are of different length, but
equal up to and including the last character of the shortest string, then
the shortest string is considered the smaller. Strings are equal only if
their lengths as well as their contents are identical.

Examples:
'A' < 'B' 	 is true
'A' > 'b' 	 is false
'2' < ' 12' 	 is false
TURBO = ' TURBO' 	 is true

' TURBO ' = ' TURBO' 	 is false
'Pascal Compiler' < 'Pascal compiler' is true

String Assignment

The assignment operator is used to assign the value of a string expres-
sion to a string variable.

Example:
Age := ' fiftieth' ;
Line := 'Many happy returns on your ' + Age + ' birthday.'

If the maximum length of a string variable is exceeded (by assigning too
many characters to the variable), the exceeding characters are truncat-
ed. E.g., if the variable Age above was declared to be of type string[5],
then after the assignment, the variable will only contain the five leftmost
characters: 'fifth'.

68 	 TURBO Pascal Reference Manual

String Procedures

String Procedures

The following standard string procedures are available in TURBO Pas-
cal:

Delete

Syntax: Delete (St , Pos , Num);

Delete removes a substring containing Num characters from St starting
at position Pos. St is a string variable and both Pos and Num are integer
expressions. If Pos is greater than Length (St), no characters are re-
moved. If an attempt is made to delete characters beyond the end of the
string (i.e. Pos + Num exceeds the length of the string), only charac-
ters within the string are deleted. If Pos is outside the range 1..255, a
run time error occurs.

If St has the value 'ABCDEFG' then:
Delete(St , 2 ,4) will give St the value 'AFG'.
Delete(St , 2 , 10) will give St the value 'A'.

Insert

Syntax: Insert (Obj , Target , Pos);

Insert inserts the string Obj into the string Target at the position Pos.
Obj is a string expression, Target is a string variable, and Pos is an in-
teger expression. If Pos is greater than Length(Target), then obj is con-
catenated to Target. If the result is longer than the maximum length of
Target, then excess characters will be truncated and Target will only
contain the leftmost characters. If Pos is outside the range 1..255, a run
time error occurs.

If St has the value 'ABCDEFG' then: Insert (' XX' , St , 3) will give
St the value 'ABXXCDEFG'

STRING TYPE 	 69

String Procedures

Str

Syntax: Str (Value , St);

The Str procedure converts the numeric value of Value into a string and
stores the result in St. Value is a write parameter of type integer or of
type real, and St is a string variable. Write parameters are expressions
with special formatting commands (see page 111).

If / has the value 1234 then: Str(I : 5, St) gives St the value
' 1234 .

If X has the value 2.5E4 then: St r (X: 10 : 0 , St) gives St the value
2500' .

8-bit systems only: a function using the Str procedure must never be
called by an expression in a Write or Writeln statement.

Val

Syntax: Val (St , Var , Code);

Val converts the string expression St to an integer or a real value
(depending on the type of Vat) and stores this value in Var. St must be
a string expressing a numeric value according to the rules applying to
numeric constants (see page 43). Neither leading nor trailing spaces are
allowed. Var must be an Integer or a Real variable and Code must be an
integer variable. If no errors are detected, the variable Code is set to 0.
Otherwise Code is set to the position of the first character in error, and
the value of Var is undefined.

If St has the value '234' then:
Val (St , I , Result) gives / the value 234 and Result the value 0

If St has the value '12x' then:
Val (St , I , Result) gives / an undefined value and Result the value
3

If St has the value '2.5E4', and X is a Real variable, then:
Val (St , X, Result) gives X the value 2500 and Result the value 0

8-bit systems only: a function using the Var procedure must never be
called by an expression in a Write or Writeln statement.

70 	 TURBO Pascal Reference Manual

String Functions

String Functions

The following standard string functions are available in TURBO Pascal:

Copy

Syntax: Copy (St , Pos , Num);

Copy returns a substring containing Num characters from St starting at
position Pos. St is a string expression and both Pos and Num are in-
teger expressions. If Pos exceeds the length of the string, the empty
string is returned. If an attempt is made to get characters beyond the
end of the string (i.e. Pos + Num exceeds the length of the string), only
the characters within the string are returned. If Pos is outside the range
1..255, a run time error occurs.

If St has the value 'ABCDEFG' then:
Copy(St,3,2) 	returns the value 'CD'
Copy (St , 4 , 10) 	returns the value 'DEFG'
Copy (St , 4, 2) 	returns the value 'DE'

Concat

Syntax: Concat (St/ , St2 (, StN));

The Concat function returns is a string which is the concatenation of its
arguments in the order in which they are specified. The arguments may
be any number of string expressions separated by commas (Stl, St2
StN). If the length of the result is greater than 255, a run-time error oc-
curs. As explained in page 68 , the + operator can be used to obtain
the same result, often more conveniently. Concat is included only to
maintain compatibility with other Pascal compilers.

If St/ has the value 'TURBO' and St2 the value 'is fastest' then:

Concat(Stl,' PASCAL ',St2)

returns the value 'TURBO PASCAL is fastest'

STRING TYPE 	 71

String Functions

Length

Syntax: Length (St);

Returns the length of the string expression St, i.e. the number of char-
acters in St. The type of the result is integer.

If St has the value '123456789' then:
Length (St) returns the value 9

Pos

Syntax: Pos (Obj , Target);

The Pos function scans the string Target to find the first occurrence of
Obj within Target. Obj and Target are string expressions, and the type
of the result is integer. The result is an integer denoting the position
within Target of the first character of the matched pattern. The position
of the first character in a string is 1. If the pattern is not found, Pos re-
turns 0.

If St has the value 'ABCDEFG' then
Pos(' DE' , St) returns the value 4
Pos(' H' , St) returns the value 0

72 	 TURBO Pascal Reference Manual

Strings and Characters

Strings and Characters

String types and the standard scalar type Char are compatible. Thus,
whenever a string value is expected, a char value may be specified in-
stead and vice versa. Furthermore, strings and characters may be mixed
in expressions. When a character is assigned a string value, the length
of the string must be exactly one; otherwise a run-time error occurs.

The characters of a string variable may be accessed individually through
string indexing. This is achieved by appending an index expression of
type integer, enclosed in square brackets, to the string variable.

Examples:
Buffer[5]
Line[Length(Line)-1]
Ord(Line[0])

As the first character of the string (at index 0) contains the length of the
string, Length(String) is the same as Ord(String[0]). If as-
signment is made to the length indicator, it is the responsibility of the
programmer to check that it is less than the maximum length of the
string variable. When the range check compiler directive R is active ((
$R + }), code is generated which insures that the value of a string index
expression does not exceed the maximum length of the string variable.
It is, however, still possible to index a string beyond its current dynamic
length. The characters thus read are random, and assignments beyond
the current length will not affect the actual value of the string variable.

STRING TYPE 	 73

Strings and Characters

Notes:

74 	 TURBO Pascal Reference Manual

Chapter 10
ARRAY TYPE

An array is a structured type consisting of a fixed number of com-
ponents which are all of the same type, called the component type or
the base type. Each component can be explicitly accessed by indices
into the array. Indices are expressions of any scalar type placed in
square brackets suffixed to the array identifier, and their type is called
the index type.

Array Definition

The definition of an array consists of the the reserved word array fol-
lowed by the index type, enclosed in square brackets, followed by the
reserved word of, followed by the component type.

Examples:
type
Day = (Mon,Tue,Wed,Thu,Fri,Sat,Sun)

Var
WorkHour : array[1..8] of Integer;
Week 	: array[1..7] of Day;

type
Players - (Playerl,Player2,Player3,Player4);
Hand 	= (One,Two,Pair,TwoPair,Three,Straight,

Flush,FullHouse,Four,StraightFlush,RSF);
LegalBid 1..200;
Bid 	array[Players] of LegalBid;

Var
Player 	: array[Players] of Hand;
Pot 	: Bid;

An array component is accessed by suffixing an index enclosed in
square brackets to the array variable identifier:

Player[Player3] := FullHouse;
Pot[Player3] := 100;
Player[Player4] := Flush;
Pot[Player4] := 50;

ARRAY TYPE 	 75

Array Definition

As assignment is allowed between any two variables of identical type,
entire arrays can be copied with a single assignment statement.

The R compiler directive controls the generation of code which will per-
form range checks on array index expressions at run-time. The default
mode is passive, i.e. { $R-}, and the ($R +) setting causes all index ex-
pressions to be checked against the limits of their index type.

Multidimensional Arrays

The component type of an array may be any data type, i.e. the com-
ponent type may be another array. Such a structure is called a multidi-
mensional array.

Example:
type
Card 	= (Two,Three,Four,Five,Six,Seven,Eight,Nine,

Ten,Knight,Queen,King,Ace);
Suit 	= (Hearts,Spade,Clubs,Diamonds);
AllCards = array[Suit] of array[1..13] of Card;

Var
Deck: AllCards;

A multi-dimensional array may be defined more conveniently by specify-
ing the multiple indices thus:

type
AllCards = array[Suit,1..13] of Card;

A similar abbreviation may be used when selecting an array component:

Deck[Hearts,10] is equivalent to Deck[Hearts] [10]

It is, of course, possible to define multi-dimensional arrays in terms of
previously defined array types.

76 	 TURBO Pascal Reference Manual

Multidimensional Arrays

Example:
type

Pupils
Class
School

Var
J,P,Vacant 	:
ClassA,
ClassB
NewTownSchool:

string[20];
array[1..30] of Pupils;
array[1..100] of Class;

Integer

Class;
School;

After these definitions, all of the following assignments are legal:

ClassA[J]:='Peter';
NewTownSchool [5] [21] ' Peter Brown';
NewTownSchool[8,J : -NewTownSchool[7,J]; (pupil no. J changed class)

ClassA[Vacant]:=ClassB[P]; (pupil no. P changes Class and number)

Character Arrays

Character arrays are arrays with one index and components of the stan-
dard scalar type Char. Character arrays may be thought of as strings
with a constant length.

In TURBO Pascal, character arrays may participate in string expres-
sions, in which case the array is converted into a string of the length of
the array. Thus, arrays may be compared and manipulated in the same
way as strings, and string constants may be assigned to character ar-
rays, as long as they are of the same length. String variables and values
computed from string expressions cannot be assigned to character ar-
rays.

Predefined Arrays

TURBO Pascal offers two predefined arrays of type Byte, called Mem
and Port, which are used to access CPU memory and data ports. These
are discussed in chapters 20, 21, and 22.

ARRAY TYPE 	 77

Predefined Arrays

Notes:

78 	 TURBO Pascal Reference Manual

Chapter 11
RECORD TYPE

A record is a structure consisting of a fixed number of components,
called fields. Fields may be of different type and each field is given a
name, the field identifier, which is used to select it.

Record Definition

The definition of a record type consists of the reserved word record
succeeded by a field list and terminated by the reserved word end. The
field list is a sequence of record sections separated by semi-colons,
each consisting of one or more identifiers separated by commas, fol-
lowed by a colon and either a type identifier or a a type descriptor. Each
record section thus specifies the identifier and type of one or more
fields.

Example:
type
DaysOfMonth = 1..31;
Date = 	record

Day: DaysOfMonth;
Month: (Jan,Feb,Mar,Apr,May,Jun,

July,Aug,Sep,Oct,Nov,Dec);
Year: 1900..1999;

end;
Var
Birth: Date;
WorkDay: array[1..5] of date;

Day, Month, and Yearare field identifiers. A field identifier must be
unique only within the record in which it is defined. A field is referenced
by the variable identifier and the field identifier separated by a period.

Examples:

Birth.Month := Jun;
Birth.Year := 1950;
WorkDay[Current] := WorkDay[Current-1];

RECORD TYPE 	 79

Record Definition

Note that, similar to array types, assignment is allowed between entire
records of identical types. As record components may be of any type,
constructs like the following record of records of records are possible:

type
Name 	record

FamilyName: string[32];
ChristianNames: array[1..3] of string[16];

end;
Rate 	record

NormalRate, OverTime,
NightTime, Weekend: Integer

end;
Date 	record

Day: 	1..31;
Month: (Jan,Feb,Mar,Apr,May,Jun,

July,Aug,Sep,Oct,Nov,Dec);
Year: 1900..1999;

end;
Person record

ID: Name;
Time: Date;

end;
Wages record

Individual: Person;
Cost: Rate;

end

Var Salary, Fee: Wages;

Assuming these definitions, the following assignments are legal:

Salary := Fee;
Salary.Cost.Overtime := 950;
Salary.Individual.Time := Fee.Individual.Time;
Salary.Individual.ID.FamilyName := 'Smith'

80 	 TURBO Pascal Reference Manual

With Statement

With Statement

The use of records as describes above does sometimes result in rather
lengthy statements; it would often be easier if we could access individu-
al fields in a record as if they were simple variables. This is the function
of the with statement: it `opens up' a record so that field identifiers may
be used as variable identifiers.

A with statement consists of the reserved word with followed by a list
of record variables separated by commas followed by the reserved word
do and finally a statement.

Within a with statement, a field is designated only by its field identifier,
i.e. without the record variable identifier:

with Salary do
begin

Individual := NewEmployee;
Cost := StandardRates;

end;

Records may be nested within with statements, i.e. records of records
may be `opened' as shown here:

with Salary, Individual, ID do
begin

FamilyName := 'Smith';
ChristianNames[1] := 'James';

end

This is equivalent to:

with Salary do with Individual do with ID do

The maximum `depth' of this nesting of with sentences, i.e. the max-
imum number of records which may be `opened' within one block,
depends on your implementation and is discussed in chapters 20, 21,
and 22.

RECORD TYPE 	 81

Variant Records

Variant Records

The syntax of a record type also provides for a variant part, i.e. alterna-
tive record structures which allows fields of a record to consist of a
different number and different types of components, usually depending
on the value of a tag field.

A variant part consists of a tag-field of a previously defined type, whose
values determine the variant, followed by labels corresponding to each
possible value of the tag field. Each label heads a field list which defines
the type of the variant corresponding to the label.

Assuming the existence of the type:

Origin = (Citizen, Alien);

and of the types Name and Date, the following record allows the field
CitizenShip to have different structures depending on whether the value
of the field is Citizen or Alien:

type
Person record

PersonName: Name;
BirthDate: Date;
case CitizenShip: Origin of
Citizen: (BirthPlace: Name);
Alien: 	(CountryOfOrigin: Name;

DateOfEntry: Date;
PermittedUntil: Date;
PortOfEntry: Name);

end;

In this variant record definition, the tag-field is an explicit field which may
be selected and updated like any other field. Thus, if Passenger is a
variable of type Person, statements like the following are perfectly legal:

Passenger.CitizenShip := Citizen;

with Passenger, PersonName do
if CitizenShip = Alien then writeln(FamilyName);

82 	 TURBO Pascal Reference Manual

Variant Records

The fixed part of a record, i.e. the part containing the common fields,
must always precede the variant part. In the above example, the fields
PersonName and BirthDate are the fixed fields. A record can only have
one variant part. In a variant, the parentheses must be present, even if
they will enclose nothing.

The maintenance of tag field values is the responsibility of the program-
mer and not of TURBO Pascal. Thus, in the Person type above, the field
DateOfEntry can be accessed even if the value of the tag field
CitizenShip is not Alien. Actually, the tag field identifier may be omitted
altogether, leaving only the type identifier. Such record variants are
known as free unions, as opposed to record variants with tag fields
which are called discriminated unions. The use of free unions is infre-
quent and should only be practiced by experienced programmers.

RECORD TYPE 	 83

Variant Records

Notes:

84 	 TURBO Pascal Reference Manual

Chapter 12
SET TYPE

A set is a collection of related objects which may be thought of as a
whole. Each object in such a set is called a member or an element of
the set. Examples of sets could be:

1) All integers between 0 and 100
2) The letters of the alphabet
3) The consonants of the alphabet

Two sets are equal if and only if their elements are the same. There is
no ordering involved, so the sets [1,3,5], [5,3,1] and [3,5,1] are all equal.
If the members of one set are also members of another set, then the
first set is said to be included in the second. In the examples above, 3)
is included in 2).

There are three operations involving sets, similar to the operations addi-
tion, multiplication and subtraction operations on numbers:

The union (or sum) of two sets A and B (written A + B) is the set
whose members are members of either A or B. For instance, the un-
ion of [1,3,5,7] and [2,3,4] is [1,2,3,4,5,7].

The intersection (or product) of two sets A and B (written A*B) is the
set whose members are the members of both A and B. Thus, the in-
tersection of [1,3,4,5,7] and [2,3,4] is [3,4].

The relative complement of B with respect to A (written A-B) is the
set whose members are members of A but not of B. For instance,
[1,3,5,7]-[2,3,4] is [1,5,7].

Set Type Definition

Although in mathematics there are no restrictions on the objects which
may be members of a set, Pascal only offers a restricted form of sets.
The members of a set must all be of the same type, called the base
type, and the base type must be a simple type, i.e. any scalar type ex-
cept real. A set type is introduced by the reserved words set of followed
by a simple type.

SET TYPE 	 85

Set Type Definition

Examples:
type

DaysOfMonth = set of 0..31;
WorkWeek = set of Mon..Fri;
Letter = set of 'A'..'Z';
AdditiveColors = set of (Red,Green,Blue);
Characters = set of Char;

In TURBO Pascal, the maximum number of elements in a set is 256,
and the ordinal values of the base type must be within the range 0
through 255.

Set Expressions

Set values may be computed from other set values through set expres-
sions. Set expressions consist of set constants, set variables, set con-
structors, and set operators.

Set Constructors

A set constructor consists of one or more element specifications,
separated by commas, and enclosed in square brackets. An element
specification is an expression of the same type as the base type of the
set, or a range expressed as two such expressions separated by two
consecutive periods (..).

Examples:

[X,Y]
[X..Y]
[1 . . 5]

[1,3..10,12]
[]

The last example shows the empty set, which, as it contains no expres-
sions to indicate its base type, is compatible with all set types. The set
[1..5] is equivalent to the set [1,2,3,4,5]. If X > Y then [X..Y] denotes the
empty set.

86 	 TURBO Pascal Reference Manual

Set Expressions

Set Operators

The rules of composition specify set operator precedency according to
the following three classes of operators:

1) * 	Set intersection.

2) + Set union.
- 	Set difference.

3) Test on equality.
<> Test on inequality.

>= True if all members of the second operand are included in the first
operand.

<= True if all members of the first operand are included in the second
operand.

IN Test on set membership. The second operand is of a set type, and
the first operand is an expression of the same type as the base
type of the set. The result is true if the first operand is a member of
the second operand, otherwise it is false.

Set disjunction (when two sets contain no common members) may be
expressed as:

A * B = [1;

that is, the intersection between the two sets is the empty set. Set ex-
pressions are often useful to clarify complicated tests. For instance, the
test:

if (Ch='T') or (Ch='U') or (Ch='R') or (Ch='B') or (Ch='0')

can be expressed much clearer as:

Ch in ["1" , 	, TR' , 'BT , '0 1]

And the test:

if (Ch >= '0') and (Ch <= '9') then ...

is better expressed as:

if Ch in['0'..'9'] then

SET TYPE 	 87

Set Assignments

Set Assignments

Values resulting from set expressions are assigned to set variables us-
ing the assignment operator : = .

Examples:
type

ASCII = set of 0 . .127;
Var

NoPrint, Print , AllChars : ASCII;
begin

AllChars := [0 . . 127] ;
NoPrint := [0..31,127];
Print := AllChars - NoPrint;

end.

88 	 TURBO Pascal Reference Manual

Chapter 13
TYPED CONSTANTS

Typed constants are a TURBO specialty. A typed constant may be used
exactly like a variable of the same type. Typed constants may thus be
used as 'initialized variables', because the value of a typed constant is
defined, whereas the value of a variable is undefined until an assignment
is made. Care should be taken, of course, not to assign values to typed
constants whose values are actually meant to be constant.

The use of a typed constant saves code if the constant is used often in
a program, because a typed constant is included in the program code
only once, whereas an untyped constant is included every time it is
used.

Typed constants are defined like untyped constants (see page 48), ex-
cept that the definition specifies not only the value of the constant but
also the type. In the definition the typed constant identifier is succeeded
by a colon and a type identifier, which is then followed by an equal sign
and the actual constant.

Unstructured Typed Constants

An unstructured typed constant is a constant defined as one of the
scalar types:

const
NumberOfCars: Integer = 1267;
Interest: Real - 12.67;
Heading: string[7] = 'SECTION';
Xon: Char = AQ;

Contrary to untyped constants, a typed constant may be used in place
of a variable as a variable parameter to a procedure or a function. As a
typed constant is actually a variable with a constant value, it cannot be
used in the definition of other constants or types. Thus, as Min and Max
are typed constants, the following construct is illegal:

TYPED CONSTANTS 	 89

Unstructured Typed Constants

const
Min: Integer = 0;
Max: Integer - 50;

type
Range: array[Min..Max] of integer

Structured Typed Constants

Structured constants comprise array constants, record constants, and
set constants. They are often used to provide initialized tables and sets
for tests, conversions, mapping functions, etc. The following sections
describe each type in detail.

Array Constants

The definition of an array constant consists of the constant identifier
succeeded by a colon and the type identifier of a previously defined ar-
ray type followed by an equal sign and the constant value expressed as
a set of constants separated by commas and enclosed in parentheses.

Examples:
type
Status 	= (Active, Passive , Waiting) ;
StringRep = array [Status] of string[7];

const
Stat: StringRep = (' active ' , ' passive ' , ' waiting') ;

The example defines the array constants Stat, which may be used to
convert values of the scalar type Status into their corresponding string
representations. The components of Stat are:

Stat[Active] = 'active'
Stat[Passive] = 'passive'
Stat[Waiting] = 'waiting'

The component type of an array constant may be any type except File
types and Pointer types. Character array constants may be specified
both as single characters and as strings. Thus, the definition:

90 	 TURBO Pascal Reference Manual

Structured Typed Constants

const
Digits: array[0..9] of Char =

may be expressed more conveniently as:

const
Digits: array[0..9] of Char = '0123456789';

Multi-dimensional Array Constants

Multi-dimensional array constants are defined by enclosing the con-
stants of each dimension in separate sets of parentheses, separated by
commas. The innermost constants correspond to the rightmost dimen-
sions.

Example:
type

Cube = array[0..1,0..1,0..1] of integer;
const
Maze: Cube = (((0,1),(2,3)),((4,5),(6,7)));

begin
Writeln(Maze[0,0,0],' = 0');
Writeln(Maze[0,0,1],' = 1');
Writeln(Maze[0,1,0],' = 2');
Writeln(Maze[0,1,1],' = 3');
Writeln(Maze[1,0,0],' = 4');
Writeln(Maze[1,0,1],' = 5');
Writeln(Maze[1,1,0],' = 6');
Writeln(Maze[1,1,1],' = 7');

end.

Record Constants

The definition of a record constant consists of the constant identifier
succeeded by a colon and the type identifier of a previously defined
record type followed by an equal sign and the constant value expressed
as a list of field constants separated by semi-colons and enclosed in
parentheses.

Typed Constants 	 91

Structured Typed Constants

Examples:
type
Point 	record

X,Y,Z: integer;
end;

OS 	= (CPM80,CPM86,MSDOS,Unix);
UI 	= (CCP,SomethingElse,MenuMaster);
Computer 	record

OperatingSystems: array[1..4] of OS;
Userinterface: UI;

end;
const

Origo: Point 	= (X:0; Y:0; Z:0);
SuperComp: Computer =

(OperatingSystems: (CPM80,CPM86,MSDOS,Unix);
Userinterface: MenuMaster);

Planel: array[1..3] of Point -
((X:1;Y:4;Z:5),(X:10;Y:-78;Z:45),(X:100;Y:10;Z:-7));

The field constants must be specified in the same order as they appear
in the definition of the record type. If a record contains fields of file types
or pointer types, then constants of that record type cannot be specified.
If a record constant contains a variant, then it is the responsibility of the
programmer to specify only the fields of the valid variant. If the variant
contains a tag field, then its value must be specified.

Set Constants

A set constant consists of one or more element specifications separated
by commas, and enclosed in square brackets. An element specification
must be a constant or a range expression consisting of two constants
separated by two consecutive periods (..).

Example:
type
Up - set of 'A'..'Z';
Lox = set of 'a'..'z';

const
UpperCase: Up 	= ['A'..'Z'];
Vocals 	: Low = ['a','e','i ,'o','u','y'];
Delimiter: set of Char =

'] ;

92 	 TURBO Pascal Reference Manual

Chapter 14
FILE TYPES

Files provide a program with channels through which it can pass data. A
file can either be a disk file, in which case data is written to and read
from a magnetic device of some type, or a logical device, such as the
pre-defined files Input and Output which refer to the computer's stan-
dard I/O channels; the keyboard and the screen.

A file consists of a sequence of components of equal type. The number
of components in a file (the size of the file) is not determined by the
definition of the file; instead the Pascal system keeps track of file
accesses through a file pointer, and each time a component is written to
or read from a file, the file pointer of that file is advanced to the next
component. As all components of a file are of equal length, the position
of a specific component can be calculated. Thus, the file pointer can be
moved to any component in the file, providing random access to any ele-
ment of the file.

File Type Definition

A file type is defined by the reserved words file of followed by the type
of the components of the file, and a file identifier is declared by the
same words followed by the identifier of a previously defined file type.

Examples:
type

ProductName = string[80];
Product = file of record

Name: ProductName;
ItemNumber: Real;
InStock: Real;
MinStock: Real;
Supplier: Integer;

end;
Var

ProductFile: Product;
ProductNames: file of ProductName;

FILE TYPES 	 93

File Type Definition

The component type of a file may be any type, except a file type. (that
is, with reference to the example above, file of Product is not allowed).
File variables may appear in neither assignments nor expressions.

Operations on Files

The following sections describe the procedures available for file han-
dling. The identifier FilVar used throughout denotes a file variable
identifier declared as described above.

Assign

Syntax: Assign(Fi/Var, Str);

Str is a string expression yielding any legal file name. This file name is
assigned to the file variable FilVar, and all further operation on FilVar will
operate on the disk file Str. Assign should never be used on a file which
is in use.

Rewrite

Syntax: Rewrite(Fi/Var);

A new disk file of the name assigned to the file variable FilVar is created
and prepared for processing, and the file pointer is set to the beginning
of the file, i.e. component no. 0. Any previously existing file with the
same name is erased. A disk file created by rewrite is initially empty, i.e.
it contains no elements.

Reset

Syntax: Reset(FilVar);

The disk file of the name assigned to the file variable FilVar is prepared
for processing, and the file pointer is set to the beginning of the file, i.e.
component no. 0. FilVar must name an existing file, otherwise an I/O er-
ror occurs.

94 	 TURBO Pascal Reference Manual

Operations on Files

Read

Syntax: Read(FilVar, Vat);

Var denotes one or more variables of the component type of FilVar,
separated by commas. Each variable is read from the disk file, and fol-
lowing each read operation, the file pointer is advanced to the next com-
ponent.

Write

Syntax: Write(Fi/Var, Vat);

Var denotes one or more variables of the component type of FilVar,
separated by commas. Each variable is written to the disk file, and fol-
lowing each write operation, fie file pointer is advanced to the next
component.

Seek

Syntax: Seek(FilVar, n);

Seek moves the file pointer is moved to the n'th component of the file
denoted by FilVar. n is an integer expression. The position of the first
component is 0. Note that in order to expand a file it is possible to seek
one component beyond the last component. The statement

Seek(FilVar, FileSize(FilVar));

thus places the file pointer at the end of the file (FileSize returns the
number of components in the file, and as the components are numbered
from zero, the returned number is one greater than the number of the
last component).

FILE TYPES 	 95

Operations on Files

Flush

Syntax: Flush(Fi/Vat);

Flush empties the internal sector buffer of the disk file FilVar, and thus
assures that the sector buffer is written to the disk if any write opera-
tions have taken place since the last disk update. Flush also insures that
the next read operation will actually perform a physical read from the
disk file. Flush should never be used on a closed file.

Close

Syntax: Close(FilVar);

The disk file associated with FilVar is closed, and the disk directory is
updated to reflect the new status of the file. Notice that it is necessary
to Close a file, even if it has only been read from—you would otherwise
quickly run out of file handles.

Erase

Syntax: Erase(FilVar);

The disk file associated with FilVar is erased. If the file is open, i.e. if the
file has been reset or rewritten but not closed, it is good programming
practice to close the file before erasing it.

Rename

Syntax: Rename(FilVar, Str);

The disk file associated with FilVar is renamed to a new name given by
the string expression Str. The disk directory is updated to show the new
name of the file, and further operations on FilVar will operate on the file
with the new name. Rename should never be used on an open file.

96 	 TURBO Pascal Reference Manual

Operations on Files

Notice that it is the programmer's responsibility to assure that the file
named by Str does not already exist. If it does, multiple occurrences of
the same name may result. The following function returns True if the file
name passed as a parameter exists, otherwise it returns False:

type
Name=string[66];

function Exist(FileName: Name): boolean;
Var

Fil: file;
begin

Assign(Fil, FileName);
{$1-}
Reset(Fil);
{$1+}
Exist := (I0result = 0)

end;

File Standard Functions

The following standard functions are applicable to files:

EOF

Syntax: EOF(FilVar);

A Boolean function which returns True if the file pointer is positioned at
the end of the disk file, i.e. beyond the last component of the file. If not,
EOF returns False.

FilePos

Syntax: FilePos(Fi/Var);

An integer function which returns the current position of the file pointer.
The first component of a file is 0.

FILE TYPES 	 97

File Standard Functions

FileSize

Syntax: FileSize(FilVar);

An integer function which returns the size of the disk file expressed as
the number of components in the file. If FileSize(FilVar) is zero, the file is
empty.

Using Files

Before using a file, the Assign procedure must be called to assign the
file name to a file variable. Before input and/or output operations are
performed, the file must be opened with a call to Rewrite or Reset. This
call will set the file pointer to point to the first component of the disk file,
i.e. FilePos(FilVar) = 0. After Rewrite, FileSize(FilVar) is 0.

A disk file can be expanded only by adding components to the end of
the existing file. The file pointer can be moved to the end of the file by
executing the following sentence:

Seek(FilVar, FileSize(FilVar));

When a program has finished its input/output operations on a file, it
should always call the Close procedure. Failure to do so may result in
loss of data, as the disk directory is not properly updated.

The program below creates a disk file called PRODUCTS.DTA, and
writes 100 records of the type Product to the file. This initializes the file
for subsequent random access (i.e. records may be read and written
anywhere in the file).

98 	 TURBO Pascal Reference Manual

Using Files

program InitProductFile;
const
MaxNumber0fProducts = 100;

type
ProductName = string[20];
Product = record

Name: ProductName;
ItemNumber: Integer;
InStock: Real;
Supplier: Integer;

end;
Var
ProductFile: file of Product;
ProductRec: Product;
I: Integer;

begin
Assign(ProductFile,'PRODUCT.DTA');
Rewrite(ProductFile); {open the file and delete any data}
with ProductRec do
begin
Name := "; InStock := 0; Supplier := 0;
for I := 1 to MaxNumber0fProducts do
begin
ItemNumber := I;
Write(ProductFile,ProductRec);

end;
end;
Close(ProductFile);

end.

The following program demonstrates the use of Sseek on random files.
The program is used to update the ProductFile created by the program
in the previous example.

FILE TYPES 	 99

Using Files

program UpDateProductFile;
const
MaxNumber0fProducts = 100;

type
ProductName = string[20];
Product = record

Name: ProductName;
ItemNumber: Integer;
InStock: Real;
Supplier: Integer;

end;
Var
ProductFile: file of Product;
ProductRec: Product;
I, Pnr: Integer;

begin
Assign(ProductFile,'PRODUCT.DTA'); Reset(ProductFile);
ClrScr;
Write('Enter product number (0= stop) '); Readln(Pnr);
while Pnr in [1..MaxNumber0fProducts] do
begin
Seek(ProductFile,Pnr-1); Read(ProductFile,ProductRec);
with ProductRec do
begin

Write('Enter name of product (',Name:20,') 	');
Readln(Name);
Write('Enter number in stock (',InStock:20:0,') 	');
Readln(InStock);
Write('Enter supplier number (',Supplier:20,') ');
Readln(Supplier);
ItemNumber:=Pnr;

end;
Seek(ProductFile,Pnr-1);
Write(ProductFile,ProductRec);
ClrScr; Writeln;
Write('Enter product number (0= stop) '); Readln(Pnr);

end;
Close(ProductFile);

end.

100 	 TURBO Pascal Reference Manual

Text Files

Text Files

Unlike all other file types, text files are not simply sequences of values
of some type. Although the basic components of a text file are charac-
ters, they are structured into lines, each line being terminated by an
end-of-fine marker (a CR/LF sequence). The file is further ended by an
end-of-file marker (a Ctrl-Z). As the length of lines may vary, the position
of a given line in a file cannot be calculated. Text files can therefore only
be processed sequentially. Furthermore, input and output cannot be per-
formed simultaneously to a text file.

Operations on Text Files

A text file variable is declared by referring to the standard type identifier
Text Subsequent file operations must be preceded by a call to Assign
and a call to Reset or Rewrite must furthermore precede input or output
operations.

Rewrite is used to create a new text file, and the only operation then al-
lowed on the file is the appending of new components to the end of the
file. Reset is used to open an existing file for reading, and the only
operation allowed on the file is sequential reading. When a new textfile
is closed, an end-of-file mark is automatically appended to the file.

Character input and output on text files is made with the standard pro-
cedures Read and Write. Lines are processed with the special text file
operators ReadIn, WriteIn, and Eoln:

ReadLn

Syntax: Readln(Fi/va/);

Skips to the beginning of the next line, i.e. skips all characters up to and
including the next CR/LF sequence.

WriteLn

Syntax: WriteLn(Fi/var);

Writes a line marker, i.e. a CR/LF sequence, to the textfile.

FILE TYPES 	 101

Text Files

Eoln

Syntax: Eoln(Filvar);

A Boolean function which returns True if the end of the current line has
been reached, i.e. if the file pointer is positioned at the CR character of
the CR/LF line marker. If EOF(Filvar) is true, Eoln(Filvar) is also true.

SeekEoln

Syntax: SeekEoln(Fi/Vat);

Similar to Eoln, except that it skips blanks and TABs before it tests for
an end-of-line marker. The type of the result is boolean.

SeekEof

Syntax: SeekEof(Fi/Var);

Similar to EOF, except that it skips blanks, TABs, and end-of-line mark-
ers (CR/LF sequences) before it tests for an end-of-file marker. The type
of the result is boolean.

When applied to a text file, the EOF function returns the value True

if the file pointer is positioned at the end-of-file mark (the CTRL/Z char-
acter ending the file). The Seek and Flush procedures and the FilePos
and FileSize functions are not applicable to text files.

The following sample program reads a text file from disk and prints it on
the pre-defined device Lst which is the printer. Words surrounded by
Ctrl-S in the file are printed underlined:

102 	 TURBO Pascal Reference Manual

Text Files

program TextFileDemo;
Var
FilVar: 	Text;
Line,
ExtraLine: 	string[255];

Integer;
UnderLine: 	Boolean;
FileName: 	string[14];

begin
UnderLine := False;
Write('Enter name of file to list: ');
Readln(FileName);
Assign(FilVar,FileName);
Reset(FilVar);
while not Eof(FilVar) do
begin
Readln(FilVar,Line);
I := 1; ExtraLine := ";
for I := 1 to Length(Line) do
begin
if Line[I]<>^S then
begin
Write(Lst,Line[I]);
if UnderLine then ExtraLine := ExtraLine+'_'
else ExtraLine := ExtraLine+";

end
else UnderLine := not UnderLine;

end;
Write(Lst,AM); Writeln(Lst,ExtraLine);

end; {while not Eof}
end.

Further extensions of the procedures Read and Write, which facilitate
convenient handling of formatted input and output, are described on page
108.

FILE TYPES 	 103

Text Files

Logical Devices

In TURBO Pascal, external devices such as terminals, printers, and
modems are regarded as logical devices which are treated like text files.
The following logical devices are available:

CON: The console device. Output is sent to the operating system's console
output device, usually the CRT, and input is obtained from the console
input device, usually the keyboard. Contrary to the TRM: device (see
below), the CON: device provides buffered input. In short, this means
that each Read or Readln from a textfile assigned to the CON: device
will input an entire line into a line buffer, and that the operator is provid-
ed with a set of editing facilities during line input. For more details on
console input, please refer to pages 105 and 108 .

TRM: The terminal device. Output is sent to the operating system's console
output device, usually the CRT, and input is obtained from the console
input device, usually the keyboard. Input characters are echoed, unless
they are control characters. The only control character echoed is a car-
riage return (CR), which is echoed as CR/LF.

KBD: The keyboard device (input only). Input is obtained from the operating
system's console input device, usually the keyboard. Input is not
echoed.

LST: The list device (output only). Output is sent to the operating system's list
device, typically the line printer.

AUX: The auxiliary device. In PC/MS-DOS, this is COM1:; in CP/M it is RDR:
and PUN:.

USR: The user device. Output is sent to the user output routine, and input is
obtained from the user input routine. For further details on user input
and output, please refer to pages 209 , 241 , and 272 .

These logical devices may be accessed through the pre-assigned files
discussed on page 105 or they may be assigned to file variables, exactly
like a disk file. There is no difference between Rewrite and Reset on a
file assigned to a logical device, Close performs no function, and an at-
tempt to Erase such a file will cause an I/O error.

104 	 TURBO Pascal Reference Manual

Text Files

The standard functions Eof and Eoln operate differently on logical dev-
ices than on disk files. On a disk file, Eof returns True when the next
character in the file is a Ctrl-Z, or when physical EOF is encountered,
and Eoln returns True when the next character is a CR or a Ctrl-Z.
Thus, Eof and Eoln are in fact 'look ahead' routines.

As you cannot look ahead on a logical device, Eoln and Eof operate on
the last character read instead of on the next character. In effect, Eof
returns True when the last character read was a Ctrl-Z, and Eoln re-
turns True when the last character read was a CR or a Ctrl-Z. The fol-
lowing table provides an overview of the operation of Eoln and Eof:

On Files 	 On Logical Devices

Eoln is true if is 	next character
	

if current character
CR or Ctrl-Z or if
	

is CR or Ctrl-Z
EOF is true

Eof is true if
	

next character is
	

if current character
Ctrl-Z or if physical
	

is Ctrl-Z
EOF is met

Table 14-1: Operation of EOLN and Eof

Similarly, the Readln procedure works differently on logical devices than
on disk files. On a disk file, Readln reads all characters up to and includ-
ing the CR/LF sequence, whereas on a logical device it only reads up to
and including the first CR. The reason for this is again the inability to
'look ahead' on logical devices, which means that the system has no
way of knowing what character will follow the CR.

Standard Files

As an alternative to assigning text files to logical devices as described
above, TURBO Pascal offers a number of pre-declared text files which
have already been assigned to specific logical devices and prepared for
processing. Thus, the programmer is saved the reset/rewrite and close
processes, and the use of these standard files further saves code:

FILE TYPES 	 105

Text Files

Input
The primary input file. This file is assigned to either the CON: device or
to the TRM: device (see below for further detail).

Output
The primary output file. This file is assigned to either the CON: device or
to the TRM: device (see below for further detail).

Con Assigned to the console device (CON:).
Trm Assigned to the terminal device (TRM:).
Kbd Assigned to the keyboard device (KBD:).
Lst Assigned to the list device (LST:).
Aux Assigned to the auxiliary device (AUX:).
Usr Assigned to the user device (USR:).

Notice that the use of Assign, Reset, Rewrite, and Close on these files
is illegal.

When the Read procedure is used without specifying a file identifier, it
always inputs a line, even if some characters still remain to be read from
the line buffer, and it ignores Ctrl-Z, forcing the operator to terminate the
line with RETURN. The terminating RETURN is not echoed, and internal-
ly the line is stored with a Ctrl-Z appended to the end of it. Thus, when
less values are specified on the input line than there are parameters in
the parameter list, any Char variables in excess will be set to Ctrl-Z,
strings will be empty, and numeric variables will remain unaltered.

The B compiler directive is used to control this 'forced read' feature
above. The default state is ($13 +), and in this state, read statements
without a file variable will always cause a line to be input from the con-
sole. If a ($B-} compiler directive is placed at the beginning of the pro-
gram (before the declaration part), the shortened version of read will act
as if the input standard file had been specified, i.e.:

Read(v1,v2,...,vn)equals Read(input,v1,v2,...,vn)

and in this case, lines are only input when the line buffer has been emp-
tied. The ($6-) state follows the definition of Standard Pascal I/O,
whereas the default ($B +) state, not confirming to the standard in all
aspects, provides better control of input operations.

If you don't want input echoed to the screen, you should read from the
standard file Kbd:

Read(Kbd, Var)

106 	 TURBO Pascal Reference Manual

Text Files

As the standard files Input and Output are used very frequently, they
are chosen by default if no file identifier is stated. The following list
shows the abbreviated text file operations and their equivalents:

Write(Ch) 	Write(Output,Ch)
Read(Ch) 	Read(Input,Ch)
WriteIn 	Writeln(Output)
ReadIn 	ReadIn(Input)
Eof 	 Eof(Input)
Eoln 	 Eoln(Input)

The following program shows the use of the standard file Lst to list the
file ProductFile (see page 99) on the printer:

program ListProductFile;
const
MaxNumber0fProducts - 100;

type
ProductName = string[20];
Product = record

Name: ProductName;
InStock: Real;
Supplier: Integer;

end;

ItemNumber: Integer;

Var
ProductFile: file of Product;
ProductRec: Product; I: Integer;

begin
Assign(ProductFile,'PRODUCT.DTA'); Reset(ProductFile);
for I := 1 to MaxNumber0fProducts do
begin
Read(ProductFile,ProductRec);
with ProductRec do
begin
if Name<>" then
Writeln(Lst,'Item: ',ItemNumber:5,", Name:20,

' From: ', Supplier:5,
' Now in stock: ',InStock:0:0);

end;
end;
Close(ProductFile);

end.

FILE TYPES 	 107

Text Input and Output

Text Input and Output

Input and output of data in readable form is done through text files as
described on page 101. A text file may be assigned to any device, i.e. a
disk file or one of the standard I/O devices. Input and output on text
files is done with the standard procedures Read, ReadIn, Write, and Wri-
teln which use a special syntax for their parameter lists to facilitate max-
imum flexibility of input and output.

In particular, parameters may be of different types, in which case the I/O
procedures provide automatic data conversion to and from the basic
Char type of text files.

If the first parameter of an I/O procedure is a variable identifier
representing a text file, then I/O will act on that file. If not, I/O will act on
the standard files Input and Output. See page 105 for more detail.

Read Procedure

The Read procedure provides input of characters, strings, and numeric
data. The syntax of the Read statement is:

Read(Varl,Var2,...,VarN)
Or

Read(FilVar,Varl,Var2,...,VarN)

where Varl, Var2,...,VarN are variables of type Char, String, Integer or
Real. In the first case, the variables are input from the standard file
Input, usually the keyboard. In the second case, the variables are input
from the text file which is previously assigned to FilVar and prepared for
reading.

With a variable of type Char, Read reads one character from the file and
assigns that character to the variable. If the file is a disk file, Eoln is true
if the next character is a CR or a Ctrl-Z, and Eof is true if the next char-
acter is a Ctrl-Z, or physical end-of-file is met. If the file is a logical dev-
ice (including the standard files Input and Output), Eoln is true if the
character read was a CR or if Eof is True, and Eof is true if the charac-
ter read was a Ctrl-Z.

108 	 TURBO Pascal Reference Manual

Text Input and Output

With a variable of type string, Read reads as many characters as al-
lowed by the defined maximum length of the string, unless Eoln or Eof
is reached first. Eoln is true if the character read was a CR or if Eof is
True, and Eof is true if the last character read is a Ctrl-Z, or physical
end-of-file is met.

With a numeric variable (Integer or Rear), Read expects a string of char-
acters which complies with the format of a numeric constant of the
relevant type as defined on page 43 . Any blanks, TABs, CRs, or LFs
preceding the string are skipped. The string must be no longer than 30
characters, and it must be followed by a blank, a TAB, a CR, or a Ctrl-Z.
If the string does not conform to the expected format, an I/O error oc-
curs. Otherwise the numeric string is converted to a value of the ap-
propriate type and assigned to the variable. When reading from a disk
file, and the input string is ended with a blank or a TAB, the next Read
or Read/n will start with the character immediately following that blank
or TAB. For both disk files and logical devices, Eoln is true if the string
was ended with a CR or a Ctrl-Z, and Eof is true if the string was ended
with a Ctrl-Z.

A special case of numeric input is when Eoln or Eof is true at the be-
ginning of the Read (e.g. if input from the keyboard is only a CR). In that
case no new value is assigned to the variable, and the variable retains
its former value.

If the input file is assigned to the console device (CON:), or if the stan-
dard file Input is used in the $B + } mode (default), special rules apply
to the reading of variables. On a call to Read or ReadIn, a line is input
from the console and stored into a buffer, and the reading of variables
then uses this buffer as the input source. This allows for editing during
entry. The following editing facilities are available:

BACKSPACE and DEL
Backspaces one character position and deletes the character there.
BACKSPACE is usually generated by pressing the key marked BS or
BACKSPACE or by pressing Ctrl-H. DEL is usually generated by the key
thus marked, or in some cases RUB or RUBOUT.

Esc and Ctrl-X
Backspaces to the beginning of the line and erases all characters input.

File Types 	 109

Text Input and Output

Ctrl-D
Recalls one character from the last input line.

Ctrl-R
Recalls the last input line.

RETURN and Ctrl-M
Terminates the input line and stores an end-of-line marker (a CR/LF se-
quence) in the line buffer. This code is generated by pressing the key
marked RETURN or ENTER. The CR/LF is not echoed to the screen.

Ctrl-Z
Terminates the input line and stores an end-of-file marker (a Ctrl-Z char-
acter) in the line buffer.

The input line is stored internally with a Ctrl-Z appended to the end of it.
Thus, if fewer values are specified on the input line than the number of
variables in Reads parameter list, any Char variables in excess will be
set to Ctrl-Z, Strings will be empty, and numeric variables will remain un-
changed.

The maximum number of characters that can be entered on an input line
from the console is 127 by default. However, you may lower this limit by
assigning an integer in the range 0 through 127 to the predefined vari-
able BufLen.

Example:
Write('File name (max. 14 chars): ');
BufLen: =14;
Read(FileName);

Notice that assignments to BufLen affect only the immediately following
Read. After that, BufLen is restored to 127.

Readln Procedure

The Readln procedure is identical to the Read procedure, except that
after the last variable has been read, the remainder of the line is
skipped. I.e., all characters up to and including the next CR/LF se-
quence (or the next CR on a logical device) are skipped. The syntax of
the procedure statement is:

110 	 TURBO Pascal Reference Manual

Text Input and Output

Readln(Varl,Var2 VarN)
Or

Readln(FilVar,Varl,Var2 VarN)

After a ReadIn, the following Read or ReadIn will read from the begin-
ning of the next line. ReadIn may also be called without parameters:

Readln
Or

Readln(FilVar)

in which case the remaining of the line is skipped. When ReadIn is read-
ing from the console (standard file Input or a file assigned to CON:), the
terminating CR is echoed to the screen as a CR/LF sequence, as op-
posed to Read.

Write Procedure

The Write procedure provides output of characters, strings, boolean
values, and numeric values. The syntax of a Write statement is:

Write(Varl,Var2,...,VarN)
or
Write(FilVar,Varl,Var2,...,VarN)

where Varl , Var2,...,VarN (the write parameters) are variables of type
Char, String, Boolean, Integer or Real, optionally followed by a colon
and an integer expression defining the width of the output field. In the
first case, the variables are output to the the standard file Output, usual-
ly the screen. In the second case, the variables are output to the text file
which is previously assigned to FilVar.

The format of a write parameter depends on the type of the variable. In
the following descriptions of the different formats and their effects, the
symbols:

m, n 	denote Integer expressions,
denotes a Real expression,

Ch 	denotes a Char expression,
S denotes a String expression, and
B denotes a Boolean expression.

File Types 	 111

Text Input and Output

Write Parameters

Ch 	The character Ch is output.

Ch:n The character Ch is output right-adjusted in a field which is n characters
wide, i.e. Ch is preceded by n — 1 blanks.

S The string S is output. Arrays of characters may also be output, as they
are compatible with strings.

S:n The string S is output right-adjusted in a field which is n characters
wide, i.e. S is preceded by n — Length(S) blanks.

B Depending on the value of B, either the word TRUE or the word FALSE
is output.

B:n 	Depending on the value of B, either the word TRUE or the word FALSE
is output right-adjusted in a field which is n characters wide.

/ 	The decimal representation of the value of / is output.

l:n 	The decimal representation of the value of I is output right-adjusted in a
field which is n characters wide.

R 	The decimal representation of the value of R is output in a field 18 char-
acters wide, using floating point format. For R > = 0.0, the format is:

uL___#.##########E*##

For R < 0.0, the format is:

.##########E*##

where u represents a blank, # represents a digit, and * represents ei-
ther plus or minus.

R:n The decimal representation of the value of R is output, right adjusted in
a field n characters wide, using floating point format. For R > = 0.0:

blanks#.digitsE*##

112 	 TURBO Pascal Reference Manual

Text Input and Output

For R < 0.0:

blanks-#.digitsE*##

where blanks represents zero or more blanks, digits represents from
one to ten digits, # represents a digit, and * represents either plus or
minus. As at least one digit is output after the decimal point, the field
width is minimum 7 characters (8 for R < 0.0).

R:n:m The decimal representation of the value of R is output, right adjusted,
in a field n characters wide, using fixed point format with m digits after
the decimal point. No decimal part, and no decimal point, is output if m
is 0. m must be in the range 0 through 24; otherwise floating point for-
mat is used. The number is preceded by an appropriate number of
blanks to make the field width n.

WriteIn Procedure

The WriteIn procedure is identical to the Write procedure, except that a
CR/LF sequence is output after the last value. The syntax of the WriteIn
statement is:

Writeln(Varl,Varl,Var2,...,VarN) or Writeln(FilVar,Varl,Var2,...,VarN)

A WriteIn with no write parameters outputs an empty line consisting of a
CR/LF sequence:

WriteIn or Writeln(FilVar)

File Types 	 113

Untyped Files

Untyped Files

Untyped files are low-level I/O channels primarily used for direct access
to any disk file using a record size of 128 bytes.

In input and output operations to untyped files, data is transferred
directly between the disk file and the variable, thus saving the space re-
quired by the sector buffer required by typed files. An untyped file vari-
able therefore occupies less memory than other file variables. As an un-
typed file is furthermore compatible with any file, the use of an untyped
file is therefore to be preferred if a file variable is required only for Erase,
Rename or other non-input/output operations.

An untyped file is declared with the reserved word file:

var
DataFile: file;

BlockRead / BlockWrite

All standard file handling procedures and functions except Read, Write,
and Flush are allowed on untyped files. Read and Write are replaced by
two special high-speed transfer procedures: BlockRead and BlockWrite.
The syntax of a call to these procedures is:

BlockRead(FilVar, Var, Recs)
BlockWrite(FilVar, Var, Recs)

Or

BlockRead(FilVar, Var, Recs, Result)
BlockWrite(FilVar, Var, Recs, Result)

where FilVar variable identifier of an untyped file, Var is any variable,
and Recs is an integer expression defining the number of 128-byte
records to be transferred between the disk file and the variable. The op-
tional parameter Result returns the number of records actually
transferred.

114 	 TURBO Pascal Reference Manual

Untyped Files

The transfer starts with the first byte occupied by the variable Var. The
programmer must insure that the variable Var occupies enough space to
accommodate the entire data transfer. A call to BlockRead or
BlockWrite also advances the file pointer Recs records.

A file to be operated on by BlockRead or BlockWrite must first be
prepared by Assign and Rewrite or Reset. Rewrite creates and opens a
new file, and Reset opens an existing file. After processing, Close
should be used to ensure proper termination.

The standard function EOF works as with typed files. So do standard
functions FilePos and FileSize and standard procedure Seek, using a
component size of 128 bytes (the record size used by BlockRead and
BlockWrite).

The following program uses untyped files to copy files of any type.
Notice the use of the optional fourth parameter on BlockRead to check
the number of records actually read from the source file.

program FileCopy;
const
RecSize 	128;
BufSize 	200;

var
Source, Dest: File;
SourceName,
DestName: 	string[14];
Buffer: 	array[1..RecSize,1..BufSize] of Byte;
RecsRead: 	Integer;

begin
Write('Copy from: ');
Readln(SourceName);
Assign(Source, SourceName);
Reset(Source);
Write(' 	To: ');
Readln(DestName);
Assign(Dest, DestName);
Rewrite(Dest);
repeat
BlockRead(Source,Buffer,BufSize,RecsRead);
BlockWrite(Dest,Buffer,RecsRead);

until RecsRead - 0;
Close(Source); Close(Dest);

end.

File Types, 	 115

I/O checking

I/O checking

The 1 compiler directive is used to control generation of runtime I/O error
checking code. The default state is active, i.e. ($1 + } which causes calls
to an I/O check routine after each I/O operation. I/O errors then cause
the program to terminate, and an error message indicating the type of
error is displayed.

If I/O checking is passive, i.e. ($1 — }, no run time checks are per-
formed. An I/O error thus does not cause the program to stop, but
suspends any further I/O until the standard function lOresult is called.
When this is done, the error condition is reset and I/O may be per-
formed again. It is now the programmer's responsibility to take proper
action according to the type of I/O error. A zero returned by lOresult in-
dicates a successful operation, anything else means that an error oc-
curred during the last I/O operation. Appendix G lists all error messages
and their Numbers. Notice that as the error condition is reset when
lOresult is called, subsequent calls to lOresult will return zero until the
next I/O error occurs.

The lOresult function is very convenient in situations where a program
halt is an unacceptable result of an I/O error, like in the following exam-
ple which continues to ask for a file name until the attempt to reset the
file is successful (i.e. until an existing file name is entered):

procedure OpenInFile;
begin
repeat

Write('Enter name of input file ');
Readln(InFileName);
Assign(InFile, InFileName);

Reset(InFile) {$I+} ;
OK := (I0result = 0);
if not OK then

Writeln('Cannot find file ',InFileName);
until OK;

end;

116 	 TURBO Pascal Reference Manual

I/O checking

When the I directive is passive ({ $1-)), the following standard procedures
should be followed by a check of lOresult to ensure proper error han-
dling:

* Append 	Close 	Read 	Seek
Assign 	Erase 	ReadLn 	Write
BlockRead 	Execute 	Rename 	WriteLn
BlockWrite 	Flush 	Reset
Chain 	* GetDir 	Rewrite

* ChDir 	* MkDir 	* RmDir

* PC-DOS/MS-DOS only.

File Types 	 117

I/O checking

Notes:

118 	 TURBO Pascal Reference Manual

Chapter 15
POINTER TYPES

Variables discussed up to now have been static, i.e. their form and size
is pre-determined, and they exist throughout the entire execution of the
block in which they are declared. Programs, however, frequently need
the use of a data structure which varies in form and size during execu-
tion. Dynamic variables serve this purpose as they are generated as the
need arises and may be discarded after use.

Such dynamic variables are not declared in an explicit variable declara-
tion like static variables, and they cannot be referenced directly by
identifiers. Instead, a special variable containing the memory address of
the variable is used to point to the variable. This special variable is called
& pointer variable.

Defining a Pointer Variable

A pointer type is defined by the pointer symbol A succeeded by the
type identifier of the dynamic variables which may be referenced by
pointer variables of this type.

The following shows how to declare a record with associated pointers.
The type PersonPointer is is declared as a pointer to variables of type
PersonRecord:

type
PersonPointer = ^PersonRecord;
PersonRecord = record

Name: string[50];
Job: string[50];
Next: PersonPointer;

end;
Var
FirstPerson, LastPerson, NewPerson: PersonPointer;

The variables FirstPerson, LastPerson and NewPerson are thus pointer
variables which can point at records of type PersonRecord. As shown
above, the type identifier in a pointer type definition may refer to an
identifier which is not yet defined.

POINTER TYPES 	 119

Allocating Variables (New)

Allocating Variables (New)

Before it makes any sense to use any of these pointer variables we
must, of course, have some variables to point at. New variables of any
type are allocated with the standard procedure New. The procedure has
one parameter which must be a pointer to variables of the type we want
to create.

A new variable of type PersonRecord can thus be created by the state-
ment:

New(FirstPerson);

which has the effect of having FirstPerson point at a dynamically allocat-
ed record of type PersonRecord.

Assignments between pointer variables can be made as long as both
pointers are of identical type. Pointers of identical type may also be
compared using the relational operators = and < > , returning a
Boolean result (True or False).

The pointer value nil is compatible with all pointer types. nil points to no
dynamic variable, and may be assigned to pointer variables to indicate
the absence of a usable pointer. nil may also be used in comparisons.

Variables created by the standard procedure New are stored in a stack-
like structure called the heap. The TURBO Pascal system controls the
heap by maintaining a heap pointer which at the beginning of a program
is initialized to the address of the first free byte in memory. On each call
to New, the heap pointer is moved towards the top of free memory the
number of bytes corresponding to the size of the new dynamic variable.

Mark and Release

When a dynamic variable is no longer required by the program, the stan-
dard procedures Mark and Release are used to reclaim the memory allo-
cated to these variables. The Mark procedure assigns the value of the
heap pointer to a variable. The syntax of a call to Mark is:

120 	 TURBO Pascal Reference Manual

Mark and Release

Mark(Var);

where Var is a pointer variable. The Release procedure sets the heap
pointer to the address contained in its argument. The syntax is:

Release(Var);

where Var is a pointer variable, previously set by Mark. Release thus
discards all dynamic variables above this address, and cannot release
the space used by variables in the middle of the heap. If you want to do
that, you should use Dispose (see page 124) instead of Mark/Release.

The standard function MemAvail is available to determine the available
space on the heap at any given time. Further discussion is deferred to
chapters 20, 21, and 22.

POINTER TYPES 	 121

Using Pointers

Using Pointers

Supposing we have used the New procedure to create a series of
records of type PersonRecord (as in the example on the following page)
and that the field Next in each record points at the next PersonRecord
created, then the following statements will go through the list and write
the contents of each record (FirstPerson points to the first person in the
list):

while FirstPerson <> nil do
with FirstPersonA do
begin

Writeln(Name,' is a ',Job);
FirstPerson := Next;

end;

FirstPerson^.Name may be read as FirstPerson's.Name, i.e. the field
Name in the record pointed to by FirstPerson.

The following demonstrates the use of pointers to maintain a list of
names and related job desires. Names and job desires will be read in un-
til a blank name is entered. Then the entire list is printed. Finally, the
memory used by the list is released for other use. The pointer variable
HeapTop is used only for the purpose of recording and storing the initial
value of the heap pointer. Its definition as a ^ Int ege r (pointer to in-
teger) is thus totally arbitrary.

122 	 TURBO Pascal Reference Manual

Using Pointers

procedure Jobs;
type
PersonPointer = ^PersonRecord;

PersonRecord = record
Name: string[50];
Job: string[50];
Next: PersonPointer;

end;
Var
HeapTop: ^Integer;
FirstPerson, LastPerson, NewPerson: PersonPointer;
Name: string[50];

begin
FirstPerson := nil;

Mark(HeapTop);
repeat
Write('Enter name: 	,);

Readln(Name);
if Name <> " then
begin

New(NewPerson);
NewPerson^.Name := Name;
Write('Enter profession: ');
Readln(NewPerson^.Job);
Writeln;
if FirstPerson = nil then
FirstPerson := NewPerson

else
LastPerson^.Next := NewPerson;

LastPerson := NewPerson;
LastPerson^.Next := nil;

end;
until Name=";
Writeln;
while FirstPerson <> nil do
with FirstPerson^ do
begin

Writeln(Name,' is a ',Job);
FirstPerson := Next;

end;
Release(HeapTop);

end.

POINTER TYPES 	 123

Dispose

Dispose

Instead of Mark and Release, standard Pascal's Dispose procedure may
be used to reclaim space on the heap.

NOTICE that Dispose and Mark/Release use entirely different ap-
proaches to heap management - and never shall the twain meet! Any
one program must use either Dispose or Mark/Release to manage the
heap. Mixing them will produce unpredictable results.

The syntax is:

Dispose (Var) ;

where Var is a pointer variable.

Dispose allows dynamic memory used by a specific pointer variable to
be reclaimed for new use, as opposed to Mark and Release which
releases the entire heap from the specified pointer variable and upward.

Suppose you have a number of variables which have been allocated on
the heap. The following figure illustrates the contents of the heap and
the effect of Dispose(Var3) and Mark(Var3)/ Release(Var3):

Heap 	 After 	 After
Dispose 	Mark/Release

Var 1 Var 1 Varl

Var2 Var2 Var2

Var3

Var4 Var4

Var5 Var5

Var6 Var6

HiMem Var7 Var7

Figure 15-1: Using Dispose

124 	 TURBO Pascal Reference Manual

Dispose

After Disposing a pointer variable, the heap may thus consist of a
number of memory areas in use interspersed by a number of free areas.
Subsequent calls to New will use these if the new pointer variable fits
into the space.

GetMem

The standard procedure GetMem is used to allocate space on the heap.
Unlike New, which allocates as much space as required by the type
pointed to by its argument, GetMem allows the programmer to control
the amount of space allocated. GetMem is called with two parameters:

GetMem(PVar, I)

where PVar is any pointer variable, and I is an integer expression giving
the number of bytes to be allocated.

FreeMem

Syntax: FreeMem;

The FreeMem standard procedure is used to reclaim an entire block of
space on the heap. It is thus the counterpart of GetMem. FreeMem is
called with two parameters:

FreeMem(PVar, I);

where PVar is any pointer variable, and I is an integer expression giving
the number of bytes to be reclaimed, which must be exactly the number
of bytes previously allocated to that variable by GetMem.

Pointer Types- 	 125

MaxA vail

MaxAvail

Syntax: MaxAvail;

The MaxAvail standard function returns the size of the largest consecu-
tive block of free space on the heap. On 16-bit systems this space is in
in number of paragraphs (16 bytes each); on 8-bit systems it is in bytes.
The result is an Integer, and if more than 32767 paragraphs/bytes are
available, MaxAvail returns a negative number. The correct number of
free paragraphs/bytes is then calculated as 65536.0 + MaxAvail.
Notice the use of a real constant to generate a Real result, as the result
is greater than MaxInt.

Hints

Note that no range checking is done on pointers. It is the responsibility
of the programmer to ensure that a pointer points to a legal address.

If you have difficulties using pointers, a drawing of what you are tempt-
ing to do often clears up things.

126 	 TURBO Pascal Reference Manual

Chapter 16
PROCEDURES AND FUNCTIONS

A Pascal program consists of one or more blocks, each of which may
again consist of blocks, etc. One such block is a procedure, another is a
function (in common called subprograms). Thus, a procedure is a
separate part of a program, and it is activated from elsewhere in the
program by a procedure statement (see page 56). A function is rather
similar, but it computes and returns a value when its identifier, or desig-
nator, is encountered during execution (see page 54).

Parameters

Values may be passed to procedures and functions through parameters.
Parameters provide a substitution mechanism which allows the logic of
the subprogram to be used with different initial values, thus producing
different results.

The procedure statement or function designator which invokes the sub-
program may contain a list of parameters, called the actual parameters.
These are passed to the formal parameters specified in the subprogram
heading. The order of parameter passing is the order of appearance in
the parameter lists. Pascal supports two different methods of parameter
passing: by value and by reference, which determines the effect that
changes of the formal parameters have on the actual parameters.

When parameters are passed by value, the formal parameter represents
a local variable in the subprogram, and changes of the formal parame-
ters have no effect on the actual parameter. The actual parameter may
be any expression, including a variable, with the same type as the
corresponding formal parameter. Such parameters are called a value
parameter and are declared in the subprogram heading as in the follow-
ing example. This and the following examples show procedure headings;
see page 137 for a description of function headings.

procedure Example(Numl,Num2: Number; Strl,Str2: Txt);

PROCEDURES AND FUNCTIONS 	 127

Parameters

Number and Txt are previously defined types (e.g. Integer and
string[255]), and Numl, Num2, Strl , and Str2 are the formal parame-
ters to which the value of the actual parameters are passed. The types
of the formal and the actual parameters must correspond.

Notice that the type of the parameters in the parameter part must be
specified as a previously defined type identifier. Thus, the construct:

procedure Select(Model: array[1..500] of Integer);

is not allowed. Instead, the desired type should be defined in the type
definition of the block, and the type identifier should then be used in the
parameter declaration:

type
Range - array[1..500] of Integer;

procedure Select(Model: Range);

When a parameter is passed by reference, the formal parameter in fact
represents the actual parameter throughout the execution of the sub-
program. Any changes made to the formal parameter is thus made to
the actual parameter, which must therefore be a variable. Parameters
passed by reference are called a variable parameters, and are declared
as follows:

procedure Example(Var Numl,Num2: Number)

Value parameters and variable parameters may be mixed in the same
procedure as in the following example:

procedure Example(Var Numl,Num2: Number; Strl,Str2: Txt);

in which Numl and Num2 are variable parameters and Strl and Str2
are value parameters.

All address calculations are done at the time of the procedure call. Thus,
if a variable is a component of an array, its index expression(s) are
evaluated when the subprogram is called.

Notice that file parameters must always be declared as variable parame-
ters.

128 	 TURBO Pascal Reference Manual

Parameters

When a large data structure, such as an array, is to be passed to a sub-
program as a parameter, the use of a variable parameter will save both
time and storage space, as the only information then passed on to the
subprogram is the address of the actual parameter. A value parameter
would require storage for an extra copy of the entire data structure, and
the time involved in copying it.

Relaxations on Parameter Type Checking

Normally, when using variable parameters, the formal and the actual
parameters must match exactly. This means that subprograms employ-
ing variable parameters of type String will accept only strings of the ex-
act length defined in the subprogram. This restriction may be overridden
by the V compiler directive. The default active state ($V +) indicates
strict type checking, whereas the passive state { $V-) relaxes the type
checking and allows actual parameters of any string length to be
passed, irrespective of the length of the formal parameters.

Example:
program Encoder;
{8V-}
type

WorkString = string[255];
Var
Linel: string[80];
Line2: string[100];

procedure Encode(Var LineToEncode: WorkString);
Var I: Integer;
begin

for I := 1 to Length(LineToEncode) do
LinetoEncode[I] := Chr(Ord(LineToEncode[I])-30);

end;
begin
Linel := 'This is a secret message';
Encode(Linel);
Line2 := 'Here is another (longer) secret message';
Encode(Line2);

end.

PROCEDURES AND FUNCTIONS 	 129

Parameters

Untyped Variable Parameters

If the type of a formal parameter is not defined, i.e. the type definition is
omitted from the parameter section of the subprogram heading, then
that parameter is said to be untyped. Thus, the corresponding actual
parameter may be any type.

The untyped formal parameter itself is incompatible with all types, and
may be used only in contexts where the data type is of no significance,
for example as a parameter to Addr, BlockRead/Write, FillChar, or
Move, or as the address specification of absolute variables.

The Switch Var procedure in the following example demonstrates the
use of untyped parameters. It moves the contents of the variable Al to
A2 and the contents of A2 to Al.

procedure SwitchVar(Var Alp,A2p; Size: Integer);
type
A = array[1..MaxInt] of Byte;

Var
Al: A absolute Alp;
A2: A absolute Alp;
Tmp: Byte;
Count: Integer;

begin
for Count := 1 to Size do
begin
Tmp := Al[Count];
Al[Count] := A2[Count];
A2[Count] := Tmp;

end;
end;

Assuming the declarations:

type
Matrix = array[1..50,1..25] of Real;

Var
TestMatrix,BestMatrix: Matrix;

then Switch Var may be used to switch values between the two ma-
trices:

SwitchVar(TestMatrix,BestMatrix, SizeOf(Matrix));

130 	 TURBO Pascal Reference Manual

Procedures

Procedures

A procedure may be either pre-declared (or 'standard') or user-declared,
i.e. declared by the programmer. Pre-declared procedures are parts of
the TURBO Pascal system and may be called with no further declara-
tion. A user-declared procedure may be given the name of a standard
procedure; but that standard procedure then becomes inaccessible
within the scope of the user declared procedure.

Procedure Declaration

A procedure declaration consists of a procedure heading followed by a
block which consists of a declaration Pit and a statement part.

The procedure heading consists of the reserved word procedure fol-
lowed by an identifier which becomes the name of the procedure, op-
tionally followed by a formal parameter list as described on page 127 .

Examples:
procedure LogOn;
procedure Position(X,Y: Integer);
procedure Compute(Var Data: Matrix; Scale: Real);

The declaration part of a procedure has the same form as that of a pro-
gram. All identifiers declared in the formal parameter list and the declara-
tion part are local to that procedure, and to any procedures within it.
This is called the scope of an identifier, outside which they are not
known. A procedure may reference any constant, type, variable, pro-
cedure, or function defined in an outer block.

The statement part specifies the action to be executed when the the
procedure is invoked, and it takes the form of a compound statement
(see page 57). If the procedure identifier is used within the statement
part of the procedure itself, the procedure will execute recursively.
(CP/M-80 only: Notice that the A compiler directive must be passive (
$A-} when recursion is used, see Appendix C.)

The next example shows a program which uses a procedure and
passes a parameter to this procedure. As the actual parameter passed
to the procedure is in some instances a constant (a simple expression),
the formal parameter must be a value parameter.

PROCEDURES AND FUNCTIONS 	 131

Procedures

program Box;
Var
I: Integer;

procedure DrawBox(X1,Y1,X2,Y2: Integer);
Var I: Integer;
begin

GotoXY(X1,Y1);
for I := X1 to X2 do write('-');
for I := Y1+1 to Y2 do
begin

GotoXY(X1,I); Write('!');
GotoXY(X2,I); Write('!');

end;
GotoXY(X1,Y2);
for I := X1 to X2 do Write('-');

end; { of procedure DrawBox }
begin
ClrScr;
for I := 1 to 5 do DrawBox(I*4,I*2,10*I,4*I);
DrawBox(1,1,80,23);

end.

Often the changes made to the formal parameters in the procedure
should also affect the actual parameters. In such cases variable parame-
ters are used, as in the following example:

procedure Switch(Var A,B: Integer);
Var Tmp: Integer;
begin
Tmp := A; A := B; B := Tmp;

end;

When this procedure is called by the statement:

Switch(I,J) ;

the values of I and J will be switched. If the procedure heading in
Switch was declared as:

procedure Switch(A,B: Integer);

i.e. with a value parameter, then the statement Switch(I,J) would
not change I and J.

132 	 TURBO Pascal Reference Manual

Procedures

Standard Procedures

TURBO Pascal contains a number of standard procedures. These are:

1) string handling procedures (described on pages 71 pp),
2) file handling procedures (described on pages 94, 101, and 114).
3) procedures for allocation of dynamic variables (described on pages 120

and 125), and
4) input and output procedures (described on pages 108 pp).

In addition to these, the following standard procedures are available,
provided that the associated commands have been installed for your ter-
minal (see pages 12 pp):

ClrEol

Syntax: ClrEol;

Clears all characters from the cursor position to the end of the line
without moving the cursor.

CIrScr

Syntax: CIrScr;

Clears the screen and places the cursor in the upper left-hand corner.
Beware that some screens also reset the video-attributes when clearing
the screen, possibly disturbing any user-set attributes.

Crtlnit

Syntax: Crtlnit;

Sends the Terminal Initialization String defined in the installation pro-
cedure to the screen.

PROCEDURES AND FUNCTIONS 	 133

Procedures

CrtExit

Syntax: CrtExit;

Sends the Terminal Reset String defined in the installation procedure to
the screen.

Delay

Syntax: Delay(Time);

The Delay procedure creates a loop which runs for approx. as many mil-
liseconds as defined by its argument Time which must be an integer.
The exact time may vary somewhat in different operating environments.

DelLine

Syntax: DelLine;

Deletes the line containing the cursor and moves all lines below one line
up.

lnsLine

Syntax: InsLine;

Inserts an empty line at the cursor position. All lines below are moved
one line down and the bottom line scrolls off the screen.

GotoXY

Syntax: GotoXY(Xpos, Ypos);

Moves the cursor to the position on the screen specified by the integer
expressions Xpos (horizontal value, or row) and Ypos (vertical value, or
column). The upper left corner (home position) is (1,1).

134 	 TURBO Pascal Reference Manual

Procedures

Syntax: Exit;

Exits the current block. When exit is executed in a subroutine, it causes
the subroutine to return. When it is executed in the statement part of a
program, it causes the program to terminate. A call to Exit may be com-
pared to a goto statement addressing a label just before the end of a
block.

Syntax: Halt;

Stops program execution and returns to the operating system.

In PC/MS-DOS, Halt may optionally pass a integer parameter specifying
the return code of the program. Halt without a parameter corresponds
to Halt(0). The return code may be examined by the parent process us-
ing an MS-DOS system function call or through an ERRORLEVEL test
in an MS-DOS batch file.

LowVideo

Syntax: LowVideo;

Sets the screen to the video attribute defined as 'Start of Low Video' in
the installation procedure, i.e. 'dim' characters.

NormVideo

Syntax: NormVideo;

Sets the screen to the video attribute defined as 'Start of Normal Video'
in the installation procedure, i.e. the 'normal' screen mode.

Randomize

Syntax: Randomize;

Initializes the random number generator with a random value.

Exit

Halt

PROCEDURES AND FUNCTIONS 	 135

Procedures

Move

Syntax: Move(varl ,var2,Num);

Does a mass copy directly in memory of a specified number of bytes.
varl and var2 are two variables of any type, and Num is an integer ex-
pression. The procedure copies a block of Num bytes, starting at the
first byte occupied by varl to the block starting at the first byte occu-
pied by var2. You may notice the absence of explicit 'moveright' and
'moveleft' procedures. This is because Move automatically handles pos-
sible overlap during the move process.

FillChar

Syntax: FillChar(Var, Num, Value);

Fills a range of memory with a given value. Var is a variable of any type,
Num is an integer expression, and Value is an expression of type Byte
or Char. Num bytes, starting at the first byte occupied by Var, are filled
with the value Value.

136 	 TURBO Pascal Reference Manual

Functions

Functions

Like procedures, functions are either standard (pre-declared) or declared
by the programmer.

Function Declaration

A function declaration consists of a function heading and a block which
is a declaration part followed by a statement part.

The function heading is equivalent to the procedure heading, except that
the heading must define the type of the function result. This is done by
adding a colon and a type to the heading as shown here:

function KeyHit: Boolean;
function Compute(Var Value: Sample): Real;
function Power(X,Y: Real): Real;

The result type of a function must be a scalar type (i.e. Integer, Real,
Boolean, Char, declared scalar or subrange), a string type, or a pointer
type.

The declaration part of a function is the same as that of a procedure.

The statement part of a function is a compound statement as described
on page 57 . Within the statement part at least one statement assigning
a value to the function identifier must occur. The last assignment exe-
cuted determines the result of the function. If the function designator
appears in the statement part of the function itself, the function will be
invoked recursively. (CP/M-80 only: Notice that the A compiler directive
must be passive ($A-) when recursion is used, see Appendix C.)

PROCEDURES AND FUNCTIONS 	 137

Functions

The following example shows the use of a function to compute the sum
of a row of integers from I to J.

function RowSum(I,J: Integer): Integer;
function SimpleRowSum(S: Integer): Integer;
begin
SimpleRowSum := S*(S+1) div 2;

end;
begin
RowSum := SimpleRowSum(J)-SimpleRowSum(I-1);

end;

The function SimpleRowSum is nested within the function RowSum.
SimpleRowSum is therefore only available within the scope of RowSum.

The following program is the classical demonstration of the use of a re-
cursive function to calculate the factorial of an integer number:

{$A-) {A- directive allows recursion in CP/M-80 version)
program Factorial;
Var Number: Integer;
function Factorial(Value: Integer): Real;
begin
if Value = 0 then Factorial := 1
else Factorial := Value * Factorial(Value-1);

end;
begin
Read(Number);
Writeln(^M,Number,'! 	',Factorial(Number));

end.

Note that the type used in the definition of a function type must be pre-
viously specified as a type identifier. Thus, the construct:

function LowCase(Line: UserLine): string[80];

is not allowed. Instead, a type identifier should be associated with the type
string[80], and that type identifier should then be used to define the function
result type, for example:

type
Str80 = string[80];

function LowCase(Line: UserLine): Str80;

138 	 TURBO Pascal Reference Manual

Functions

Because of the implementation of the standard procedures Write and
WriteIn, a function using any of the standard procedures Read, ReadIn,
Write, or WriteIn, must never be called by an expression within a Write
or WriteIn statement. In 8-bit systems this is also true for the standard
procedures Str and Val.

Standard Functions

The following standard (pre-declared) functions are implemented in
TURBO Pascal:

1) string handling functions (described on pages 71 pp),
2) file handling functions (described on pages 94 and 101),
3) pointer related functions (described on pages 120 and 125).

Arithmetic Functions

Abs

Syntax: Abs(Num);

Returns the absolute value of Num. The argument Num must be either
Real or Integer, and the result is of the same type as the argument.

ArcTan

Syntax: ArcTan(Num);

Returns the angle, in radians, whose tangent is Num. The argument X
must be either Real or Integer, and the result is Real.

Cos

Syntax: Cos(Num);

Returns the cosine of Num. The argument Num is expressed in radians,
and its type must be either Real or Integer. The result is of type Real.

PROCEDURES AND FUNCTIONS 	 139

Functions

Exp

Syntax: Exp(Num);

Returns the exponential of Num, i.e. enum. The argument Num must be
either Real or Integer, and the result is Real.

Syntax: Frac(Num);

Returns the fractional part of Num, i.e. Frac(Num) = Num - Int(Num).
The argument Num must be either Real or Integer, and the result is
Real.

Syntax: Int(Num);

Returns the integer part of Num, i.e. the greatest integer number less
than or equal to Num, if Num > = 0, or the smallest integer number
greater than or equal to Num, if Num < 0. The argument Num must be
either Real or Integer, and the result is Real.

Syntax: Ln(Num);

Returns the natural logarithm of Num. The argument Num must be ei-
ther Real or Integer, and the result is Real.

Syntax: Sin(Num);

Returns the sine of Num. The argument Num is expressed in radians,
and its type must be either Real or Integer. The result is of type Real.

140 	 TURBO Pascal Reference Manual

Frac

Int

Ln

Sin

Functions

Sqr

Syntax: Sqr(Num);

Returns the square of Num, i.e. Num * Num. The argument Num must
be either Real or Integer, and the result is of the same type as the argu-
ment.

Scirt

Syntax: Sqrt(Num);

Returns the square root of Num. The argument Num must be either
Real or Integer, and the result is Real.

Scalar Functions

Pred

Syntax: Pred(Num);

Returns the predecessor of Num (if it exists). Num is of any scalar type.

Syntax: Succ(Num);

Returns the successor of Num (if it exists). Num is of any scalar type.

Syntax: Odd(Num);

Returns boolean True is Num is an odd number, and False if Num is
even. Num must be of type Integer.

Succ

Odd

PROCEDURES AND FUNCTIONS 	 141

Functions

Transfer Functions

The transfer functions are used to convert values of one scalar type to
that of another scalar type. In addition to the following functions, the re-
type facility described on page 65 serves this purpose.

Syntax: Chr(Num);

Returns the character with the ordinal value given by the integer expres-
sion Num. Example: Chr(65) returns the character 'A'.

Syntax: Ord(Var);

Returns the ordinal number of the value Var in the set defined by the
type Var. Ord(Var) is equivalent to Integer(Var) (see Type Conversions
on page 65. Var may be of any scalar type, except Real, and the result
is of type Integer.

Round

Syntax: Round(Num);

Returns the value of Num rounded to the nearest integer as follows: if
Num > = 0, then Round(Num) = Trunc(Num + 0.5), and if Num <
0, then Round(Num) = Trunc(Num — 0.5) Num must be of type Real,
and the result is of type Integer.

Trunc

Syntax: Trunc(Num);

Returns the greatest integer less than or equal to Num, if Num > = 0,
or the smallest integer greater than or equal to Num, if Num < 0. Num
must be of type Real, and the result is of type Integer.

Chr

Ord

142 	 TURBO Pascal Reference Manual

Functions

Miscellaneous Standard Functions

Hi

Syntax: Hi(/);

The low order byte of the result contains the high order byte of the
value of the integer expression I. The high order byte of the result is
zero. The type of the result is Integer.

KeyPressed

Syntax: KeyPressed

Returns boolean True if a key has been pressed at the console, and
False if no key has been pressed. The result is obtained by calling the
operating system console status routine.

Lo

Syntax: Lo(/);

Returns the low order byte of the value of the integer expression I with
the high order byte forced to zero. The type of the result is Integer.

Random

Syntax: Random;

Returns a random number greater than or equal to zero and less than
one. The type is Real.

Random(Num)

Syntax: Random(Num);

Returns a random number greater than or equal to zero and less than
Num. Num and the random number are both Integers.

PROCEDURES AND FUNCTIONS 	 143

Functions

ParamCount

Syntax: ParamCount;

This integer function returns the number of parameters passed to the
program in the command line buffer. Space and tab characters serve as
separators.

ParamStr

Syntax: ParamStr(N);

This string function returns the Nth parameter from the command line
buffer.

SizeOf

Syntax: SizeOf(Name);

Returns the number of bytes occupied in memory by the variable or type
Name. The result is of type Integer.

Swap

Syntax: Swap(Num);

The Swap function exchanges the high and low order bytes of its in-
teger argument Num and returns the resulting value as an integer.

Example:
Swap ($1234)
	

returns $3412 (values in hex for clarity).

UpCase

Syntax: UpCase(ch);

Returns the uppercase equivalent of its argument ch which must be of
type Char. If no uppercase equivalent exists, the argument is returned
unchanged.

144 	 TURBO Pascal Reference Manual

Forward References

Forward References

A subprogram is forward declared by specifying its heading separately
from the block. This separate subprogram heading is exactly as the nor-
mal heading, except that it is terminated by the reserved word forward.
The block follows later within the same declaration part. Notice that the
block is initiated by a copy of the heading, specifying only the name and
no parameters, types, etc.

Example:
program Catch22;
Var

X: Integer;
function Up(Var I: Integer): Integer; forward;
function Down(Var I: Integer): Integer;
begin
I := I div 2; Writeln(I);
if I <> 1 then I := Up(I);

end;
function Up;
begin
while I mod 2 <> 0 do
begin
I := I*3+1; Writeln(I);

end;
I := Down(I);

end;
begin

Write('Enter any integer: ');
Readln(X);
X := Up(X);
Write('Ok. Program stopped again.');

end.

When the program is executed and if you enter e.g. 6 it outputs:

Procedures and Functions- 	 145

Forward References

3
10
5
16
8
4
2
1
Ok Program stopped again.

The above program is actually a more complicated version of the follow-
ing program:

program Catch222;
Var
X: Integer;

begin
Write('Enter any integer: ');
Readln(X);
while X <> 1 do
begin
if X mod 2= 0 then X := X div 2 else X := X*3+1;
Writeln(X);

end;
Write('Ok. Program stopped again.');

end.

It may interest you to know that it cannot be proved if this small and
very simple program actually will stop for any integer!

146 	 TURBO Pascal Reference Manual

Chapter 17
INCLUDING FILES

The fact that the TURBO editor performs editing only within memory lim-
its the size of source code handled by the editor. The I compiler direc-
tive can be used to circumvent this restriction, as it provides the ability
to split the source code into smaller 'lumps' and put it back together at
compile-time. The include facility also aids program clarity, as commonly
used subprograms, once tested and debugged, may be kept as ,a 'li-
brary' of files from which the necessary files can be included in any oth-
er program.

The syntax for the I compiler directive is:

{$I filename}

where filename is any legal file name. Leading spaces are ignored and
lower case letters are translated to upper case. If no file type is
specified, the default type .PAS is assumed. This directive must be
specified on a line by itself.

Examples:
{$1first .pas}
{$I COMPUTE .MOD}
{$iStdProc }

Notice that a space must be left between the file name and the closing
brace if the file does not have a three-letter extension; otherwise the
brace will be taken as part of the name.

To demonstrate the use of the include facility, let us assume that in your
'library' of commonly used procedures and functions you have a file
called STUPCASE.FUN. It contains the function StUpCase which is
called with a character or a string as parameter and returns the value of
this parameter with any lower case letters set to upper case.

INCLUDING FILES 	 147

INCLUDING FILES

File STUPCASE.FUN:

function StUpCase(St: AnyString): AnyString;
Var I: Integer;
begin

for I := 1 to Length(St) do
St[I] := UpCase(St[I]);

StUpCase := St
end;

In any future program you write which requires this function to convert
strings to upper case letters, you need only include the file at compile-
time instead of duplicating it into the source code:

program Include Demo;
type
InData= string[80];
AnyString= string[255];

Var
Answer: InData;

{$I STUPCASE.FUN}
begin
ReadLn(Answer);
Writeln(StUpCase(Answer));

end.

This method not only is easier and saves space; it also makes program
updating quicker and safer, as any change to a 'library' routine will au-
tomatically affect all programs including this routine.

Notice that TURBO Pascal allows free ordering, and even multiple oc-
currences, of the individual sections of the declaration part. You may
thus e.g. have a number of files containing various commonly used type
definitions in your 'library' and include the ones required by different pro-
grams.

All compiler directives except B and C are local to the file in which they
appear, i.e. if a compiler directive is set to a different value in an included
file, it is reset to its original value upon return to the including file. B and
C directives are always global. Compiler directives are described in
Appendix C.

Include files cannot be nested, i.e. one include file cannot include yet
another file and then continue processing.

148 	 TURBO Pascal Reference Manual

Chapter 18
OVERLAY SYSTEM

The overlay system lets you create programs much larger than can be
accommodated by the computer's memory. The technique is to collect a
number of subprograms (procedures and functions) in one or more files
separate from the main program file, which will then be loaded automati-
cally one at a time into the same area in memory.

The following drawing shows a program using one overlay file with five
overlay subprograms collected into one overlay group, thus sharing the
same memory space in the main program:

Main program
	

Overlay file

Overlay procedure 1

Overlay 	 2 procedure

Overlay procedure 3

Overlay procedure 4

Overlay procedure 5

Figure 18-1 Principle of Overlay System

OVERLAY SYSTEM
	

149

Main program code

Main program code

OVERLAY SYSTEM

When an overlay procedure is called, it is automatically loaded into the
overlay area reserved in the main program. This 'gap' is large enough to
accommodate the largest of the overlays in the group. The space re-
quired by the main program is thus reduced by roughly the sum of all
subprograms in the group less the largest of them.

In the example above, overlay procedure 2 is the largest of the five pro-
cedures and thus determines the size of the overlay area in the main
code. When it is loaded into memory, it occupies the entire overlay area:

Main program Overlay file

Overlay procedure 1

Overlay procedure 3

Overlay procedure 4

Overlay procedure 5

Figure 18-2: Largest Overlay Subprogram Loaded

150 	 TURBO Pascal Reference Manual

OVERLAY SYSTEM

The smaller subprograms are loaded into the same area of memory,
each starting at the first address of the overlay area. Obviously they oc-
cupy only part of the overlay area; the remainder is unused:

Main program

Main program code

Main program code

Overlay file

Overlay procedure 1

Overlay procedure 2

Overlay procedure 4

Overlay procedure 5

Figure 18-3: Smaller Overlay Subprogram Loaded

As procedures 1, 3, 4, and 5 execute in the same space as used by pro-
cedure 2, it is clear that they require no additional space in the main pro-
gram. It is also clear that none of these procedures must ever call each
other, as they are never present in memory simultaneously.

There could be many more overlay procedures in this group of overlays;
in fact the total size of the overlay procedures could substantially
exceed the size of the main program. And they would still require only
the space occupied by the largest of them.

The tradeoff for this extra room for program code is the addition of disk
access time each time a procedure is read in from the disk. With good
planning, as discussed on page 155, this time is negligible.

OVERLAY SYSTEM 	 151

Creating Overlays

Creating Overlays

Overlay subprograms are created automatically, simply by adding the
reserved word overlay to the declaration of any procedure or function:

overlay procedure Initialize;
and
overlay function TimeOfDay: Time;

When the compiler meets such a declaration, code is no longer output
to the main program file, but to a separate overlay file. The name of this
file will be the same as that of the main program, and the type will be a
number designating the overlay group, ranging form 000 through 099.

Consecutive overlay subprograms will be grouped together. I.e. as long
as overlay subprograms are not separated by any other declaration,
they belong to the same group and are placed in the same overlay file.

Example 1:
overlay procedure One;
begin

end;

overlay procedure Two;
begin

end;

overlay procedure Three;
begin

end;

These three overlay procedures will be grouped together and placed in
the same overlay file. If they are the first group of overlay subprograms
in a program, the overlay file will be no. 000.

The three overlay procedures in the following example will be placed in
consecutive overlay files, .000 and .001, because of the declaration of a
non-overlay procedure Count separating overlay procedures Two and
Three.

152 	 TURBO Pascal Reference Manual

overlay procedure One

overlay procedure Two

overlay procedure Three

file .000

file .001

Creating Overlays

The separating declaration may be any declaration, for example a dum-
my type declaration, if you want to force a separation of overlay areas.

Example 2:
overlay procedure One;
begin

end;

overlay procedure Two;
begin

end;

procedure Count;
begin

end

overlay procedure Three;
begin

end;

A separate overlay area is reserved in the main program code for each
overlay group, and the following files will be created:

Main program
	

Overlay files

Main program code

Overlay area 0

procedure Count

Overlay area 1

Main program code

Figure 18-4: Multiple Overlay Files

OVERLAY SYSTEM
	

153

file .000

overlay procedure One

overlay procedure Two

Overlay area

Procedure code

Main program code

Overlay area

Main program code

file .001

overlay procedure
Three

Nested Overlays

Nested Overlays

Overlay subprograms may be nested, i.e. an overlay subprogram may it-
self contain overlay subprograms which may contain overlay subpro-
grams, etc.

Example 3:
program OverlayDemo;

•
overlay procedure One;
begin

end;

overlay procedure Two;
overlay procedure Three;
begin

end;
begin

end;

In this example, two overlay files will be created. File .000 contains over-
lay procedures One and Two, and an overlay area is reserved in the
main program to accommodate the largest of these. Overlay file .001
contains overlay procedure Three which is local to overlay procedure
Two, and an overlay area is created in the code of overlay procedure
Two:

Main program
	

Overlay files 	Overlay files

Figure 18-5: Nested Overlay Files

154 	 TURBO Pascal Reference Manual

Automatic Overlay Management

Automatic Overlay Management

An overlay subprogram is loaded into memory only when called. On
each call to an overlay subprogram, a check is first made to see if that
subprogram is already present in the overlay area. If not, it will automati-
cally be read in from the appropriate overlay file.

Placing Overlay Files

During compilation, overlay files will be placed on the logged drive, i.e.
on the same drive as the main program file (.COM or .CMD file).

During execution, the system normally expects to find its overlay files on
the logged drive. This may be changed as described on pages 196
(PC/MS-DOS), 233 (CP/M-86), and 265 (CP/M-80).

Efficient Use of Overlays

The overlay technique, of course, adds overhead to a program by ad-
ding some extra code to manage the overlays, and by requiring disk
accesses during execution. Overlays, therefore, should be carefully
planned.

In order not to slow down execution excessively, an overlay subprogram
should not be called too often, or - if one is called often - it should at
least be called without intervening calls to other subprograms in the
same overlay file in order to keep disk accesses at a minimum. The ad-
ded time will of course vary greatly, depending on the actual disk
configuration. A 5 1/4" floppy will add much to the run-time, a hard disk
much less, and a RAM-disk, as used by many, very little.

To save as much space as possible in the main program, one group of
overlays should contain as many individual subprograms as possible.
From a pure space-saving point of view, the more subprograms you can
put into a single overlay file, the better. The overlay space used in the
main program needs only accommodate the largest of these subpro-
grams - the rest of the subprograms have a free ride in the same area
of memory. This must be weighed against the time considerations dis-
cussed above.

OVERLAY SYSTEM 	 155

Restrictions Imposed on Overlays

Restrictions Imposed on Overlays

Data Area

Overlay subprograms in the same group share the same area in memory
and thus cannot be present simultaneously. They must therefore not call
each other. Consequently, they may share the same data area which
further adds to the space saved when using overlays (CP/M-80 version
only).

In example 1 on page 152, none of the procedures may therefore call
each other. In example 2, however, overlay procedures One and Two
may call overlay procedure Three, and overlay procedure Three may call
each of the other two, because they are in separate files and conse-
quently in separate overlay areas in the main program.

Forward Declarations

Overlay subprograms may not be forward declared. This restriction is
easily circumvented, however, by forward declaring an ordinary subpro-
gram which then in turn calls the overlay subprogram.

Recursion

Overlay subprograms cannot be recursive. Also this restriction may be
circumvented by declaring an ordinary recursive subprogram which then
in turn calls the overlay subprogram.

Run-Time Errors

Run-time errors occurring in overlays are found as usual, and an ad-
dress is issued by the error handling system. This address, however, is
an address within the overlay area, and there is no way of knowing
which overlay subprogram was actually active when the error occurred.

156 	 TURBO Pascal Reference Manual

Restrictions Imposed on Overlays

Run-time errors in overlays can therefore not always be readily found
with the Options menu's 'Find run-time error' facility. What 'Find run-
time error' will point out is the first occurrence of code at the specified
address. This, of course, may be the place of the error, but the error
may as well occur in a subsequent subprogram within the same overlay
group.

This it not a serious limitation, however, as the type of error and the way
it occurs will most often indicates in which subprogram the error hap-
pened. The way to locate the error precisely is then to place the
suspected subprogram as the first subprogram of the overlay group.
`Find run-time error' will then work.

The best thing to do is not to place subprograms in overlays until
they have been fully debugged!

OVERLAY SYSTEM 	 157

Restrictions Imposed on Overlays

Notes:

158 	 TURBO Pascal Reference Manual

Chapter 19
IBM PC GOODIES

This chapter applies to the IBM PC-versions only, and the functions
described can be expected to work on IBM PC and compatibles
only! If you have problems on a compatible, it's not as compatible as
you thought.

Screen Mode Control
TURBO provides a number of procedures to control the PC's various
screen modes.

Windows
The window routines let you declare a smaller part of the screen to be
your actual work area, protecting the rest of the screen from being
overwritten.

Basic graphics
These built-in graphics routines let you plot points and draw lines in
different colors.

Extended graphics
A set of external graphics routines allow for more advanced graphics.
One simple statement includes these routines in your programs.

Turtlegraphics
The same external machine language file also provides you with turtle-
graphics routines.

Sound
Standard procedures are provided which let you use the PC's sound
capabilities in an easy way.

Keyboard
A number of the special keys of the IBM keyboard are installed as pri-
mary commands for the editor. These commands are listed on page
186, and you may add more if you wish. The secondary WordStar com-
mands are still available.

IBM PC GOODIES 	 159

Screen Mode Control

Screen Mode Control

The IBM PC gives you a choice of screen modes, each with its own
characteristics. Some display characters, some display graphics, and
they all have different capabilities of showing colors. TURBO Pascal sup-
ports all these screen formats and provides an easy way of using them.

The following screen modes are available:

TextMode
GraphColorMode
GraphMode

HiRes

Text Modes

25 lines of 40 or 80 characters
320x200 dots color graphics
320x200 dots black & white graphics (color on
an RGB monitor)
640x200 dots black + one color graphics

In text mode, the PC will display 25 lines of either 40 or 80 characters.
The procedure to invoke this mode is named TextMode and is
called as follows:

TextMode;
TextMode (BW40) ;
TextMode (C40) ;
TextMode (BW80);
TextMode (C80) ;

BW40 is an integer constant with the value 0
C40 is an integer constant with the value 1
BW80 is an integer constant with the value 2
C80 is an integer constant with the value 3

The first example with no parameters invokes the text mode which was
active last, or the one that is currently active. The next two examples
activate black and white text modes with 40 and 80 characters on each
line. The final two examples activate color text modes with 40 and 80
characters on each line. Calling TextMode will clear the screen.

TextMode should be called before exiting a graphics program in order to
return the system to text mode.

160 	 TURBO Pascal Reference Manual

Screen Mode Control

Color Modes

In the color text modes, each character may be chosen to be one of 16
colors, and the background may be one of 8 colors. The colors are re-
ferred to by the numbers 0 through 15. To make things easier, TURBO
Pascal includes 16 pre-defined integer constants which may be used to
identify colors by names:

Dark colors 	Light colors

0: Black
	

8: DarkGray
1: Blue
	

9: LightBlue
2: Green
	

10: LightGreen
3: Cyan
	

11: LightCyan
4: Red
	

12: LightRed
5: Magenta
	

13: LightMagenta
6: Brown
	

14: Yellow
7: LightGray
	

15: White

Table 19-1: Text Mode Color Scale

Characters may be any of these colors, whereas the background may
be any of the dark colors. Notice that some monitors do not recognize
the intensity signal used to create the eight light colors. On such moni-
tors, the light colors will be displayed as their dark equivalents.

TextColor

Syntax: TextColor(Co/or);

This procedure selects color of the characters. Color is an integer ex-
pression in the range 0 through 15, selecting character colors from the
table given above.

Examples:
TextColor(1);
	 selects blue characters

TextColor(Yellow);
	 selects yellow characters

The characters may be made to blink by adding 16 to the color number.
There is a pre-defined constant Blink for this purpose:

TextColor(Red + Blink); 	selects red, blinking characters

IBM PC GOODIES 	 161

Screen Mode Control

TextBackground

Syntax: TextBackground(Color);

This procedure selects color of the background, that is, the cell immedi-
ately surrounding each character; the entire screen consists of 40 or 80
by 25 such cells. Color is an integer expression in the range 0 through
7, selecting character colors from the table given above.

Examples:
TextBackground(4);

	 selects red background
TextBackground(Magenta);

	selects magenta background

Cursor Position

In text mode, two functions will tell you where the cursor is positioned
on the screen:

WhereX

Syntax: WhereX;

This integer function returns the X-coordinate of the current cursor posi-
tion.

WhereY

Syntax: WhereY;

This integer function returns the Y-coordinate of the current cursor posi-
tion.

162 	 TURBO Pascal Reference Manual

Screen Mode Control

Graphics Modes

With a standard IBM graphics video board, or one that is compatible,
TURBO will do graphics. Three modes are supported:

GraphColorMode 320x200 dots color graphics
GraphMode 	320x200 dots black & white graphics
HiRes 	 640x200 dots black + one color graphics

The upper, left corner of the screen is coordinate 0,0. X coordinates
stretch to the right, Y coordinates downward. All drawing is 'clip-ped',
that is, anything displayed outside the screen will be ignored (except
when the turtlegraphics' Wrap is in effect).

Activating one of the graphics modes will clear the screen. The stan-
dard procedure CIrScr works only in text mode, so the way to clear a
graphics screen is to activate a graphics mode, possibly the one that's
already active. With extended graphics and turtlegraphics, however,
there is a ClearScreen procedure which clears the active window.

Graphics can be mixed with text. In 320 x 200 modes, the screen can
display 40 x 25 characters and in 640 x 200 mode, it can display 80 x
25 characters.

The TextMode procedure should be called before exiting a graphics pro-
gram in order to return the system to text mode, see page 160).

GraphColorMode

Syntax: GraphColorMode;

This standard procedure activates the 320x200 dots color graphics
screen giving you X-coordinates between 0 and 319 and Y-coordinates
between 0 and 199. Drawings may use colors selected from the palette
described on page 165.

IBM PC GOODIES 	 163

Screen Mode Control

GraphMode

Syntax: Graph Mode;

This standard procedure activates the 320x200 dots black and white
graphics screen giving you X-coordinates between 0 and 319 and Y-
coordinates between 0 and 199. On a RGB monitor like the IBM
Color/Graphics Display, however, even this mode displays colors from a
limited palette as shown on page 166.

HiRes

Syntax: HiRes;

This standard procedure activates the 640x200 dots high resolution
graphics screen giving you X-coordinates between 0 and 639 and Y-
coordinates between 0 and 199. In high resolutions graphics, the back-
ground (screen) is always black, and you draw in one color set by the
HiResColor standard procedure.

HiResColor

Syntax: HiResColor(Co/or);

This standard procedure selects the color used for drawing in high reso-
lution graphics. Color is an integer expression in the range 0 through 15.
The background (screen) is always black. Changing HiResColor causes
anything already on the screen to change to the new color.

Examples:
HiResColor(7); 	 selects light gray
HiResColor(Blue); 	 selects blue

This one color may be chosen from the following 16 colors:

164 	 TURBO Pascal Reference Manual

Screen Mode Control

Dark colors 	Light colors

0: Black
1: Blue
2: Green
3: Cyan
4: Red
5: Magenta
6: Brown
7: LightGray

8: DarkGray
9: LightBlue
10: LightGreen
11: LightCyan
12: LightRed
13: LightMagenta
14: Yellow
15: White

Table 19-2: Nigh Resolution Graphics Color Scale

Some monitors do not recognize the intensity signal used to create the
eight light colors. On such monitors, the light colors will be dis-played as
their dark equivalents.

Palette

Syntax: Palette(N);

This procedure activates the color palette indicated by the integer ex-
pression N. with a parameter specifying the number of the palette. Four
color palettes exist, each containing three colors (1-3) and a fourth color
(0) which is always equal to the background color (see later):

Color number: 0 1 2 3

Palette 0 Background Green Red Brown
Palette 1 Background Cyan Magenta LightGray
Palette 2 Background LightGreen LightRed Yellow
Palette 3 Background LightCyan LightMagenta White

Table 19-3: Color Palettes in Color Graphics

IBM PC GOODIES 	 165

Screen Mode Control

The graphics routines will use colors from this palette. They are called
with a parameter in the range 0 through 3, and the color actually used is
selected from the active palette:

Plot(X,Y,2)
	

will plot a red point when palette 0 is active.
Plot(X,Y,3)
	

will plot a yellow point when palette 2 is active.
Plot(X,Y,O)
	

will plot a point in the active background color,
in effect erasing that point.

Once a drawing is on the screen, a change of palette will cause all
colors on the screen to change to the colors of the new palette. Only
three colors plus the color of the background may thus be displayed
simultaneously.

The GraphMode supposedly displays only black and white graphics, but
on on an RGB monitor, like the IBM Color/Graphics Display, even this
mode displays the following limited palette:

Color number: 	0 	 1 	 2 	3

Palette 0 	Background Blue 	Red 	LightGray
Palette 1 	Background Lig htBlue 	LightRed 	White

Table 19-4: Color Palettes in B/W Graphics

GraphBackground

Syntax: GraphBackground(Color);

This standard procedure sets the the background color, that is the en-
tire screen, to any of 16 colors. Color is an integer expression in the
range 0 through 1

GraphBackground(0); 	sets the screen to black
GraphBackground(11) ; 	sets the screen to light cyan

The following color numbers and pre-defined constants are available:

166 	 TURBO Pascal Reference Manual

Screen Mode Control

Dark colors 	Light colors

0: Black
	

8: DarkGray
1: Blue
	

9: LightBlue
2: Green
	

10: LightGreen
3: Cyan
	 11: LightCyan

4: Red
	

12: LightRed
5: Magenta
	

13: LightMagenta
6: Brown
	

14: Yellow
7: LightGray
	

15: White

Table 19-5: Graphics Background Color Scale

Some monitors do not recognize the intensity signal used to create the
eight light colors. On such monitors, the light colors will be displayed as
their dark equivalents.

IBM PC GOODIES 	 167

Windows

Windows

TURBO Pascal lets you declare windows anywhere on the screen.
When you write in such a window, the window behaves exactly as if you
were using the entire screen, leaving the rest of the screen untouched.

Text Windows

The Window procedure allows you to define any area on the screen as
the active window in text mode:

Window(X1,Y1,X2,Y2);

where X1 and Y1 are the absolute coordinates of the upper left corner
of the window, X2 and Y2 are the absolute coordinates of the lower
right corner. The minimum size of the text window is 2 columns by 2
lines.

The default window is 1,1,80,25 in 80-column modes and 1,1,40,25 in
40-column modes, that is, the entire screen.

All screen coordinates (except the window coordinates themselves) are
relative to the active window. This means that after the statement:

Window(20,8,60,17);

which defines the center portion of the physical screen to be your active
window, screen coordinates 1,1 (upper left corner) are now the upper
left corner of the window, not of the physical screen:

168 	 TURBO Pascal Reference Manual

Windows

Figure 19-1: Text Windows

The screen outside the window is simply not accessible, and the window
behaves as it were the entire screen. You may insert, delete, and scroll
lines, and lines will wrap around if too long.

Graphics Windows

The Graph Window procedure allows you to define an area of the screen
as the active window in any of the graphics modes:

GraphWindow(X1,Y1,X2,Y2);

where X1 and Y1 are the absolute coordinates of the upper left corner
of the window, X2 and Y2 are the absolute coordinates of the lower
right corner.

The default graphics window is 0,0,319,199 in 320x200-dot modes and
0,0,639,199 in 640x200-dot mode, that is, the entire screen.

ALL screen coordinates are relative to the active window—not to the
physical screen. For example, after:

GraphWindow(50,100,200,180);

coordinate 0,0 is in the upper left corner of the window.

Windows cause graphics to be 'clipped', that is, if you for example Draw
between two coordinates outside the window, only the part of the line
that falls within the window will be shown:

IBM PC GOODIES 	 169

Windows

Figure 19-2: Graphics Windows

170 	 TURBO Pascal Reference Manual

Basic Graphics

Basic Graphics

In each of the graphics modes, TURBO Pascal provides standard pro-
cedures which will plot points at specified coordinates and draw lines
between two coordinates:

Plot

Syntax: Plot(X, Y,Color);

Plots a point at the screen coordinates specified by X and Yin the color
specified by Color. X, Y, and Color are integer expressions.

Draw

Syntax: Draw(X1 ,Y1 ,X2,Y2,Color);

Draws a line between the screen coordinates specified by X/, Y/ and
X2, Y2 in the color specified by Color. All parameters are integer expres-
sions.

IBM PC GOODIES 	 171

Extended Graphics

Extended Graphics

TURBO Pascal comes with a set of external machine language routines
that can be included in TURBO programs during compilation. They pro-
vide extended graphics commands as described in the following.

The external graphics routines are contained in the file GRAPH.BIN. The
file GRAPH.P contains the necessary external declarations, and the ex-
tended graphics routines are included in a TURBO program simply by
using this statement to include the GRAPH.P file in the program:

($1 GRAPH. P }

ColorTable

Syntax: ColorTable(C1,C2,C3,C4);

ColorTable supplements Palette by defining a color 'translation table'
which lets the current color of any given point determine the new color
of that point when it is written again. The default color table value is
(0,1,2,3), which means that when a point is written on the screen, it
does not change the color that's already there:

color 0 becomes color 0
color 1 becomes color 1
color 2 becomes color 2
color 3 becomes color 3

The table (3,2,1,0) would cause

color 0 to become color 3
color 1 to become color 2
color 2 to become color 1
color 3 to become color 0

that is, all colors would be reversed. The PutPic procedure always uses
the color table; all other draw procedures use the table if a color of —1
is specified, for example:

Plot(X,Y,-1);

172 	 TURBO Pascal Reference Manual

Extended Graphics

Arc

Syntax: Arc(X, Y,Angle,Radius,Color);

Draws an arc of Angle degrees, starting at the position given by X, Y,
with a radius given by Radius. If Angle is positive, the arc turns clock-
wise; if it is negative, the arc turns counterclockwise. If Color is from 0
through 3, the pen color is selected from the color palette (see page
165); if it is — 1, the color is selected from the color translation table
defined by the ColorTable procedure (page 172).

Circle

Syntax: Circle(X,Y,Radius,Color);

Draws a circle in the color given by Color with its center at X, Y and a ra-
dius as specified by Radius.

The radius of the circle is the same in the horizontal and vertical axes. In
320 x 200 mode this draws a perfect circle, as the display is almost
linear. In 640 x 200 mode, however, circles appear as ellipses.

If Color is from 0 through 3, the pen color is selected from the color
palette (see page 165); if it is —1, the color is selected from the color
translation table defined by the ColorTable procedure (page 172).

GetPic

Syntax: GetPic(Buffer,X1,Y1,X2,Y2);

Copies the contents of a rectangular area defined by the integer expres-
sions X1,Y1,X2, Y2 into the variable Buffer, which may be of any type.
The minimum buffer size in bytes required to store the image is calculat-
ed as:

320 x 200 modes:
Size = ((Width + 3) div 4)*Height*2 + 6

640 x 200 modes:
Size = ((Width + 7) div 8)*Height + 6

IBM PC GOODIES 	 173

Extended Graphics

where:

Width = abs(x1-x2) + 1 and Height = abs(y1-y2) + 1

Note that it the responsibility of the programmer to ensure that the
buffer is large enough to accommodate the entire transfer.

The first 6 bytes of the buffer constitute a three word header (three in-
tegers). After the transfer, the first word contains 2 in 320 x 200 mode
or 1 in 640 x 200 mode The second word contains the width of the im-
age and third contains the height. The remaining bytes contain the data.
Data is stored with the leftmost pixels in the most significant bits of the
bytes. At the end of each row, the remaining bits of the last byte are
skipped.

PutPic

Syntax: PutPic(Buffer,X, Y);

Copies the contents of the variable Buffer onto a rectangular area on
the screen. The integer expressions X and Y define the lower left-hand
corner of the picture area. Buffer is a variable of any type, in which a
picture has previously been stored by GetPic. Each bit in the buffer is
converted to a color according to the color map before it is written to
the screen.

GetDotColor

Syntax: GetDotColor(X, Y);

This integer function returns the color value of the dot located at coordi-
nate X, Y. Values of 0 through 3 may be returned in 320 x 200 dot
graphics, and 0 or 1 in 640 x 200 dot graphics. If X,Y is outside the win-
dow, GetDotColor returns — 1.

174 	 TURBO Pascal Reference Manual

Extended Graphics

FillScreen

Syntax: FillScreen(Color);

Fills the entire active window with the color specified by the integer ex-
pression Color. If Color is in the range 0 through 3, the color will be
selected from the color palette, if it is —1, the color table will be used.
This allows for dramatic effects; with a color table of 3,2,1,0, for exam-
ple, FillScreen(— 1) will invert the entire image within the active window.

FillShape Procedure

Syntax: FillShape(X,Y,FillColor,BorderColot);

Fills an area of any shape with the color specified by the integer expres-
sion FillColor which must be in the range 0 through 3. The color transla-
tion table is not supported. The shape must be entirely enclosed by the
color specified by BorderColor, if not, FillShape will 'spill' onto the area
outside the shape. X and Y are the coordinates of a point within the im-
age to be filled.

FillPattem

Syntax: FillPattern(X/,Y1,X2,Y2,Color);

Fills a rectangular area defined by the coordinates X1,Y1,X2,Y2 with the
pattern defined by the Pattern procedure. The pattern is replicated both
horizontally and vertically to fill the entire area. Bits of value 0 cause no
change to the display, whereas bits of value 1 cause a dot to be written
using the color selected by Color.

IBM PC GOODIES 	 175

Extended Graphics

Pattern

Syntax: Pattern(F);

Defines the pattern used by the FillPattem procedure. The pattern is an
8 x 8 matrix defined by the P parameter which must be of type ar-
ray[0..7] of Byte. Each byte corresponds to a horizontal line in the pat-
tern, and each bit corresponds to a pixel. The following shows some
sample patterns and the hexadecimal value of each line in the matrix. A
hyphen represents a binary 0, and an asterisk represents a binary 1.

-* - - -
* $44 * _ * _ * _ * $AA

* - - - * - - - $88 _ * 	* - * - * $55
- * - - - * $11 * - * - * - * $AA

- *- * - - 	- - $22 - * - * - * _ * $55
- * _- - * - - $44 * - * - * - * $AA
* - - - * - _- $88 - 	- * - 	- $55
- - - * - - - * $11 * - * - * - * _ $AA
- - * - - - *- $22 * - * - * - * $55

To use the first pattern, the slanted lines, the following typed constant
could be declared and passed as a parameter to Pattern:

const
Lines: array[0..7] of Byte

($44,$88,$11,$22,$44,$88,$11,$22);

When the pattern is used by the FillPattern procedure, low bits cause no
change to the display, high bits cause a dot to be written.

176 	 TURBO Pascal Reference Manual

Turtlegraphics

Turtlegraphics

The external file GRAPH.BIN that contains the extended graphics rou-
tines mentioned in the previous section also contains the TURBO Turtle-
graphics routines, so whenever you include the graphics declaration file
GRAPH.P:

{$I GRAPH.P }

you also have access to the turtlegraphics described in the following.

TURBO Turtlegraphics is based on the 'turtle' concept devised by S.
Papert and his co-workers at MIT. To make graphics easy for those of
us who might have difficulty understanding cartesian coordinates, Papert
et al. invented the idea of a 'turtle' that could 'walk' a given distance and
turn through a specified angle, drawing a line as it went along. Very sim-
ple algorithms in this system can create more interesting images than an
algorithm of the same length in cartesian coordinates.

Like the other graphics routines, turtlegraphics operate within a window.
This window is set to the entire screen by default but the Window or
Turtle Window procedures can be used to define only part of the screen
as the active graphics area, safeguarding the rest from being overwrit-
ten. Turtlegraphics and ordinary graphics can be used simultaneously,
and they share a common window.

The TURBO Turtlegraphics routines operate on turtle coordinates. The
turtle's home position (0,0) in this coordinate system is always in the
middle of the active window, with positive values stretching to the right
(X) and upwards (Y), and negative values stretching to the left (X) and
downwards (Y):

IBM PC GOODIES 	 177

Turtlegraphics

Figure 19-3: Turtle Coordinates

The range of coordinates on a full screen is:

320 x 200 modes: X = — 159..0..160, Y = — 99..0..100
640 x 200 mode: 	X = — 319..0..320, Y = — 99..0..100

but the actual range will be limited to the size of the active window.
Coordinates outside the active window are legal, but will be ignored.
This means that drawings are 'clipped' to the limits of the active win-
dow.

Back

Syntax: Back(Dist);

Moves the turtle backwards the distance given by the integer expres-
sion Dist from its current position in the direction opposite to the the
turtle's current heading while drawing a line in the current pen color (if
Dist is is negative, the turtle moves forwards).

178 	 TURBO Pascal Reference Manual

Turtlegraphics

ClearScreen

Syntax: ClearScreen;

This procedure clears the active window and homes the turtle.

Forwd

Syntax: Forwd(Dist);

Moves the turtle forwards the distance given by the integer expression
Dist from its current position in the direction the turtle is currently facing,
while drawing a line in the current pen color (if Dist is is negative, the
turtle moves backwards).

Heading

Syntax: Heading;

The Heading function returns an integer in the range 0..359 giving the
direction in which the turtle is currently pointing. 0 is upwards, and in-
creasing angles represent headings in clockwise direction.

HideTurtle

Syntax: HideTurtle;

Hides the turtle, so that it is not shown on the screen. This is the initial
state of the turtle, so to see the turtle, you must first call the ShowTurtle
procedure.

Home

Syntax: Home;

This procedure puts the turtle to its home position at turtle coordinates
0,0 (the middle of the active window), and points it in heading 0 (up-
wards).

IBM PC GOODIES 	 179

Turtlegraphics

NoWrap

Syntax: NoWrap;

This procedure disables the turtle from 'wrapping', that is, re-appear ing
at the opposite side of the active window if it exceeds the window boun-
dary. NoWrap is the system's initial value.

PenDown

Syntax: PenDown;

This procedure 'puts the pen down' so that when the turtle moves, it
draws a line. This is the initial status of the pen.

PenUp

Syntax: PenUp;

This procedure 'lifts the pen' so the turtle moves without drawing a line.

SetHeading

Syntax: SetHeading(Angle);

Turns the turtle to the angle specified by the integer expression Angle. 0
is upwards, and increasing angles represent clockwise rotation. If Angle
is not in the range 0..359, it is converted into a number in that range.

Four integer constants are pre-defined to easily turn the turtle in the four
main directions: North = 0 (up), East = 90 (right), South = 180, and
West = 270 (left).

180 	 TURBO Pascal Reference Manual

Turtlegraphics

SetPenColor

Syntax: SetPenColor(Color);

Selects the color of the 'pen', that is, the color that will be used for
drawing when the turtle moves. Color is an integer expression yielding a
value between —1 and 3. If Color is from 0 through 3, the pen color is
selected from the color palette (see page 165); if it is —1, the color is
selected from the color translation table defined by the ColorTable pro-
cedure (page 172).

SetPosition

Syntax: SetPosition(X, Y);

Moves the turtle to the location with coordinates given by the integer ex-
pressions X and Y without drawing a line.

ShowTurtle

Syntax: ShowTurtle;

Displays the turtle as a small triangle. The turtle is initially hidden, so to
see the turtle, you must first call this procedure.

TurnLeft

Syntax: TurnLeft(Angle);

Turns the turtle Angle degrees from its current direction. Positive angles
turn the turtle to the left, negative angles turn it to the right.

TurnRight

Syntax: TumRight(Angle);

Turns the turtle Angle degrees from its current direction. Positive angles
turn the turtle to the right, negative angles turn it to the left.

IBM PC GOODIES 	 181

Turtlegraphics

TurtleWindow

Syntax: TurtleWindow(X, Y, W,H);

The TurtleWindow procedure defines an area of the screen as the active
graphics area in any of the graphics modes, exactly as does the Win-
dow procedure. Turtle Window, however, lets you define the window in
terms of turtle coordinates, which are more natural to use in turtlegraph-
ics. X and Y are the screen coordinates of the center of the window; W
is its width, and H is its height.

The default TurtleWindow is 159,99,320,200 in 320x200-dot modes and
319,99,640,200 in 640x200-dot mode, that is, the entire screen. If the
turtlewindow is defined to fall partly outside the physical screen, it is
clipped the edges of the physical screen.

Turtlegraphics are 'clipped' to the active window, that is, if you move
the turtle outside the active window, it will not be shown and it will not
draw.

When the window is set (whether by TurtleWindow or by Window, the
turtle is initialized to its Home position and heading. Changing screen
mode resets the window to the entire screen.

Turtlegraphics operate in turtle coordinates. The turtle's home position
(0,0) in this coordinate system is always in the middle of the active win-
dow, with positive values stretching to the right (X) and upwards (Y), and
negative values stretching to the left (X) and downwards (Y):

182 	 TURBO Pascal Reference Manual

Turtlegraphics

Figure 19-4: Turtle Coordinates

The range of coordinates on a full screen is:

320 x 200 modes: 	X = -159..0..160, Y = -99..0..100
640 x 200 mode: 	X = -319..0..320, Y = -99..0..100

but the actual range will be limited to the size of the active window.

Coordinates outside the active window are legal, but will be ignored.
This means that drawings are 'clipped' to the limits of the active
window, and anything drawn outside of the active window is lost.

TurtleThere

Syntax: TurtleThere;

This boolean function returns True if the turtle is visible in the
active window (after a ShowTurtle), otherwise it returns False.

TurtleDelay

Syntax: TurtleDelay(Ms);

This procedure sets a delay in milliseconds between each step of the
turtle. Normally, there is no delay.

IBM PC GOODIES 	 183

Turtlegraphics

Wrap

Syntax: Wrap;

After a call to this procedure, the turtle will re-appear at the opposite
side of the active window when it exceeds the window boundary. Use
No Wrap to return to normal.

Xcor

Syntax: Xcor;

This function returns the integer value of the turtle's current X-
coordinate.

Ycor

Syntax: Ycor;

This function returns the integer value of the turtle's current Y-
coordinate.

184 	 TURBO Pascal Reference Manual

Sound

Sound

The PC's speaker is accessed through the standard procedure Sound

Sound(I) ;

where I is an integer expression specifying the frequency in Hertz. The
specified frequency will be emitted until the speaker is turned off with a
call to the NoSound standard procedure:

NoSound

The following example program will emit a 440-Hertz beep for half a
second:

begin
Sound(440);
Delay(500);
NoSound;

end.

IBM PC GOODIES 	 185

Editor Command Keys

Editor Command Keys

In addition to the WordStar commands, the editing keys of IBM PC key-
board have been implemented as primary commands. This means that
while e.g. Ctrl-E, Ctrl-X, Ctrl-S, and Ctrl-D still move the cursor up,
down, left, and right, you may also use the arrows on the numeric
keypad. The following table provides an overview of available editing
keys, their functions, and their WordStar-command equivalents:

ACTION
	

PC-KEY
	

COMMAND

Character left
Character right
Word left
Word right
Line up
Line down
Page up
Page down
To left on line
To right on line
To top of page
To bottom of page
To top of file
To end of file
Insert mode on/off
Mark block begin
Mark block end
Tab

Left arrow
Right arrow
Ctrl-left arrow
Ctrl-right arrow
Up arrow
Down arrow
PgUp
PgDn
Home
End
Ctrl-Home
Ctrl-End
Ctrl-PgUp
Ctrl-PgDn
Ins
F7
F8
<TAB>

Ctrl-S
Ctrl-D
Ctrl-A
Ctrl-F
Ctrl-E
Ctrl-X
Ctrl-R
Ctrl-C
Ctrl-Q-S
Ctrl-Q-D
Ctrl-Q-E
Ctrl-Q-X
Ctrl-Q-R
Ctrl-Q-C
Ctrl-V
Ctrl-K-B
Ctrl-K-K
Ctrl-I

Table 19-6: IBM PC Keyboard Editing Keys

Note that while maintaining WordStar compatibility in the commands,
some function keys have different meanings in WordStar and TURBO.

186 	 TURBO Pascal Reference Manual

Chapter 20
PC-DOS AND MS-DOS

This chapter describes features of TURBO Pascal specific to the PC-
DOS and MS-DOS implementations. It presents two kinds of informa-
tion:

1) Things you should know to make efficient use of TURBO Pascal. Pages
187 through 209.

2) The rest of the chapter describes things which are of interest only to ex-
perienced programmers, such as machine language routines, technical
aspects of the compiler, etc.

Tree-Structured Directories

On the Main Menu

The DOS structured directories are supported by TURBO's main menu:

Logged drive: A
Active directory: \

Work file:
Main file:

Edit 	Compile Run Save
Dir 	Quit compiler Options

Text: 	0 bytes
Free: 62903 bytes

> ■

Figure 20-1: TURBO Main Menu

PC-DOS AND MS-DOS
	

187

Tree-Structured Directories

Notice the addition of the A command which lets you change the Active
directory using the same path description as with the CHDIR command
of DOS. The currently active directory is shown after the colon.

DOS uses a backslash: \ to refer to the ROOT directory, as shown in
the example. The rest of directories have names just like files, that is a
1-8 letter name optionally followed by a period and a 1-3 letter type.
Each directory can contain ordinary files or other directories.

Files in this system of directories are referenced by a path name in addi-
tion to the file name. A path name consists of the names of the direc-
tories leading to the file, separated by backslashes. The complete refer-
ence to a file called INVADERS.PAS in the directory TURBO is thus:

\TURBO\INVADERS. PAS

The first backslash indicates that the path starts from the root directory.
If you were logged on some other directory, and you wanted to move to
the TURBO directory, you would press A and enter:

\ TURBO

In every sub-directory you will see two special entries in a DIR
listing: 	. 	and 	. . The one period serves to identify this directory
as a sub-directory. The two periods is a reference to the directory's
'parent' directory. These two periods may be used in a directory path; if,
for example, you are logged on a sub-directory of TURBO, you may re-
turn to TURBO by pressing A and then entering the two periods.

188 	 TURBO Pascal Reference Manual

Tree-Structured Directories

Directory-related procedures

TURBO Pascal provides the following procedures to manipulate the
tree-structured directories of MS-DOS.

ChDir

Syntax: ChDir(St);

Changes the current directory to the path specified by the string expres-
sion St. Also changes the logged drive if St contains a file name. For
example:

ChDir('B:\PROG');

MkDir

Syntax: MkDir(St);

Creates a new sub-directory as specified by the path given by the string
expression St. The last item in the path must be an non-existing
filename.

RmDir

Syntax: RmDir(St);

Removes the sub-directory specified by the path given by the string ex-
pression St.

GetDir

Syntax: Get Dir(Dr,St);

Returns the current directory of the drive indicated by Dr in the string
variable St. Dr is an integer expression where 0 = logged drive, 1 = A,
etc.

PC-DOS AND MS-DOS 	 189

Compiler Options

Compiler Options

The 0 command selects the following menu from which you may view
and change some default values of the compiler. It also provides a help-
ful function to find runtime errors in programs compiled into object code
files.

compile -> Memory
Com-file
cHn-file

command line Parameter:

Find run-time error Quit

Figure 20-2: Options Menu

Memory / Com file / cHn-file

The three commands M, C, and H select the compiler mode, i.e. where
to put the code which results from the compilation. Memory is the de-
fault mode. When active, code is produced in memory and resides there
ready to be activated by a Run command.

Com-file is selected by pressing C. The arrow moves to point to this line.
The compiler writes code to a file with the same name as the Work file
(or Main file, if specified) and the file type .COM. This file contains the
program code and Pascal runtime library, and may be activated by typ-
ing its name at the console.

cHain-file is selected by pressing H. The arrow moves to point to this
line. The compiler writes code to a file with the same name as the Work
file (or Main file, if specified) and the file type .CHN. This file contains the
program code but no Pascal library and must be activated from another
TURBO Pascal program with the Chain procedure (see page 193).

When the Com or cHn mode is selected, four additional lines will appear
on the screen:

190 	 TURBO Pascal Reference Manual

Compiler Options

minimum cOde segment size: 	XXXX paragraphs (max.YYYY)
minimum Data segment size: 	XXXX paragraphs (max.YYYY)
mInimum free dynamic memory: XXXX paragraphs
mAximum free dynamic memory: XXXX paragraphs

Figure 20-3: Memory Usage Menu

The use of these commands is described in the following sections.

Minimum Code Segment Size

The 0-command is used to set the minimum size of the code segment
for a .COM using Chain or Execute. As discussed on page 193 , Chain
and Execute do not change the base addresses of the code, data, and
stack segments, and a 'root' program using Chain or Execute must
therefore allocate segments of sufficient size to accommodate the larg-
est segments in any Chained or Executed program.

Consequently, when compiling a 'root' program, you must set the value
of the Minimum Code Segment Size to at least the same value as the
largest code segment size of the programs to be chained/executed from
that root. The required values are obtained from the status printout ter-
minating any compilation. The values are in hexadecimal and specify
number of paragraphs, a paragraph being 16 bytes.

Minimum Data Segment Size

The D-command is used to set the minimum size of the data segment
for a .COM using Chain or Execute. As discussed above, a 'root' pro-
gram using these commands must allocate segments of sufficient size
to accommodate the largest data of any Chained or Executed program.

Consequently, when compiling a 'root' program, you must set the value
of the Minimum Data Segment Size to at least the same value as the
largest data segment size of the programs to be chained/executed from
that root. The required values are obtained from the status printout ter-
minating any compilation. The values are in hexadecimal and specify
number of paragraphs, a paragraph being 16 bytes.

PC-DOS AND MS-DOS 	 191

Compiler Options

Minimum Free Dynamic Memory

This value specifies the minimum memory size required for stack and
heap. The value is in hexadecimal and specifies a number of paragraphs, a
paragraph being 16 bytes.

Maximum Free Dynamic Memory

This value specifies the maximum memory size allocated for stack and
heap. It must be used in programs which operate in a multi-user environ-
ment to assure that the program does not allocate the entire free memory.
The value is in hexadecimal and specifies a number of paragraphs, a para-
graph being 16 bytes.

Command Line Parameters

The P-command lets you enter one or more parameters which are passed
to your program when running it in Memory mode, just as if they had been
entered on the DOS command line. These parameters may be accessed
through the ParamCount and ParamStr functions.

Find Run-time Error

When you run a program compiled in memory, and a run-time error oc-
curs, the editor is invoked, and the error is automatically pointed out. This,
of course, is not possible if the program is in a .COM file or an .CHN file.
Run time errors then print out the error code and the value of the program
counter at the time of the error:

Run-time error 01, PC=1B56
Program aborted

Figure 20-4: Run-time Error Message

To find the place in the source text where the error occurred, enter the
F command. When prompted for the address, enter the address given
by the error message:

Enter PC: 1B56

Figure 20-5: Find Run-time Error
192 	 TURBO Pascal Reference. Manual

Compiler Options

The place in the source text is now found and pointed out exactly as if
the error had occurred while running the program in memory.

Notice that locating errors in programs using overlays can be a bit more
tricky, as explained on page 196.

Standard Identifiers

The following standard identifiers are unique to the DOS implementa-
tions:

CSeg LongFilePos MemW PortW
DSeg LongFileSize MsDos SSeg
Intr 	LongSeek 	Ofs 	Seg

Chain and Execute

TURBO Pascal provides two procedures Chain and Execute which allow
TURBO programs to activate other TURBO programs. The syntax of the
procedure calls are:

Chain(Fi/Var)
Execute(Fi/Var)

where FilVar is a file variable of any type, previously assigned to a disk
file with the standard procedure Assign. If the file exists, it is loaded into
memory and executed.

The Chain procedure is used only to activate special TURBO Pascal
.CHN files, i.e. files compiled with the cHn-file option selected on the
Options menu (see page 190). Such a file contains only program code;
no Pascal library, it uses the Pascal library already present in memory.

The Execute procedure is used to activate any TURBO Pascal .COM
file.

If the disk file does not exist, an I/O error occurs. This error is treated as
described on page 116. When the I compiler directive is passive (($1-)),
program execution continues with the statement following the failed
Chain or Execute statement, and the lOresult function must be called
prior to further I/O.

PC-DOS AND MS-DOS 	 193

Chain and Execute

Data can be transferred from the current program to the chained pro-
gram either by shared global variables or by absolute address variables.

To ensure overlapping, shared global variables should be declared as
the very first variables in both programs, and they must be listed in the
same order in both declarations. Furthermore, both programs must be
compiled to the same size of code and data segments (see page 191).
When these conditions are satisfied, the variables will be placed at the
same address in memory by both programs, and as TURBO Pascal
does not automatically initialize its variables, they may be shared.

Example:
Program MAIN.COM:
program Main;
var

Tx t : 	string[80];
CntPrg: 	file;

begin
Write('Enter any text: '); Readln(Txt);
Assign(CntPrg, 'ChrCount.chn');
Chain(CntPrg);

end.

194 	 TURBO Pascal Reference Manual

Chain and Execute

Program CHRCOUNT.CHN:
program ChrCount;
var

Txt: 	string[80];
NoOfChar,
No0fUpc,

Integer;

begin
NoOfUpc := 0;
NoOfChar := Length(Txt);
for I := 1 to length(Txt) do
if Txt[I] in ['A'..'Z'] then NoOfUpc := Succ(No0fUpc);

Write('No of characters in entry: ',NoOfChar);
Writeln('. No of upper case characters: ', NoOfUpc,'.');

end.

If you want a TURBO program to determine whether it was invoked by
eXecute or directly from the DOS command line, you should use an ab-
solute variable at address Cseg:$80. This is the command line length
byte, and when a program is called from DOS, it contains a value
between 0 and 127. When eXecuting a program, therefore, the calling
program should set this variable to something higher than 127. When
you then check the variable in the called program, a value between 0
and 127 indicates that the program was called from DOS, a higher value
that it was called from another TURBO program.

Chaining and eXecuting TURBO programs does not alter the memory al-
location state. The base addresses and sizes of the code, data and
stack segments are not changed; Chain and Execute only replace the
program code in the code segment. 'Alien' programs, therefore, cannot
be initiated from a TURBO program.

It is important that the first program which executes a Chain statement
allocates enough memory for the code, data, and stack segments to ac-
commodate largest .CHN program. This is done by using the Options
menu to change the minimum code, data and free memory sizes (see
page 190).

Note that neither Chain nor Execute can be used in direct mode, that is,
from a program run with the compiler options switch in position Memory
(page 190).

PC-DOS AND MS-DOS 	 195

Overlays

Overlays

During execution, the system normally expects to find its overlay files on
the logged drive and current directory. The OvrPath procedure may be
used to change this default value.

OvrPath Procedure

Syntax: OvrPath(Path);

where Path is a string expression specifying a subdirectory path (see
page 188 for an explanation of DOS directory paths). On subsequent
calls to overlay files, the files will be expected in the specified directory.
Once an overlay file has been opened in one directory, future calls to the
same file will look in the same directory. The path may optionally specify
a drive (A:, B:, etc.).

The current directory is identified by a single period. OvrPath('.) thus
causes overlay files to be sought on the current directory.

Example :
program OvrTest;

overlay procedure ProcA;
begin
Writeln('Overlay A');

end;

overlay procedure ProcB;
begin
Writeln('Overlay B');

end;

procedure Dummy;
begin

{Dummy procedure to separate the overlays
into two groups)

end;

overlay procedure ProcC;
begin

Writeln('Overlay C');
end;

196 	 TURBO Pascal Reference Manual

Overlays

begin
OvrPath('\subl');
ProcA;
OvrPath('.');
ProcC;
OvrPath('\subl');
ProcB;

end.

The first call to OvrPath specifies overlays to be sought on the subdirec-
tory \sub/. The call to ProcA therefore causes the first overlay file (con-
taining the two overlay procedures ProcA and ProcB to be opened on
this directory.

Next, the OvrPath('.) statement specifies that following overlays are to
be found on the current directory. The call to ProcC opens the second
overlay file here.

The following ProcB statement calls an overlay procedure in the first
overlay file; and to ensure that it is sought on the \subl directory, the
OvrPath('\subl) statement must be executed before the call.

PC-DOS AND MS-DOS 	 197

Files

Files

File Names

A file name in DOS consists of a path of directory names, separated by
backslashes, leading up to the desired directory, followed by the actual
file name:

Drive:\Dirname\...\Dirname\Filename

If the path begins with a backslash, it starts in the root directory; other-
wise, it starts in the logged drive.

The Drive and path specification is optional. If omitted, the file is as-
sumed to reside on the logged drive.

The FileName consists of a name of one through eight letters or digits,
optionally followed by a period and a file type of one through three
letters or digits.

Number of Open Files

The number of files that may be open at the same time is controlled
through the F compiler directive. The default setting is {$F16}, which
means that up to 16 files may be open at any one time. If, for instance,
a {$F24} directive is placed at the beginning of a program (before the
declaration part), up to 24 files may be open concurrently. The F com-
piler directive does not limit the number of files that may be declared in a
program; it only sets a limit to the number of files that may be open at
the same time.

Note that even though the F compiler directive has been used to allo-
cate sufficient file space, you may still experience a 'too many open files'
error condition, if the operating system runs out of file buffers. If that
happens, you should supply a higher value for the 'files = xx' parameter
in the CONFIG.SYS file. The default value is usually 8. For further detail,
please refer to your MS-DOS documentation.

198 	 TURBO Pascal Reference Manual

Files

Extended File Size

The following three additional file routines exist to accommodate the ex-
tended range of records in DOS. These are:

LongFileSize function,
LongFilePosition function, and
LongSeek procedure

They correspond to their Integer equivalents FileSize, FilePosition, and
Position but operate with Reals. The functions thus return results of
type Real, and the second parameter of the LongSeek procedure must
be an expression of type Real.

File of Byte

In the CP/M implementations, access to non-TURBO files (except text
files) must be done through untyped files because the two first bytes of
typed TURBO files always contain the number of components in the file.
This is not the case in the DOS versions, however, and a non-turbo file
may therefore be declared as a file of byte and accessed randomly with
Seek, Read, and Write.

Flush Procedure

The Flush procedure has no effect with typed files in DOS, as DOS
typed file variables do not employ a sector buffer.

Truncate Procedure

Syntax: Truncate(FilVa►);

This procedure truncates the file identified by FilVar at the current posi-
tion of the file pointer, that is, records beyond the file pointer are cut
away. Truncate also prepares the file for subsequent output.

PC-DOS AND MS-DOS 	 199

Files

Text Files

Buffer Size

The text file buffer size is 128 bytes by default. This is adequate for
most applications, but heavily I/O-bound programs, as for example a
copy program, will benefit from a larger buffer, as it will reduce disk
head movement.

You are therefore given the option to specify the buffer size when de-
claring a text file:

VAR TextFile: Text[$800];

declares a text file variable with a buffer size of 2K bytes.

Append Procedure

Syntax: Append(Fi/Vat);

The disk file assigned to the file variable FilVar is opened, and the file
pointer is moved to the end of the file. The only operation allowed after
Append is appending of new components.

Flush Procedure

The Flush procedure causes the file buffer to be flushed when used with
text files.

Logical Devices

The following additional logical devices are provided:

INP: Refers to the MS-DOS standard input file (standard handle number 0).

OUT: Refers to the MS-DOS standard output file (standard handle number 1).

ERR: Refers to the MS-DOS standard error output file (standard handle
number 2).

200 	 TURBO Pascal Reference Manual

Files

These devices may also be used with typed and untyped files.

The MS-DOS operating system itself also provides a number of logical
devices, for instance 'CON', `L.ST' and 'AUX'. TURBO Pascal will treat
these devices as if they were disk files, with one exception: when a text
file is opened, using Reset, Rewrite or Append, TURBO Pascal asks
MS-DOS for the status of the file. If MS-DOS reports that the file is a
device, TURBO Pascal disables the buffering that normally occurs on
textfiles, and all I/O operations on the file are done on a character by
character basis.

The D compiler option may be used to disable this check. The default
state of the D option is ($D +), and in this state, device checks are
made. In the {$D } state, no checks are made and all device I/O
operations are buffered. In this case, a call to the flush standard pro-
cedure will ensure that the characters you have written to a file have ac-
tually been sent to it.

I/O redirection

PC/MS-DOS TURBO Pascal supports the I/O redirection feature provid-
ed by the MS-DOS operating system. In short, I/O redirection allows you
to use disk files as the standard input source and/or standard output
destination. Furthermore, a program supporting I/O redirection can be
used as a filter in a pipe. Details on I/O redirection, filters, and pipes, are
found in the MS-DOS documentation.

I/O redirection is enabled through the G (get) and P (put) compiler direc-
tives. The G directive controls the input file and the P directive controls
the output file. The G and P directives both require an integer argument,
which defines the size of the input or output buffer. The default buffer
sizes are zero, and with these, Input and Output will refer to the CON:
or the TRM: device.

If a non-zero input buffer is defined, for instance ($G256), the standard
Input file will refer to the MS-DOS standard input handle. Likewise, if a
non-zero output buffer is defined, for instance ($P1024), the standard
Output file will refer to the MS-DOS standard output handle. The D com-
piler directive (see page 201) applies to such non-zero-buffer Input and
Output files. The P and G compiler directives must be placed at the be-
ginning of a program to have any effect, i.e. before the declaration part.

PC-DOS AND MS-DOS 	 201

The following program demonstrates re-directed I/O. It will read charac-
ters from the standard input file, keep a count of each alphabetical char-
acter (A through Z), and output a frequency distribution graph to the
standard output file:

($G512,P512,D-)
program CharacterFrequencyCounter;
const
Bar 	= #223;

var
Count: 	array[65..90] of Real;
Ch: 	Char;
I,Graph: Integer;
Max,
Total: Real;

begin
Max := 0; Total := 0;
for I := 65 to 90 do Count[I] := 0;
while not EOF do
begin
Read(Ch);
if Ord(Ch) > 127 then Ch 	Chr(Ord(Ch)-128);
Ch 	UpCase(Ch);
if Ch in ['A'..'Z'] then
begin

Count[Ord(Ch)] := Count[Ord(Ch)] +1;
if Count[Ord(Ch)] > Max then Max := Count[Ord(Ch)];
Total := Total +1;

end;
end;
Writeln(' 	Count 	%');
for I := 65 to 90 do
begin
Write(Chr(I),': 	',Count[I]:5:0,

Count[I]*100/Total:5:0,' ');
for Graph := 1 to Round(Count[I]*63/Max) do

Write(Bar);
Writeln;

end;
Writeln('Total', Total:5:0);

end.

Files

202 	 TURBO Pascal Reference Manual

Files

If the program is compiled into a file called COUNT.COM, then the MS-
DOS command:

COUNT < TEXT.DOC > CHAR.CNT

will read the file TEXT.DOC and output the graph to the file CHAR.CNT.

Absolute Variables

Variables may be declared to reside at specific memory addresses, and
are then called absolute. This is done by adding to the variable declara-
tion the reserved word absolute followed by two Integer constants
specifying a segment and an offset at which the variable is to be locat-
ed:

var
Abc: Integer absolute $0000:$00EE;
Def: Integer absolute $0000:$00F0;

The first constant specifies the segment base address, and the second
constant specifies the offset within that segment. The standard
identifiers CSeg and DSeg may be used to place variables at absolute
addresses within the code segment (CSeg) or the data segment (DSeg):

Special: array[1..CodeSize] absolute CSeg:$05F3;

Absolute may also be used to declare a variable "on top" of another
variable, i.e. that a variable should start at the same address as another
variable. When absolute is followed by the identifier of a variable or
parameter, the new variable will start at the address of that variable
parameter.

Example:
var

Str: string[32];
StrLen: Byte absolute Str;

This declaration specifies that the variable StrLen should start at the
same address as the variable Str, and as the first byte of a string vari-
able contains the length of the string, StrLen will contain the length of
Str. Notice that an absolute variable declaration may only specify one
identifier.

PC-DOS AND MS-DOS 	 203

Absolute Variables

Further details on space allocation for variables are found on page 216.

Absolute Address Functions

The following functions are provided for obtaining information about pro-
gram variable addresses and system pointers.

Addr

Syntax: Addr(Name);

Returns the address in memory of the first byte of the variable with the
identifier Name. If Name is an array, it may be subscribed, and if Name
is a record, specific fields may be selected. The value returned is a 32
bit pointer consisting of a segment address and an offset.

Ofs

Syntax: Ofs(Name);

Returns the offset in the segment of memory occupied by the first byte
of the variable, procedure or function with the identifier Name. If Name
is an array, it may be subscribed, and if Name is a record, specific fields
may be selected. The value returned is an Integer.

Seg

Syntax: Seg(Narne);

Returns the address of the segment containing the first byte of the vari-
able with the identifier Name. If Name is an array, it may be subscribed,
and if Name is a record, specific fields may be selected. The value re-
turned is an Integer.

204 	 TURBO Pascal Reference Manual

Absolute Address Functions

Cseg

Syntax: Cseg;

Returns the base address of the Code segment. The value returned is
an Integer.

Dseg

Syntax: Dseg;

Returns the base address of the Data segment. The value returned is an
Integer.

Sseg

Syntax: Sseg;

Returns the base address of the Stack segment. The value returned is
an Integer.

Predefined Arrays

TURBO Pascal offers four predefined arrays of type Byte, called Mem,
MemW, Port and PortW which are used to access CPU memory and
data ports.

Mem Array

The predefined arrays Mem and MemW are used to access memory.
Each component of the array Mem is a byte, and each component of
the array

Wmem is a word (two bytes, LSB first). The index must be an address
specified as the segment base address and an offset separated by a
colon and both of type Integer.

The following statement assigns the value of the byte located in seg-
ment 0000 at offset $0081 to the variable Value

Value:-Mem[0000:$0081];

PC-DOS AND MS-DOS 	 205

Predefined Arrays

While the following statement:

MemW[Seg(Var):Ofs(Var)]:=Value;

places the value of the Integer variable Value in the memory location oc-
cupied by the two first bytes of the variable Var.

Port Array

The Port and PortW array are used to access the data ports of the
8086/88 CPU. Each element of the array represents a data port, with
the index corresponding to port numbers. As data ports are selected by
16-bit addresses the index type is Integer. When a value is assigned to
a component of Port or PortW it is output to the port specified. When a
component of port is referenced in an expression, its value is input from
the port specified. The components of the Port array are of type Byte
and the components of PortW are of type Integer.

Example:
Port(56] :=10;

The use of the port array is restricted to assignment and reference in
expressions only, i.e. components of Port and PortW cannot be used as
variable parameters to procedures and functions. Furthermore, opera-
tions referring to the entire port array (reference without index) are not
allowed.

With Statements

With statements may be nested to a maximum of 9 levels.

Pointer Related Items

MemAvail

The standard function MemAvail is available to determine the available
space on the heap at any given time. The result is an Integer specifying
the number of available paragraphs on the heap (a paragraph is 16
bytes).

206 	 TURBO Pascal Reference Manual

Pointer Related Items

Pointer Values

In very special circumstances it can be of interest to assign a specific
value to a pointer variable without using another pointer variable or it
can be of interest to obtain the actual value of a pointer variable.

Assigning a Value to a Pointer

The standard function Ptr can be used to assign specific values to a
pointer variable. The function returns a 32 bit pointer consisting of a
segment address and an offset.

Example:
Pointer:=Ptr(Cseg,$80);

Obtaining The Value of a Pointer

A pointer value is represented as a 32 bit entity and the standard func-
tion Ord can therefore not be used to obtain its value. Instead the func-
tions Ofs and Seg must be used.

The following statement obtains the value of the pointer P (which is a
segment address and an offset):

SegmentPart:=Seg(PA);
OffsetPart:=Ofs(PA);

PC-DOS AND MS-DOS 	 207

DOS Function Calls

DOS Function Calls

For the purpose of making DOS system calls, TURBO Pascal introduces
a procedure MsDos, which has a record as parameter:

MsDos(Record) ;

Details on DOS system calls and BIOS routines are found in the IBM
DOS Technical Reference Manual.

The parameter to MsDos must be of the type:

record
AX,BX,CX,DX,BP,SI,DI,DS,ES,Flags: Integer;

end;

or, alternatively:

record case Integer of
1: (AX,BX,CX,DX,BP,SI,DI,DS,ES,Flags: Integer);
2: (AL,AH,BL,BH,CL,CH,DL,DH 	: Byte);

end;

Before TURBO makes the DOS system call, the registers AX, BX, CX,
DX, BP, SI, DI, DS, and ES are loaded with the values specified in the
record parameter. When DOS has finished operation the MsDos pro-
cedure will restore the registers to the record thus making any results
from DOS available.

The following example shows how to use an MsDos function call to get
the time from DOS:

procedure Timer(var Hour,Min,Sec,Frac:Integer);
type
RegPack 	record

AX,BX,CX,DX,BP,SI,DI,DS,ES,Flags: Integer;
end;

var
Regs:
	

Regpack;

208 	 TURBO Pascal Reference Manual

DOS Function Calls

begin
with Regs do
begin

AX := $2C00;
MsDos(Regs);
Hour := hi(CX);
Min := lo(CX);
Sec 	:= hi(DX);
Frac := lo(DX);

end;

end; 	{ procedure Timer }

User Written I/O Drivers

For some applications it is practical for a programmer to define his own
input and output drivers, i.e. routines which perform input and output of
characters to and from an external device. The following drivers are part
of the TURBO environment, and used by the standard I/O drivers
(although they are not available as standard procedures or functions):

function 	ConSt: boolean; (11)
function 	ConIn: Char; 8)
procedure ConOut (Ch: Char); (2)
procedure LstOut (Ch: Char); (5)
procedure AuxOut (Ch: Char); (4)
function 	Auxin: Char; (3)
procedure UsrOut (Ch: Char); (2)
function 	Usrin: Char; (8)

The ConSt routine is called by the function KeyPressed, the ConIn and
ConOut routines are used by the CON:, TRM:, and KBD: devices, the
LstOut routine is used by the LST: device, the AuxOut and Auxin rou-
tines are used by the AUX: device, and the UsrOut and Usrin routines
are used by the USR: device.

By default, these drivers are assigned to the DOS system calls as
showed in curly brackets in the above listing of drivers.

This, however, may be changed by the programmer by assigning the

PC-DOS AND MS-DOS 	 209

User Written I/O Drivers

address of a self-defined driver procedure or a driver function to one of
the following standard variables:

Variable 	Contains the address of the

ConStPtr 	ConSt function
ConlnPtr 	ConIn function
ConOutPtr 	ConOut procedure
LstOutPtr 	LstOut procedure
AuxOutPtr 	AuxOut procedure
AuxInPtr 	Auxin function
UsrOutPtr 	UsrOut procedure
UsrinPtr 	Usrin function

A user defined driver procedure or driver function must match the
definitions given above, i.e. a ConSt driver must be a boolean function, a
ConIn driver must be a char function, etc.

External Subprograms

The reserved word external is used to declare external procedures and
functions, typically procedures and functions written in machine code.

The reserved word external must be followed by a string constant
specifying the name of a file in which executable machine code for the
external procedure or function must reside. The default file type is
.COM.

During compilation of a program containing external functions or pro-
cedures, the associated files are loaded and placed in the object code.
As it is impossible to know in advance exactly where in the object code
the external code will be placed this code must be relocatable, and no
references must be made to the data segment. Furthermore the exter-
nal code must save the registers BP, CS, DS and SS and restore these
before executing the RET instruction.

An external subprogram has no block, i.e. no declaration part and no
statement part. Only the subprogram heading is specified, immediately
followed by the reserved word external and a filename specifying where
to find the executable code for the subprogram.

210 	 TURBO Pascal Reference Manual

External Subprograms

Example:
procedure DiskReset; external 'DSKRESET';
function IOstatus: boolean; external 'IOSTAT';

An external file may contain code for more than one subprogram. The
first subprogram is declared as described above, and the following are
declared by specifying the identifier of the first subprogram followed by
an an integer constant specifying an offset, enclosed in square brackets.
The entry point of each subprogram is the address of the first subpro-
gram plus the offset.

Example:
procedure Coml; external 'SERIAL.BIN';
function Com1Stat: Boolean; external Coml [3] ;
procedure ComlIn: Char; external Com1[6];
procedure ComlOut : Char; external Com1[9] ;

The above example loads the file SERIAL.BIN into the program code,
and defines four procedures called Com1, Com1Stat, Corn1ln, and
Corn1Out with entry points at the base address of the external code
plus 0, 3, 6 and 9, respectively. When an external file contains several
subprograms, the first part of the code is typically a jump table, as as-
sumed in the example. In that way, the entry points of the subprograms
remain unchanged if the external file is modified.

Parameters may be passed to external subprograms, and the syntax is
exactly the same as that of calls to ordinary procedures and functions:

procedure Plot(X,Y: Integer); external 'PLOT';
procedure QuickSort(var List: PartNo); external 'QS';

External subprograms and parameter passing is discussed further on
page 221.

In-line Machine Code

TURBO Pascal features the inline statements as a very convenient way
of inserting machine code instructions directly into the program text. An
inline statement consists of the reserved word inline followed by one or
more code elements separated by slashes and enclosed in parentheses.

PC-DOS AND MS-DOS- 	 211

In-line Machine Code

A code element is built from one or more data elements, separated by
plus (+) or minus (—) signs. A data element is either an integer con-
stant, a variable identifier, a procedure identifier, a function identifier, or
a location counter reference. A location counter reference is written as
an asterisk (*).

Example:
inline (10/162345/count+1/sort-*+2);

Each code element generates one byte or one word (two bytes) of code.
The value of the byte or the word is calculated by adding or subtracting
the values of the data elements according to the signs that separate
them. The value of a variable identifier is the address (or offset) of the
variable. The value of a procedure or function identifier is the address
(or offset) of the procedure or function. The value of a location counter
reference is the address (or offset) of the location counter, i.e. the ad-
dress at which to generate the next byte of code.

A code element will generate one byte of code if it consists of integer
constants only, and if its value is within the 8-bit range (0..255). If the
value is outside the 8-bit range, or if the code element refers to variable,
procedure, or function identifiers, or if the code element contains a loca-
tion counter reference, one word of code is generated (least significant
byte first).

The ' < ' and ' > ' characters may be used to override the automatic
size selection described above. If a code element starts with a <'
character, only the least significant byte of the value is coded, even if it
is a 16-bit value. If a code element starts with a > ' character, a word
is always coded, even though the most significant byte is zero.

Example:
inline (<$1234/>$44);

This inline statement generates three bytes of code: $34, $44, $00.

The value of a variable identifier use in a inline statement is the offset
address of the variable within its base segment. The base segment of
global variables (i.e. variables declared in the main program block) is the
data segment, which is accessible through the DS register. The base
segment of local variables (i.e. variables declared within the current sub-
program) is the stack segment, and in this case the variable offset is re-
lative to the BP (base page) register, the

212 	 TURBO Pascal Reference Manual

LES DI,Strg[BP]
MOV CL,ES:[DI]
INC CL
DEC CL
JZ L2
INC DI
CMP ES:BYTE
JB Ll
CMP ES:BYTE
JA Ll
SUB ES:BYTE PTR
JMP SHORT Ll

}

}

}

[DI],20H)
}

}

}

}

}

PTR [DI],'a 1)
}

PTR [DI],'z')

In-line Machine Code

use of which automatically causes the stack segment to be selected.
The base segment of typed constants is the code segment, which is ac-
cessible through the CS register. inline statements should not attempt
to access variables that are not declared in the main program nor in the
current subprogram.

The following example of an inline statement generates machine code
that will convert all characters in its string argument to upper case.

procedure UpperCase(var Strg: Str);
{Str is type String[255]}
begin
inline
($C4/$BE/Strg/
$26/$8A/$0D/
$FE/$C1/
$FE/$C9/ 	 { Ll:
$74/$13/
$47/
$26/$80/$3D/$61/ {
$72/$F5/
$26/$80/$3D/$7A/ {
$77/$EF/
$26/$80/$2D/$20/ {
$EB/$E9);

{ L2:
end;

Inline statements may be freely mixed with other statements throughout
the statement part of a block, and inline statements may use all CPU
registers. Note, however, that the contents of the registers BP, SP, DS,
and SS must be the same on exit as on entry.

PC-DOS AND MS-DOS- 	 213

Interrupt Handling

Interrupt Handling

A TURBO Pascal interrupt routine must manually preserve registers AX,
BX, CX, DX, SI, DI, DS and ES. This is done by placing the following in-
line statement as the first statement of the procedure:

inline ($50/$53/$51/$52/$56/$57/$1E/$06/$FB);

The last byte ($FB) is an STI instruction which enables further interrupts
- it may or may not be required. The following inline statement must be
the last statement in the procedure:

inline ($07/$1F/$5F/$5E/$5A/$59/$5B/$58/$8B/$E5/$5D/$CF);

This restores the registers and reloads the stack pointer (SP) and the
base page register (BP). The last byte ($CF) is an IRET instruction which
overrides the RET instruction generated by the compiler.

An interrupt service procedure must not employ any I/O operations us-
ing the standard procedures and functions of TURBO Pascal, as the
BDOS is not re-entrant. The programmer must initialize the interrupt
vector used to activate the interrupt service routine.

Intr procedure

Syntax: Intr(lnterruptNo, Result)

This procedure initializes the registers and flags as specified in the
parameter Result which must be of type:

Result = record
AX,BX,CX,DX,BP,SI,DI,DS,ES,Flags: Integer;

end;

It then makes the software interrupt given by the parameter interruptNo
which must be an Integer constant. When the interrupt service routine
returns control to your program, Result will contain any values returned
from the service routine.

214 	 TURBO Pascal Reference Manual

Interrupt Handling

Note that the data segment register DS, used to access global variables,
will not have the correct value when the interrupt service routine is en-
tered. Therefore, global variables cannot be directly accessed. Typed
constants, however, are available, as they are stored in the code seg-
ment. The way to access global variables in the interrupt service routine
is therefore to store the value of Dseg in a typed constant in the main
program. This typed constant can then be accessed by the interrupt
handler and used to set its DS register.

PC-DOS AND MS-DOS 	 215

Internal Data Formats

Internal Data Formats

In the following descriptions, the symbol @ denotes the offset of the
first byte occupied by a variable of the given type within its segment.
The segment base address can be determined by using the standard
function Seg.

Global and local variables, and typed constants occupy different seg-
ments as follows:

Global variables reside in the data segment and the offset is relative to
the DS register.

Local variables reside in the stack segment and the offset is relative to
the BP register.

Typed constants reside in the code segment and the offset is relative to
the CS register.

All variables are contained within their base segment.

Basic Data Types

The basic data types may be grouped into structures (arrays, records,
and disk files), but this structuring will not affect their internal formats.

Scalars

The following scalars are all stored in a single byte: Integer subranges
with both bounds in the range 0..255, booleans, chars, and declared
scalars with less than 256 possible values. This byte contains the ordinal
value of the variable.

The following scalars are all stored in two bytes: Integers, Integer
subranges with one or both bounds not within the range 0..255, and de-
clared scalars with more than 256 possible values. These bytes contain
a 2's complement 16-bit value with the least significant byte stored first.

216 	 TURBO Pascal Reference Manual

Internal Data Formats

Reals

Reals occupy 6 bytes, giving a floating point value with a 40-bit mantissa
and an 8-bit 2's exponent. The exponent is stored in the first byte and
the mantissa in the next five bytes with the least significant byte first:

Exponent
@ + 1 	LSB of mantissa

@ +5
	

MSB of mantissa

The exponent uses binary format with an offset of $80. Hence, an ex-
ponent of $84 indicates that the value of the mantissa is to be multiplied
by 2 "($84-$80) = 2 ^4 = 16. If the exponent is zero, the floating point
value is considered to be zero.

The value of the mantissa is obtained by dividing the 40-bit unsigned in-
teger by 2"40. The mantissa is always normalized, i.e. the most
significant bit (bit 7 of the fifth byte) should be interpreted as a 1. The
sign of the mantissa is stored in this bit, however, a 1 indicating that the
number is negative, and a 0 indicating that the number is positive.

Strings

A string occupies as many bytes as its maximum length plus one. The
first byte contains the current length of the string. The following bytes
contains the string with the first character stored at the lowest address.
In the table shown below, L denotes the current length of the string, and
Max denotes the maximum length:

@ Current length (L)
@ + 1 	First character
@ + 2 	Second character

@ + L 	Last character
@ + L + 1 	Unused

• + Max 	Unused

PC-DOS AND MS-DOS 	 217

Internal Data Formats

Sets

An element in a Set occupies one bit, and as the maximum number of
elements in a set is 256, a set variable will never occupy more than 32
bytes (256/8).

If a set contains less than 256 elements, some of the bits are bound to
be zero at all times and need therefore not be stored. In terms of
memory efficiency, the best way to store a set variable of a given type
would then be to "cut off" all insignificant bits, and rotate the remaining
bits so that the first element of the set would occupy the first bit of the
first byte. Such rotate operations, however, are quite slow, and TURBO
therefore employs a compromise: Only bytes which are statically zero
(i.e. bytes of which no bits are used) are not stored. This method of
compression is very fast and in most cases as memory efficient as the
rotation method.

The number of bytes occupied by a set variable is calculated as (Max
div 8) — (Min div 8) + 1, where Max and Min are the upper and lower
bounds of the base type of that set. The memory address of a specific
element E is:

MemAddress = @ + (E div 8) — (Min div 8)

and the bit address within the byte at MemAddress is:

BitAddress = E mod 8

where E denotes the ordinal value of the element.

Pointers

A pointer consists of four bytes containing a segment base address and
an offset. The two least significant bytes contains the offset and the two
most significant bytes the base address. Both are stored in memory us-
ing byte reversed format, i.e. the least significant byte is stored first. The
value nil corresponds to two zero words.

218 	 TURBO Pascal Reference Manual

Internal Data Formats

Data Structures

Data structures are built from the basic data types using various struc-
turing methods. Three different structuring methods exist: Arrays,
records, and disk files. The structuring of data does not in any way
affect the internal formats of the basic data types.

Arrays

The components with the lowest index values are stored at the lowest
memory address. A multi-dimensional array is stored with the rightmost
dimension increasing first, e.g. given the array

Board: array[1..8,1..8] of Square

you have the following memory layout of its components:

lowest address: Board[1,1]
Board[1,2]

Board[1,8]
Board[2,1]
Board[2,2]

Highest address: Board[8,8]

Records

The first field of a record is stored at the lowest memory address. If the
record contains no variant parts, the length is given by the sum of the
lengths of the individual fields. If a record contains a variant, the total
number of bytes occupied by the record is given by the length of the
fixed part plus the length of largest of its variant parts. Each variant
starts at the same memory address.

PC-DOS AND MS-DOS- 	 219

Internal Data Formats

Disk Files

Disk files are different from other data structures in that data is not
stored in internal memory but in a file on an external device. A disk file is
controlled through a file interface block (FIB).

File Interface Blocks

The following table shows the format of a FIB:

@ + 0 	File handle (LSB).
@ + 1 	File handle (MSB).
@ + 2 	Record length (LSB) or flags byte.
@ + 3 	Record length (MSB) or character buffer.
@ + 4 	Buffer offset (LSB).
@ + 5 	Buffer offset (MSB).
@ + 6 	Buffer size (LSB).
@ + 7 	Buffer size (MSB).
@ + 8 	Buffer pointer (LSB).
@ + 9 	Buffer pointer (MSB).
@ + 10 	Buffer end (LSB).
@ + 11 	Buffer end (MSB).
@ + 12 	First byte of file path.

@ + 75 	Last byte of file path.

The word at @ + 0 and @ + 1 contains the 16-bit file handle returned
by MS-DOS when the file was opened (or OFFFFH when the file is
closed). For typed and untyped files, the word at @ + 2 and @ + 3 con-
tains the record length in bytes (zero if the file is closed), and bytes
@ + 4 to @ + 11 are unused.

For text files, the format of the flags byte at @ + 2 is:

Bit 0..3
	

File type.
Bit 5
	

Pre-read character flag.
Bit 6
	

Output flag.
Bit 7
	

Input flag.

File type 0 denotes a disk file, and 1 through 5 denote the TURBO Pas-
cal logical I/O devices (CON:, KBD:, LST:, AUX:, and USR:). Bit 5 is set
if the character buffer contains a pre-read character, bit 6 is set if output
is allowed, and bit 7 is set if input is allowed.

220 	 TURBO Pascal Reference Manual

Internal Data Formats

The four words from @ + 4 to @ + 11 store the offset address of the
buffer, its size, the offset of the next character to read or write, and the
offset of the first byte after the buffer. The buffer always resides in the
same segment as the FIB, usually starting at @ + 76. When a textfile is
assigned to a logical device, only the flags byte and the character buffer
are used.

The file path is an ASCII string (a string terminated by a zero byte) of up
to 63 characters.

Random Access Files

A random access file consists of a sequence of records, all of the same
length and same internal format. To optimize file storage capacity, the
records of a file are totally contiguous.

TURBO saves no information about the record length. The programmer
must therefore see to it that a random access file is accessed with the
correct record length.

The size returned by the standard function Filesize is obtained from the
DOS directory.

Text Files

The basic components of a text file are characters, but a text file is
furthermore divided into lines. Each line consists of any number of char-
acters ended by a CR/LF sequence (ASCII $0D/ $0A). The file is ter-
minated by a Ctrl-Z (ASCII $16).

Parameters

Parameters are transferred to procedures and functions via the stack
which is addressed through SS:SP.

On entry to an external subroutine, the top of the stack always contains
the return address within the code segment (a word). The parameters, if
any, are located below the return address, i.e. at higher addresses on
the stack.

PC-DOS AND MS-DOS• 	 221

Internal Data Formats

If an external function has the following subprogram header:

function Magic(var R: Real; S: string5): Integer;

then the stack upon entry to Magic would have the following contents:

< Function result
< Segment base address of R
< Offset address of R
< First character of S

< Last character of S
< Length of S
< Return address 	 > SP

An external subroutine should save the Base Page register (BP) and
then copy the Stack Pointer SP into the Base Page register in order to
be able to refer to parameters. Furthermore the subroutine should
reserve space on the stack for local workarea. This can be obtained by
the following instructions:

PUSH BP
MOV BP,SP
SUB SP,WORKAREA

The last instruction will have the effect of adding the following to the
stack:

< Return address 	 > BP
< The saved BP register
< First byte of local workarea >

< Last byte of local work area > SP

Parameters are accessed via the BP register.

The following instruction will load length of the string into the AL regis-
ter:

MOV 	AL , [BP-1]

222 	 TURBO Pascal Reference Manual

Internal Data Formats

Before executing a RET instruction the subprogram must reset the
Stack Pointer and Base Page register to their original values. When exe-
cuting the RET the parameters may be removed by giving RET a param-
eter specifying how many bytes to remove. The following instructions
should therefore be used when exiting from a subprogram:

MOV SP,BP
POP BP
RET NoOfBytesToRemove

Variable Parameters

With a variable (var) parameter, two words are transferred on the stack
giving the base address and offset of the first byte occupied by the actu-
al parameter.

Value Parameters

With value parameters, the data transferred on the stack depends upon
the type of the parameter as described in the following sections.

Scalars

Integers, Booleans, Chars and declared scalars (i.e. all scalars except
Reals) are transferred on the stack as a word. If the variable occupies
only one byte when it is stored, the most significant byte of the parame-
ter is zero.

Reals

A real is transferred on the stack using six bytes.

Strings

When a string is at the top of the stack, the topmost byte contains the
length of the string followed by the characters of the string.

PC-DOS AND MS-DOS 	 223

Internal Data Formats

Sets

A set always occupies 32 bytes on the stack (set compression only ap-
plies to the loading and storing of sets).

Pointers

A pointer value is transferred on the stack as two words containing the
base address and offset of a dynamic variable. The value NIL
corresponds to two zero words.

Arrays and Records

Even when used as value parameters, Array and Record parameters are
not actually transferred on the stack. Instead, two words containing the
base address and offset of the first byte of the parameter are
transferred. It is then the responsibility of the subroutine to use this in-
formation to make a local copy of the variable.

Function Results

User written external functions must remove all parameters and the
function result from the stack when they return.

User written external functions must return their results exactly as
specified in the following:

Values of scalar types, except Reals, must be returned in the AX regis-
ter. If the result is only one byte then Ali should be set to zero. Boolean
functions must return the function value by setting the Z flag (Z =
False, NZ = True).

Reals must be returned on the stack with the exponent at the lowest
address. This is done by not removing the function result variable when
returning.

Sets must be returned on the top of the stack according to the format
described on page 223. On exit SP must point at the byte containing the
string length.

Pointer values must be returned in DX:AX.

224 	 TURBO Pascal Reference Manual

Internal Data Formats

Heap and The Stacks

During execution of TURBO Pascal program the following segments are
allocated for the program:

a Code Segment,
a Data Segment, and
a Stack Segment

Two stack-like structures are maintained during execution of a program:
the heap and the stack.

The heap is used to store dynamic variables, and is controlled with the
standard procedures New, Mark, and Release. At the beginning of a
program, the heap pointer HeapPtr is set to low memory in the stack
segment and the heap grows upwards towards the stack. The pre-
defined variable HeapPtr contains the value of the heap pointer and al-
lows the programmer to control the position of the heap.

The stack is used to store local variables, intermediate results during
evaluation of expressions and to transfer parameters to procedures and
functions. At the beginning of a program, the stack pointer is set to the
address of the top of the stack segment.

On each call to the procedure New and on entering a procedure or func-
tion, the system checks for collision between the heap and the recursion
stack. If a collision has occurred, an execution error results, unless the
K compiler directive is passive ({ $K-}).

PC-DOS AND MS-DOS 	 225

Memory Management

Memory Management

When a TURBO program is executed, three segments are allocated for
the program: A code segment, a data segment, and a stack segment.

Code segment (CS is the code segment register):

CS:0000 - CS:OOFF 	MS-DOS base page.
CS:O100 - CS:EOFR 	Run-time library code.
CS:EOFR - CS:EOFP 	Program code.
CS:EOFP - CS:EOFC 	Unused.

Data segment (DS is the data segment register):

DS:0000 - DS:EOFW 	Run-time library workspace.
DS:EOFW - DS:EOFM 	Main program block variables.
DS:EOFM - DS:EOFD 	Unused.

The unused areas between (CS:EOFP-CS:EOFC and DS:EOFM-
DS:EOFD) are allocated only if a minimum cOde segment size larger
than the required size is specified at compilation. The sizes of the code
and data segments never exceed 64K bytes each.

The stack segment is slightly more complicated, as it may be larger than
64K bytes. On entry to the program the stack segment register (SS) and
the stack pointer (SP) is loaded so that SS:SP points at the very last
byte available in the entire segment. During execution of the program
SS is never changed but SP may move downwards until it reaches the
bottom of the segment, or 0 (corresponding to 64K bytes of stack) if the
stack segment is larger than 64K bytes.

The heap grows from low memory in the stack segment towards the ac-
tual stack residing in high memory. Each time a variable is allocated on
the heap, the heap pointer (which is a double word variable maintained
by the TURBO run-time system) is moved upwards, and then normal-
ized, so that the offset address is always between $0000 and $000F.
Therefore, the maximum size of a single variable that can be allocated
on the heap is 65521 bytes (corresponding to $10000 less $000F). The
total size of all variables allocated on the heap is however only limited by
the amount of memory available. The heap pointer is available to the
programmer through the HeapPtr standard identifier. HeapPtr is a type-
less pointer which is compatible with all pointer types. Assignments to
HeapPtr should be exercised only with extreme care.

226 	 TURBO Pascal Reference Manual

Chapter 21
CP/M-86

This chapter describes features of TURBO Pascal specific to the CP/M-
86 implementation. It presents two kinds of information:

Things you should know to make efficient use of TURBO Pascal. Pages
227 through 240.

The rest of the chapter describes things which are of interest only to ex-
perienced programmers, such as machine language routines, technical
aspects of the compiler, etc.

Compiler Options

The 0 command selects the following menu from which you may view
and change some default values of the compiler. It also provides a help-
ful function to find runtime errors in programs compiled into object code
files.

compile -> Memory
Cmd-file
cHn-file

command line Parameter:

Find run-time error Quit

Figure 21-1: Options Menu

Memory / Cmd file / cHn-file

The three commands M, C, and H select the compiler mode, i.e. where
to put the code which results from the compilation. Memory is the de-
fault mode. When active, code is produced in memory and resides there
ready to be activated by a Run command.

CP/M-86
	

227

Compiler Options

Cmd-file is selected by pressing C. The arrow moves to point to this line.
The compiler writes code to a file with the same name as the Work file
(or Main file, if specified) and the file type .CMD. This file contains the
program code and Pascal runtime library, and may be activated by typ-
ing its name at the console.

cHain-file is selected by pressing H. The arrow moves to point to this
line. The compiler writes code to a file with the same name as the Work
file (or Main file, if specified) and the file type .CHN. This file contains the
program code but no Pascal library and must be activated from another
TURBO Pascal program with the Chain procedure (see page 231).

When the Cmd or cHn mode is selected, four additional lines will appear
on the screen:

minimum cOde segment size: 	XXXX paragraphs (max.YYYY)
minimum Data segment size: 	XXXX paragraphs (max.YYYY)
mInimum free dynamic memory: XXXX paragraphs
mAximum free dynamic memory: XXXX paragraphs

Figure 21-2: Memory Usage Menu

The use of these commands are described in the following sections.

Minimum Code Segment Size

The 0-command is used to set the minimum size of the code segment
for a .CMD using Chain or Execute. As discussed on page 231, Chain
and Execute do not change the base addresses of the code, data, and
stack segments, and a 'root' program using Chain or Execute must
therefore allocate segments of sufficient size to accommodate the larg-
est segments in any Chained or Executed program.

Consequently, when compiling a 'root' program, you must set the value
of the Minimum Code Segment Size to at least the same value as the
largest code segment size of the programs to be chained/executed from
that root. The required values are obtained from the status printout ter-
minating any compilation. The values are in hexadecimal and specify
number of paragraphs, a paragraph being 16 bytes.

228 	 TURBO Pascal Reference Manual

Compiler Options

Minimum Data Segment Size

The D-command is used to set the minimum size of the data segment for a
.CMD using Chain or Execute. As discussed above, a 'root' program us-
ing these commands must allocate segments of sufficient size to accom-
modate the largest data of any Chained or Executed program.

Consequently, when compiling a 'root' program, you must set the value of
the Minimum Data Segment Size to at least the same value as the largest
data segment size of the programs to be chained/executed from that root.
The required values are obtained from the status printout terminating any
compilation. The values are in hexadecimal and specify number of para-
graphs, a paragraph being 16 bytes.

Minimum Free Dynamic Memory

This value specifies the minimum memory size required for stack and
heap. The value is in hexadecimal and specifies a number of paragraphs, a
paragraph being 16 bytes.

Maximum Free Dynamic Memory

This value specifies the maximum memory size allocated for stack and
heap. It must be used in programs which operate in a multi-user environ-
ment like Concurrent CP/M-86 to assure that the program does not allo-
cate the entire free memory. The value is in hexadecimal and specifies a
number of paragraphs, a paragraph being 16 bytes.

Command Line Parameters

The P-command lets you enter one or more parameters which are passed
to your program when running it in Memory mode, just as if they had been
entered on the DOS command line. These parameters may be accessed
through the ParamCount and ParamStr functions.

Find Runtime Error

When you run a program compiled in memory, and a runtime error occurs,
the editor is invoked, and the error is automatically pointed out. This, of
course, is not possible if the program is in a .CMD file or an .CHN file. Run
time errors then print out the error code and the value of the program
counter at the time of the error:

CP/M-86 	 229

Compiler Options

Run-time error 01, PC=1B56
Program aborted

Figure 21-3: Run-time Error Message

To find the place in the source text where the error occurred, enter the
F command. When prompted for the address, enter the address given
by the error message:

Enter PC: 1B56

Figure 21-4: Find Run-time Error

The place in the source text is now found and pointed out exactly as if
the error had occurred while running the program in memory.

Notice that locating errors in programs using overlays can be a bit more
tricky, as explained on page 156.

Standard Identifiers

The following standard identifiers are unique to the 16-bit implementa-
tions:

Bdos 	Int 	Of s 	Seg
CSeg MemW PortW SSeg
DSeg

230 	 TURBO Pascal Reference Manual

Chain and Execute

Chain and Execute

TURBO Pascal provides two procedures Chain and Execute which allow
TURBO programs to activate other TURBO programs. The syntax of the
procedure calls are:

Chain(FilVar)
Execute(Fi/Var)

where FilVar is a file variable of any type, previously assigned to a disk
file with the standard procedure Assign. If the file exists, it is loaded into
memory and executed.

The Chain procedure is used only to activate special TURBO Pascal
.CHN files, i.e. files compiled with the cHn-file option selected on the
Options menu (see page 190). Such a file contains only program code;
no Pascal library, it uses the Pascal library already present in memory.

The Execute procedure is used to activate any TURBO Pascal .CMD
file.

If the disk file does not exist, an I/O error occurs. This error is treated as
described on page 116. When the I compiler directive is passive (($1-)),
program execution continues with the statement following the failed
Chain or Execute statement, and the lOresult function must be called
prior to further I/O.

Data can be transferred from the current program to the chained pro-
gram either by shared global variables or by absolute address variables.

To ensure overlapping, shared global variables should be declared as
the very first variables in both programs, and they must be listed in the
same order in both declarations. Furthermore, both programs must be
compiled to the same size of code and data segments (see pages 228
and 229). When these conditions are satisfied, the variables will be
placed at the same address in memory by both programs, and as
TURBO Pascal does not automatically initialize its variables, they may
be shared.

CP/M-86 	 231

Chain and Execute

Example:
Program MAIN.CMD:

program Main;
var
Txt: 	string[80];
CntPrg: file;

begin
Write('Enter any text: '); Readln(Txt);
Assign(CntPrg, 'ChrCount.chn');
Chain(CntPrg);

end.

Program CHRCOUNT.CHN:

program ChrCount;
var

Txt: 	string[80];
NoOfChar,
NoOfUpc,

Integer;

begin
NoOfUpc := 0;
NoOfChar := Length(Txt);
for I := 1 to length(Txt) do
if Txt[I] in [IA'..'Z'] then NoOfUpc := Succ(NoOfUpc);

Write('No of characters in entry: ',No0fChar);
Writeln('. No of upper case characters: ', No0fUpc,'.');

end.

If you want a TURBO program to determine whether it was invoked by
eXecute or directly from the CP/M command line, you should use an ab-
solute variable at address Dseg:$80. This is the command line length
byte, and when a program is called from CP/M, it contains a value
between 0 and 127. When eXecuting a program, therefore, the calling
program should set this variable to something higher than 127. When
you then check the variable in the called program, a value between 0
and 127 indicates that the program was called from CP/M, a higher
value that it was called from another TURBO program.

232 	 TURBO Pascal Reference Manual

Chain and Execute

Chaining and eXecuting TURBO programs does not alter the memory al-
location state. The base addresses and sizes of the code, data and
stack segments are not changed; Chain and Execute only replace the
program code in the code segment. 'Alien' programs, therefore, cannot
be initiated from a TURBO program.

It is important that the first program which executes a Chain statement
allocates enough memory for the code, data, and stack segments to ac-
commodate largest .CHN program. This is done by using the Options
menu to change the minimum code, data and free memory sizes (see
page 190).

Note that neither Chain nor Execute can be used in direct mode, that is,
from a program run with the compiler options switch in position Memory
(page 190).

Overlays

During execution, the system normally expects to find its overlay files on
the logged drive. The OvrDrive procedure may be used to change this
default value.

OvrDrive Procedure

Syntax: OvrDrive(Drive);

where Drive is an integer expression specifying a drive (0 = logged
drive, 1 = A:, 2 = B:, etc.). On subsequent calls to overlay files, the files
will be expected on the specified drive. Once an overlay file has been
opened on one drive, future calls to the same file will look on the same
drive.

Example:
program OvrTest ;

overlay procedure ProcA;
begin

Writeln('Overlay A');
end;

CP/M-86 	 233

Overlays

overlay procedure ProcB;
begin

Writeln('Overlay B');
end;

procedure Dummy;
begin

{Dummy procedure to separate the overlays
into two groups}

end;

overlay procedure ProcC;
begin

Writeln('Overlay C');
end;

begin
OvrDrive(2);
ProcA;
OvrDrive(0);
ProcC;
OvrDrive(2);
ProcB;

end.

The first call to OvrDrive specifies overlays to be sought on the B: drive.
The call to ProcA therefore causes the first overlay file (containing the
two overlay procedures ProcA and ProcB to be opened here.

Next, the OvrDrive(0) statement specifies that following overlays are to
be found on the logged drive. The call to ProcC opens the second over-
lay file here.

The following ProcB statement calls an overlay procedure in the first
overlay file; and to ensure that it is sought on the B: drive, the
OvrDrive(2) statement must be executed before the call.

234 	 TURBO Pascal Reference Manual

Files

Files

File Names

A file name in CP/M consists of one through eight letters or digits, op-
tionally followed by a period and a file type of one through three letters
or digits:

Drive:Name.Type

Untyped Files

An optional second parameter on Reset and Re Write may be used to
specify the block size to be used by BlockRead and BlockWrite. For ex-
ample:

Assign(InFile,'INDATA');
Reset(InFile,BlockSize);

where BlockSize is an integer expression.

Text Files

The Seek and Flush procedures and the FilePos and FileSize functions
are not applicable to CP/M text files.

Buffer Size

The text file buffer size is 128 bytes by default. This is adequate for
most applications, but heavily I/O-bound programs, as for example a
copy program, will benefit from a larger buffer, as it will reduce disk
head movement.

You are therefore given the option to specify the buffer size when de-
claring a text file:

VAR
TextFile: Text[$1000];

declares a text file variable with a buffer size of 4K bytes.

CP/M-86 	 235

Absolute Variables

Absolute Variables

Variables may be declared to reside at specific memory addresses, and
are then called absolute. This is done by adding to the variable declaration
the reserved word absolute followed by two Integer constants spec-
ifying a segment and an offset at which the variable is to be located:

var
Abc: Integer absolute $0000:$00EE;
Def: Integer absolute $0000:$00F0;

The first constant specifies the segment base address, and the second
constant specifies the offset within that segment. The standard
identifiers CSeg and DSeg may be used to place variables at absolute
addresses within the code segment (CSeg) or the data segment (DSeg):

Patch: array[1..PatchSize] of byte absolute CSeg:$05F3;

Absolute may also be used to declare a variable "on top" of another
variable, i.e. that a variable should start at the same address as another
variable. When absolute is followed by the identifier of a variable or
parameter, the new variable will start at the address of that variable
parameter.

Example:
var
Str: string[32];
StrLen: Byte absolute Str;

This declaration specifies that the variable StrLen should start at the
same address as the variable Str, and as the first byte of a string vari-
able contains the length of the string, StrLen will contain the length of
Str. Notice that an absolute variable declaration may only specify one
identifier.

Further details on space allocation for variables are found on page 246.

236 	 TURBO Pascal Reference Manual

Absolute Address Functions

Absolute Address Functions

The following functions are provided for obtaining information about pro-
gram variable addresses and system pointers.

Addr

Syntax: Addr(Name)

Returns the address in memory of the first byte of the variable with the
identifier Name. If Name is an array, it may be subscribed, and if Name
is a record, specific fields may be selected. The value returned is a 32
bit pointer consisting of a segment address and an offset.

Syntax: Ofs(Name)

Returns the offset in the segment of memory occupied by the first byte
of the variable, procedure or function with the identifier Name. If Name
is an array, it may be subscribed, and if Name is a record, specific fields
may be selected. The value returned is an Integer.

Syntax: Seg(Name)

Returns the address of the segment containing the first byte of the vari-
able with the identifier Name. If Name is an array, it may be subscribed,
and if Name is a record, specific fields may be selected. The value re-
turned is an Integer. To obtain the segment address of a procedure or
function, use the CSEG function.

Cseg

Syntax: Cseg

Returns the base address of the Code segment. The value returned is
an Integer.

Ofs

Seg

CP/M-86 	 237

Absolute Address Functions

Dseg

Syntax: Dseg

Returns the base address of the Data segment. The value returned is an
Integer.

Sseg

Syntax: Sseg

Returns the base address of the Stack segment. The value returned is
an Integer.

Predefined Arrays

TURBO Pascal offers four predefined arrays of type Byte, called Mem,
MemW, Port and PortW which are used to access CPU memory and
data ports.

Mem Array

The predefined arrays Mem and MemW are used to access memory.
Each component Of the array Mem is a byte, and each component of
the array Wmem is a word (two bytes, LSB first). The index must be an
address specified as the segment base address and an offset separated
by a colon and both of type Integer.

The following statement assigns the value of the byte located in seg-
ment 0000 at offset $0081 to the variable Value

Value:=Mem[0000:$0081];

While the following statement:

MemW[Seg(Var):Ofs(Var)]:=Value;

places the value of the Integer variable Value in the memory location oc-
cupied by the two first bytes of the variable Var.

238 	 TURBO Pascal Reference Manual

Predefined Arrays

Port Array

The Port and PortW array are used to access the data ports of the
8086/88 CPU. Each element of the array represents a data port, with
the index corresponding to port numbers. As data ports are selected by
16-bit addresses the index type is Integer. When a value is assigned to
a component of Port or PortW it is output to the port specified. When a
component of port is referenced in an expression, its value is input from
the port specified. The components of the Port array are of type Byte
and the components of PortW are of type Integer.

Example:
Port[56]:=10;

The use of the port array is restricted to assignment and reference in
expressions only, i.e. components of Port and PortW cannot be used as
variable parameters to procedures and functions. Furthermore, opera-
tions referring to the entire port array (reference without index) are not
allowed.

With Statements

With statements may be nested to a maximum of 9 levels.

Pointer Related Items

MemAvail

The standard function MemAvail is available to determine the available
space on the heap at any given time. The result is an Integer specifying
the number of available paragraphs on the heap (a paragraph is 16
bytes).

Pointer Values

In very special circumstances it can be of interest to assign a specific
value to a pointer variable without using another pointer variable or it
can be of interest to obtain the actual value of a pointer variable.

CP/M-86 	 239

Pointer Related Items

Assigning a Value to a Pointer

The standard function Pir can be used to assign specific values to a
pointer variable. The function returns a 32 bit pointer consisting of a
segment address and an offset.

Example:
Pointer: =Ptr(Cseg,1680);

Obtaining The Value of a Pointer

A pointer value is represented as a 32 bit entity and the standard func-
tion Ord can therefore not be used to obtain its value. Instead the func-
tions Ofs and Seg must be used.

The following statement obtains the value of the pointer P (which is a
segment address and an offset):

SegmentPart:=Seg(PA);
OffsetPart:=Ofs(PA);

Function Calls

For the purpose of calling the CP/M-86 BDOS, TURBO Pascal intro-
duces a procedure Bdos, which has a record as parameter.

Details on BDOS and BIOS routines are found in the CP/M-86 Operat-
ing System Manual published by Digital Research.

The parameter to Bdos must be of the type:

record
AX,BX,CX,DX,BP,SI,DI,DS,ES,Flags: Integer;

end;

Before TURBO calls the BDOS, the registers AX, BX, CX, DX, BP, SI,
DI, DS, and ES are loaded with the values specified in the record param-
eter. When the BDOS has finished operation the Bdos procedure will re-
store the registers to the record thus making any results from the BDOS
available.

240 	 TURBO Pascal Reference Manual

User Written I/O Drivers

User Written I/O Drivers

For some applications it is practical for a programmer to define his own
input and output drivers, i.e. routines which perform input and output of
characters to and from an external device. The following drivers are part
of the TURBO environment, and used by the standard I/O drivers
(although they are not available as standard procedures or functions):

function ConSt boolean; (6)
function 	Conin: Char; { 6)
procedure ConOut(Ch: Char); 6
procedure LstOut(Ch: Char); { 5)
procedure AuxOut(Ch: Char); (4)
function Auxin: Char; { 3 }
procedure UsrOut(Ch: Char); (6)
function 	Usrin: Char; (6)

The ConSt routine is called by the function KeyPressed, the Conin and
ConOut routines are used by the CON:, TRM:, and KBD: devices, the
LstOut routine is used by the LST: device, the AuxOut and Auxin rou-
tines are used by the AUX: device, and the UsrOut and Usrin routines
are used by the USR: device.

By default, these drivers are assigned to the BDOS functions as showed
in curly braces in the above listing of drivers.

This, however, may be changed by the programmer by assigning the ad-
dress of a self-defined driver procedure or a driver function to one of the
following standard variables:

Variable 	Contains the address of the

ConStPtr 	ConSt function
ConinPtr 	ConIn function
ConOutPtr 	ConOut procedure
LstOutPtr 	LstOut procedure
AuxOutPtr 	AuxOut procedure
AuxinPtr 	Auxin function
UsrOutPtr 	UsrOut procedure
UsrinPtr 	Usrin function

CP/M-86 	 241

User Written I/O Drivers

A user defined driver procedure or driver function must match the
definitions given above, i.e. a ConSt driver must be a boolean function, a
ConIn driver must be a char function, etc.

External Subprograms

The reserved word external is used to declare external procedures and
functions, typically procedures and functions written in machine code.

The reserved word external must be followed by a string constant
specifying the name of a file in which executable machine code for the
external procedure or function must reside.

During compilation of a program containing external functions or pro-
cedures the associated files are loaded and placed in the object code.
Since it is impossible to know beforehand exactly where in the object
code the external code will be placed this code must be relocatable, and
no references must be made to the data segment. Furthermore the
external code must save the registers BP, CS, DS and SS and restore
these before executing the RET instruction.

An external subprogram has no block, i.e. no declaration part and no
statement part. Only the subprogram heading is specified, immediately
followed by the reserved word external and a filename specifying where
to find the executable code for the subprogram.

The type of the filename is .CMD. Only the code segment of a .CMD file
is loaded.

Example:
procedure DiskReset; external 'DSKRESET';
function IOstatus: boolean; external 'IOSTAT';

Parameters may be passed to external subprograms, and the syntax is
exactly the same as that of calls to ordinary procedures and functions:

procedure Plot(X,Y: Integer); external 'PLOT';
procedure QuickSort(var List: PartNo); external 'QS';

External subprograms and parameter passing is discussed further on
page 252.

242 	 TURBO Pascal Reference Manual

In-line Machine Code

In-line Machine Code

TURBO Pascal features the inline statements as a very convenient way
of inserting machine code instructions directly into the program text. An
inline statement consists of the reserved word inline followed by one or
more code elements separated by slashes and enclosed in parentheses.

A code element is built from one or more data elements, separated by
plus (+) or minus (—) signs. A data element is either an integer con-
stant, a variable identifier, a procedure identifier, a function identifier, or
a location counter reference. A location counter reference is written as
an asterisk (*).

Example:
inline (10/$2345/count+1/sort-*+2);

Each code element generates one byte or one word (two bytes) of code.
The value of the byte or the word is calculated by adding or subtracting
the values of the data elements according to the signs that separate
them. The value of a variable identifier is the address (or offset) of the
variable. The value of a procedure or function identifier is the address
(or offset) of the procedure or function. The value of a location counter
reference is the address (or offset) of the location counter, i.e. the ad-
dress at which to generate the next byte of code.

A code element will generate one byte of code if it consists of integer
constants only, and if its value is within the 8-bit range (0.255). If the
value is outside the 8-bit range, or if the code element refers to variable,
procedure, or function identifiers, or if the code element contains a loca-
tion counter reference, one word of code is generated (least significant
byte first).

The < ' and ' > ' characters may be used to override the automatic
size selection described above. If a code element starts with a ' < '
character, only the least significant byte of the value is coded, even if it
is a 16-bit value. If a code element starts with a ' > ' character, a word
is always coded, even though the most significant byte is zero.

Example:
inline (412341>$44);

This inline statement generates three bytes of code: $34, $44, $00.

CP/M-86 	 243

In-line Machine Code

The value of a variable identifier use in a inline statement is the offset
address of the variable within its base segment. The base segment of
global variables (i.e. variables declared in the main program block) is the
data segment, which is accessible through the DS register. The base
segment of local variables (i.e. variables declared within the current sub-
program) is the stack segment, and in this case the variable offset is re-
lative to the BP (base page) register, the use of which automatically
causes the stack segment to be selected. The base segment of typed
constants is the code segment, which is accessible through the CS re-
gister. inline statements should not attempt to access variables that are
not declared in the main program nor in the current subprogram.

The following example of an inline statement generates machine code
that will convert all characters in its string argument to upper case.

procedure UpperCase(var Strg: Str);
{Str is type String[255]}
begin
inline
($C4/$BE/Strg/ LES DI,Strg[BP]
$26/$8A/$0D/ MOV CL,ES:[DI] 	 }
SFE/$C1/ INC CL 	 }
$FE/$C9/ { Ll: DEC CL 	 }
$74/$13/ JZ L2)
$47/ INC DI
$26/$80/$3D/$61/ { CMP ES:BYTE PTR [DI],'a'}

$72/$F5/ JB LI
$26/$80/$3D/$7A/ { CMP ES:BYTE PTR [DI],'z'}
$77/SEF/ JA Ll)
$26/$80/$2D/$20/ { SUB ES:BYTE PTR [DI],20H}
$EB/$E9); JMP SHORT Ll 	 }

{ L2: }

end;

Inline statements may be freely mixed with other statements throughout
the statement part of a block, and inline statements may use all CPU
registers. Note, however, that the contents of the registers BP, SP, DS,
and SS must be the same on exit as on entry.

244 	 TURBO Pascal Reference Manual

Interrupt Handling

Interrupt Handling

A TURBO Pascal interrupt routine must manually preserve registers AX,
BX, CX, DX, SI, DI, DS and ES. This is done by placing the following in-
line statement as the first statement of the procedure:

inline ($50/$53/$51/$52/$56/$57/$1E/$06/$FB);

The last byte ($FB) is an STI instruction which enables further interrupts
- it may or may not be required. The following inline statement must be
the last statement in the procedure:

inline ($07/$1F/$5F/$5E/$5A/$59/$56/$58/$8B4E5/$5D4CF);

This restores the registers and reloads the stack pointer (SP) and the
base page register (BP). The last byte ($CF) is an IRET instruction which
overrides the RET instruction generated by the compiler.

An interrupt service procedure must not employ any I/O operations us-
ing the standard procedures and functions of TURBO Pascal, as the
BDOS is not re-entrant. The programmer must initialize the interrupt
vector used to activate the interrupt service routine.

Intr procedure

Syntax: Intr(InterruptNo, Result)

This procedure initializes the registers and flags as specified in the
parameter Result which must be of type:

Result = record
AX,BX,CX,DX,BP,SI,DI,DS,ES,Flags: Integer;

end;

It then makes the software interrupt given by the parameter interruptNo
which must be an Integer constant. When the interrupt service routine
returns control to your program, Result will contain any values returned
from the service routine.

CP/M-86 	 245

Interrupt Handling

Note that the data segment register DS, used to access global variables,
will not have the correct value when the interrupt service routine is en-
tered. Therefore, global variables cannot be directly accessed. Typed
constants, however, are available, as they are stored in the code seg-
ment. The way to access global variables in the interrupt service routine
is therefore to store the value of Dseg in a typed constant in the main
program. This typed constant can then be accessed by the interrupt
handler and used to set its DS register.

Internal Data Formats

In the following descriptions, the symbol @ denotes the offset of the
first byte occupied by a variable of the given type within its segment.
The segment base address can be determined by using the standard
function Seg.

Global and local variables, and typed constants occupy different seg-
ments as follows:

Global variables reside in the data segment and the offset is relative to
the DS register.

Local variables reside in the stack segment and the offset is relative to
the BP register.

Typed constants reside in the code segment and the offset is relative to
the CS register.

All variables are contained within their base segment.

Basic Data Types

The basic data types may be grouped into structures (arrays, records,
and disk files), but this structuring will not affect their internal formats.

246 	 TURBO Pascal Reference Manual

Internal Data Formats

Scalars

The following scalars are all stored in a single byte: Integer subranges
with both bounds in the range 0..255, booleans, chars, and declared
scalars with less than 256 possible values. This byte contains the ordinal
value of the variable.

The following scalars are all stored in two bytes: Integets, Integer
subranges with one or both bounds not within the range 0..255, and de-
clared scalars with more than 256 possible values. These bytes contain
a 2's complement 16-bit value with the least significant byte stored first.

Reals

Reals occupy 6 bytes, giving a floating point value with a 40-bit mantissa
and an 8-bit 2's exponent. The exponent is stored in the first byte and
the mantissa in the next five bytes with the least significant byte first:

Exponent
@ + 1 	LSB of mantissa

@ + 5
	

MSB of mantissa

The exponent uses binary format with an offset of $80. Hence, an ex-
ponent of $84 indicates that the value of the mantissa is to be multiplied
by 2 1$84-$80) = 2 ''4 = 16. If the exponent is zero, the floating point
value is considered to be zero.

The value of the mantissa is obtained by dividing the 40-bit unsigned in-
teger by 2'40. The mantissa is always normalized, i.e. the most
significant bit (bit 7 of the fifth byte) should be interpreted as a 1. The
sign of the mantissa is stored in this bit, however, a 1 indicating that the
number is negative, and a 0 indicating that the number is positive.

CP/M-86 	 247

Internal Data Formats

Strings

A string occupies as many bytes as its maximum length plus one. The
first byte contains the current length of the string. The following bytes
contains the string with the first character stored at the lowest address.
In the table shown below, L denotes the current length of the string, and
Max denotes the maximum length:

@ 	 Current length (L)
@ + 1 	First character
@ + 2 	Second character

© + L 	Last character
@ + L + 1 Unused

@ + Max 	Unused

Sets

An element in a Set occupies one bit, and as the maximum number of
elements in a set is 256, a set variable will never occupy more than 32
bytes (256/8).

If a set contains less than 256 elements, some of the bits are bound to
be zero at all times and need therefore not be stored. In terms of
memory efficiency, the best way to store a set variable of a given type
would then be to "cut off" all insignificant bits, and rotate the remaining
bits so that the first element of the set would occupy the first bit of the
first byte. Such rotate operations, however, are quite slow, and TURBO
therefore employs a compromise: Only bytes which are statically zero
(i.e. bytes of which no bits are used) are not stored. This method of
compression is very fast and in most cases as memory efficient as the
rotation method.

The number of bytes occupied by a set variable is calculated as (Max
div 8) — (Min div 8) + 1, where Max and Min are the upper and lower
bounds of the base type of that set. The memory address of a specific
element E is:

MemAddress = 	+ (E div 8) — (Min div 8)

and the bit address within the byte at MemAddress is:

248 	 TURBO Pascal Reference Manual

Internal Data Formats

BitAddress = E mod 8

where E denotes the ordinal value of the element.

Pointers

A pointer consists of four bytes containing a segment base address and
an offset. The two least significant bytes contains the offset and the two
most significant bytes the base address. Both are stored in memory us-
ing byte reversed format, i.e. the least significant byte is stored first. The
value nil corresponds to two zero words.

Data Structures

Data structures are built from the basic data types using various struc-
turing methods. Three different structuring methods exist: Arrays,
records, and disk files. The structuring of data does not in any way
affect the internal formats of the basic data types.

Arrays

The components with the lowest index values are stored at the lowest
memory address. A multi-dimensional array is stored with the rightmost
dimension increasing first, e.g. given the array

Board: array[1..8,1..8] of Square

you have the following memory layout of its components:

lowest address: Board[1,1]
Board[1,2]

Board[1,8]
Board[2,1]
Board[2,2]

Highest address: Board[8,8]

CP/M-86 	 249

Internal Data Formats

Records

The first field of a record is stored at the lowest memory address. If the
record contains no variant parts, the length is given by the sum of the
lengths of the individual fields. If a record contains a variant, the total
number of bytes occupied by the record is given by the length of the
fixed part plus the length of largest of its variant parts. Each variant
starts at the same memory address.

Disk Files

Disk files are different from other data structures in that data is not
stored in internal memory but in a file on an external device. A disk file is
controlled through a file interface block (FIB).

File Interface Blocks

The table below shows the format of a FIB:

@ + 0 	Flags byte.
@ + 1 	Character buffer.
@ + 2 	Number of records (LSB) or buffer offset (LSB).
@ + 3 	Number of records (MSB) or buffer offset (MSB).
@ + 4 	Record length (LSB) or buffer size (LSB).
@ + 5 	Record length (MSB) or buffer size (MSB).
@ + 6 	Buffer pointer (LSB).
@ + 7 	Buffer pointer (MSB).
@ + 8 	Current record (LSB) or buffer end (LSB).
@ + 9 	Current record (MSB) or buffer end (LSB).
@ + 10 Unused.
@ + 11 	Unused.
@ + 12 	First byte of CP/M FCB.

@ + 47 Last byte of CP/M FCB.
@ + 48 	First byte of sector buffer.

@ + 175 Last byte of sector buffer.

250 	 TURBO Pascal Reference Manual

Internal Data Formats

The format of the flags byte at @ + 0 is:

Bit 0..3 	File type.
Bit 4 	Read semaphore.
Bit 5 	Write semaphore or pre-read character flag.
Bit 6 	Output flag.
Bit 7 	Input flag.

File type 0 denotes a disk file, and 1 through 5 denote the TURBO Pas-
cal logical I/O devices (CON:, KBD:, LST:, AUX:, and USR:). For typed
files, bit 4 is set if the contents of the sector buffer is undefined, and bit
5 is set if data has been written to the sector buffer. For textfiles, bit 5 is
set if the character buffer contains a pre-read character. Bit 6 is set if
output is allowed, and bit 7 is set if input is allowed.

For typed and untyped files, the four words from @ + 2 to @ + 9 store
the number of records in the file, the record length in bytes, the sector
buffer pointer, and the current record number. For typed files, the sector
buffer pointer stores an offset (0..127) in the sector buffer at @ + 48.
The FIB of an untyped file has no sector buffer, and so the sector buffer
pointer is not used.

For text files, the four words from @ + 2 to @ + 9 store the offset ad-
dress of the buffer, its size, the offset of the next character to read or
write, and the offset of the first byte after the buffer. The buffer always
resides in the same segment as the FIB, usually starting at @ + 48. The
size of a textfile FIB may be larger than indicated, depending on the size
of the buffer. When a textfile is assigned to a logical device, only the
flags byte and the character buffer are used.

Random Access Files

A random access file consists of a sequence of records, all of the same
length and same internal format. To optimize file storage capacity, the
records of a file are totally contiguous. The first four bytes of the first
sector of a file contains the number of records in the file and the length
of each record in bytes. The first record of the file is stored starting at
the fourth byte.

CP/M-86 	 251

Internal Data Formats

sector 0, byte 0:
	

Number of records (LSB)
sector 0, byte 1:
	

Number of records (MSB)
sector 0, byte 2:
	

Record length (LSB)
sector 0, byte 3:
	

Record length (MSB)

Text Files

The basic components of a text file are characters, but a text file is
furthermore divided into lines. Each line consists of any number of char-
acters ended by a CR/LF sequence (ASCII $0D/ $0A). The file is ter-
minated by a Ctrl-Z (ASCII $16).

Parameters

Parameters are transferred to procedures and functions via the stack
which is addressed through SS:SP.

On entry to an external subroutine, the top of the stack always contains
the return address within the code segment (a word). The parameters, if
any, are located below the return address, i.e. at higher addresses on
the stack.

If an external function has the following subprogram header:

function Magic(var R: Real; S: string5): Integer;

then the stack upon entry to Magic would have the following contents:

< Function result
< Segment base address of R >
< Offset address of R
< First character of S

< Last character of - S
< Length of S
< Return address 	 > SP

An external subroutine should save the Base Page register (BP) and
then copy the Stack Pointer SP into the Base Page register in order to
be able to refer to parameters. Furthermore the subroutine should
reserve space on the stack for local workarea. This can be obtained by
the following instructions:

252 	 TURBO Pascal Reference Manual

Internal Data Formats

PUSH BP
MOV BP,SP
SUB SP,WORKAREA

The last instruction will have the effect of adding the following to the
stack:

< Return address 	 > BP
< The saved BP register
< First byte of local workarea >

< Last byte of local work area > SP

Parameters are accessed via the BP register.

The following instruction will load length of the string into the AL regis-
ter:

MOV 	AL, 113P-1-4

Before executing a RET instruction the subprogram must reset the
Stack Pointer and Base Page register to their original values. When exe-
cuting the RET the parameters may be removed by giving RET a param-
eter specifying how many bytes to remove. The following instructions
should therefore be used when exiting from a subprogram:

MOV SP,BP
POP BP
RET NoOfBytesToRemove

Variable Parameters

With a variable (var) parameter, two words are transferred on the stack
giving the base address and offset of the first byte occupied by the actu-
al parameter.

Value Parameters

With value parameters, the data transferred on the stack depends upon
the type of the parameter as described in the following sections.

CP/M-86 	 253

Internal Data Formats

Scalars

Integers, Booleans, Chars and declared scalars (i.e. all scalars except
Reals) are transferred on the stack as a word. If the variable occupies
only one byte when it is stored, the most significant byte of the parame-
ter is zero.

Reals

A real is transferred on the stack using six bytes.

Strings

When a string is at the top of the stack, the topmost byte contains the
length of the string followed by the characters of the string.

Sets

A set always occupies 32 bytes on the stack (set compression only ap-
plies to the loading and storing of sets).

Pointers

A pointer value is transferred on the stack as two words containing the
base address and offset of a dynamic variable. The value NIL cor-
responds to two zero words.

Arrays and Records

Even when used as value parameters, Array and Record parameters are
not actually transferred on the stack. Instead, two words containing the
base address and offset of the first byte of the parameter are
transferred. It is then the responsibility of the subroutine to use this in-
formation to make a local copy of the variable.

254 	 TURBO Pascal Reference Manual

Internal Data Formats

Function Results

User written external functions must remove all parameters and the
function result from the stack when they return.

User written external functions must return their results exactly as
specified in the following:

Values of scalar types, except Reals, must be returned in the AX regis-
ter. If the result is only one byte then AH should be set to zero. Boolean
functions must return the function value by setting the Z flag (Z =
False, NZ = True).

Reals must be returned on the stack with the exponent at the lowest
address. This is done by not removing the function result variable when
returning.

Sets must be returned on the top of the stack according to the format
described on page 254. On exit SP must point at the byte containing the
string length.

Pointer values must be returned in the DX:AX.

The Heap and The Stacks

During execution of TURBO Pascal program the following segments are
allocated for the program:

a Code Segment,
a Data Segment, and
a Stack Segment

Two stack-like structures are maintained during execution of a program:
the heap and the stack.

The heap is used to store dynamic variables, and is controlled with the
standard procedures New, Mark, and Release. At the beginning of a
program, the heap pointer HeapPtr is set to low memory in the stack
segment and the heap grows upwards towards the stack. The pre-
defined variable HeapPtr contains the value of the heap pointer and al-
lows the programmer to control the position of the heap.

CP/M-86 	 255

Internal Data Formats

The stack is used to store local variables, intermediate results during
evaluation of expressions and to transfer parameters to procedures and
functions. At the beginning of a program, the stack pointer is set to the
address of the top of the stack segment.

On each call to the procedure New and on entering a procedure or func-
tion, the system checks for collision between the heap and the recursion
stack. If a collision has occurred, an execution error results, unless the
K compiler directive is passive (C $K-}).

Memory Management

When a TURBO program is executed, three segments are allocated for
the program: A code segment, a data segment, and a stack segment.

Code segment (CS is the code segment register):

CS:0000 - CS:EOFR 	Run-time, library code.
CS:EOFR - CS:EOFP 	Program code.
CS:EOFP - CS:EOFC 	Unused.

Data segment (DS is the data segment register):

DS:0000 - DS:OOFF 	CP/M-86 base page.
DS:0100 - DS:EOFW 	Run-time library workspace.
DS:EOFW - DS:EOFM 	Main program block variables.
DS:EOFM - DS:EOFD 	Unused.

The unused areas between (CS:EOFP-CS:EOFC and DS:EOFM-
DS:EOFD) are allocated only if a minimum cOde segment size larger
than the required size is specified at compilation. The sizes of the code
and data segments never exceed 64K bytes each.

The stack segment is slightly more complicated, as it may be larger than
64K bytes. On entry to the program the stack segment register (SS) and
the stack pointer (SP) is loaded so that SS:SP points at the very last
byte available in the entire segment. During execution of the program
SS is never changed but SP may move downwards until it reaches the
bottom of the segment, or 0 (corresponding to 64K bytes of stack) if the
stack segment is larger than 64K bytes.

256 	 TURBO Pascal Reference Manual

Memory Management

The heap grows from low memory in the stack segment towards the ac-
tual stack residing in high memory. Each time a variable is allocated on
the heap, the heap pointer (which is a double word variable maintained
by the TURBO run-time system) is moved upwards, and then normal-
ized, so that the offset address is always between $0000 and $000F.
Therefore, the maximum size of a single variable that can be allocated
on the heap is 65521 bytes (corresponding to $10000 less $000F). The
total size of all variables allocated on the heap is however only limited by
the amount of memory available.

The heap pointer is available to the programmer through the HeapPtr
standard identifier. HeapPtr is a typeless pointer which is compatible
with all pointer types. Assignments to HeapPtr should be exercised only
with extreme care.

CP/M-86 	 257

Memory Management

Notes:

258 	 TURBO Pascal Reference Manual

Chapter 22
CP/M-80

This chapter describes features of TURBO Pascal specific to the 8-bit
CP/M-80 implementation. It presents two kinds of information:

Things you should know to make efficient use of TURBO Pascal. Pages
259 through 272.

The rest of the chapter describes things which are only of interest to ex-
perienced programmers, such as machine language routines, technical
aspects of the compiler, etc.

eXecute Command

You will find an additional command on the main TURBO menu in the
CP/M-80 version: eXecute. It lets you run other programs from within
TURBO Pascal, for example copying programs, word processors - in
fact anything that you can run from your operating system. When enter-
ing X, you are prompted:

Command: ■

You may now enter the name of any program which will then load and
run normally. Upon exit from the program, control is re-transferred to
TURBO Pascal, and you return to the TURBO prompt >

compiler Options

The 0 command selects the following menu on which you may view and
change some default values of the compiler. It also provides a helpful
function to find runtime errors in programs compiled into object code
files.

CP/M-80 	 259

compiler Options

compile -> Memory
Com-file
cHn-file

command line Parameter:

Find run-time error Quit

Figure 22-1: Options Menu

Memory / Com file / cHn-file

The three commands M, C, and H select the compiler mode, i.e. where
to put the code which results from the compilation.

Memory is the default mode. When active, code is produced in memory
and resides there ready to be activated by a Run command.

Com-file is selected by pressing C. The arrow moves to point to this line.
When active, code is written to a file with the same name as the Work
file (or Main file, if specified) and the file type .COM. This file contains
the program code and Pascal runtime library, and may be activated by
typing its name at the console. Programs compiled this way may be
larger than programs compiled in memory, as the program code itself
does not take up memory during compilation, and as program code
starts at a lower address.

cHain-file is selected by pressing H. The arrow moves to point to this
line. When active, code is written to a file with the same name as the
Work file (or Main file, if specified) and the file type .CHN. This file con-
tains the program code but no Pascal library and must be activated from
another TURBO Pascal program with the Chain procedure (see page
263).

When Corn or cHn mode is selected, the menu is expanded with the fol-
lowing two lines:

260 	 TURBO Pascal Reference Manual

compiler Options

Start address: XXXX (min YYYY)
End address: XXXX (max YYYY)

Figure 22-2: Start and End Addresses

Start Address

The Start address specifies the address (in hexadecimal) of the first byte
of the code. This is normally the end address of the Pascal library plus
one, but may be changed to a higher address if you want to set space
aside e.g. for absolute variables to be shared by a series of chained pro-
grams.

When you enter an S, you are prompted to enter a new Start address. If
you just hit < RETURN > , the minimum value is assumed. Don't set
the Start address to anything less than the minimum value, as the code
will then overwrite part of the Pascal library.

End Address

The End address specifies the highest address available to the program
(in hexadecimal). The value in parentheses indicate the top of the TPA
on your computer, i.e. BDOS minus one. The default setting is 700 to
1000 bytes less to allow space for the loader which resides just below
BDOS when executing programs from TURBO.

If compiled programs are to run in a different environment, the End ad-
dress may be changed to suit the TPA size of that system. If you antici-
pate your programs to run on a range of different computers, it will be
wise to set this value relatively low, e.g. C100 (48K), or even A100 (40K)
if the program is to run under MP/M.

CP/M-80
	

261

compiler Options

When you enter an E, you are prompted to enter a End address. If you just
hit < RETURN > , the default value is assumed (i.e. top of TPA less 700
to 1000 bytes). If you set the End address higher than this, the resulting
programs cannot be executed from TURBO, as they will overwrite the
TURBO loader; and if you set it higher than the TPA top, the resulting pro-
grams will overwrite part of BDOS if run on your machine.

Command Line Parameters

The P-command lets you enter one or more parameters which are passed
to your program when running it in Memory mode, just as if they had been
entered on the DOS command line. These parameters may be accessed
through the ParamCount and ParamStr functions.

Find Runtime Error

When you run a program compiled in memory, and a runtime error occurs,
the editor is invoked, and the error is automatically pointed out. This, of
course, is not possible if the program is in a .COM file or an .CHN file. Run
time errors then print out the error code and the value of the program
counter at the time of the error, e.g.:

Run-time error 01, PC=1B56
Program aborted

Figure 22-3: Run-time Error Message

To find the place in the source text where the error occurred, enter the
F command on the Options menu. When prompted for the address,
enter the address given by the error message:

Enter PC: 1B56

Figure 22-4: Find Run-time Error

The place in the source text is now found and pointed out exactly as if
the error had occurred while running the program in memory.

262 	 TURBO Pascal Reference Manual

Standard Identifiers

Standard Identifiers

The following standard identifiers are unique to the CP/M-80 implemen-
tation:

Bios 	Bdos 	RecurPtr
BiosHL BdosHL StackPtr

Chain and Execute

TURBO Pascal provides two standard procedures: Chain and Execute
which allow you to activate other programs from a TURBO program.
The syntax of these procedure calls is:

Chain(FilVar)
Execute(FilVar)

where FilVar is a file variable of any type, previously assigned to a disk
file with the standard procedure Assign. If the file exists, it is loaded into
memory and executed.

The Chain procedure is used only to activate special TURBO Pascal
.CHN files, i.e. files compiled with the cHn-file option selected on the
Options menu (see page 260). Such a file contains only program code;
no Pascal library. It is loaded into memory and executed at the start ad-
dress of the current program, i.e. the address specified when the
current program was compiled. It then uses the Pascal library already
present in memory. Thus, the current program and the chained program
must use the same start address.

The Execute procedure may be used to execute any .COM file, i.e. any
file containing executable code. This could be a file created by TURBO
Pascal with the Com-option selected on the Options menu (see page
260). The file is loaded and executed at address $100, as specified by
the CP/M standard.

If the disk file does not exist, an I/O error occurs. This error is treated as
described on page 116. If the I compiler, directive is passive (($1-)), pro-
gram execution continues with the statement following the failed Chain
or Execute statement, and the lOresult function must be called prior to
further I/0.

CP/M-80 	 263

Chain and Execute

Data can be transferred from the current program to the chained pro-
gram either by shared global variables or by absolute address variables.

To ensure overlapping, shared global variables should be declared as
the very first variables in both programs, and they must be listed in the
same order in both declarations. Furthermore, both programs must be
compiled to the same memory size (see page 261). When these condi-
tions are satisfied, the variables will be placed at the same address in
memory by both programs, and as TURBO Pascal does not automatical-
ly initialize its variables, they may be shared.

Example:
Program MAIN.COM:

program Main;
var
Txt: 	string[80];
CntPrg: 	file;

begin
Write('Enter any text: '); Readln(Txt);
Assign(CntPrg, 'ChrCount.chn');
Chain(CntPrg);

end.

Program CHRCOUNT.CHN:

program ChrCount;
var
Txt: 	string[80];
NoOfChar,
NoOfUpc,

Integer;
begin

NoOfUpc := 0;
NoOfChar := Length(Txt);
for I := 1 to length(Txt) do
if Txt[I] in ['A'..'Z'] then No0fUpc := Succ(NoOfUpc);

Write('No of characters in entry: ',NoOfChar);
Writeln('. No of upper case characters: ', NoOfUpc,'.');

end.

264 	 TURBO Pascal Reference Manual

Chain and Execute

If you want a TURBO program to determine whether it was invoked by
eXecute or directly from the DOS command line, you should use an ab-
solute variable at address $80. This is the command line length byte,
and when a program is called from CP/M, it contains a value between 0
and 127. When eXecuting a program, therefore, the calling program
should set this variable to something higher than 127. When you then
check the variable in the called program, a value between 0 and 127 in-
dicates that the program was called from CP/M, a higher value that it
was called from another TURBO program.

Note that neither Chain nor Execute can be used in direct mode, i.e.
from a program run with the compiler options switch in position Memory
(page 260).

Overlays

During execution, the system normally expects to find its overlay files on
the logged drive. The OvrDrive procedure may be used to change this
default value.

OvrDrive Procedure

Syntax: OvrDrive(Drive)

where. Drive is an integer expression specifying a drive (0 = logged
drive, 1 = A:, 2 = B:, etc.). On subsequent calls to overlay files, the files
will be expected on the specified drive. Once an overlay file has been
opened on one drive, future calls to the same file will look on the same
drive.

Example :
program OvrTest ;

overlay procedure ProcA;
begin

Writeln('Overlay A');
end;

overlay procedure ProcB;
begin

Writeln('Overlay B');
end;

CP/M-80 	 265

Overlays

procedure Dummy;
begin

{Dummy procedure to separate the overlays
into two groups)

end;

overlay procedure ProcC;
begin

Writeln('Overlay C');
end;

begin
OvrDrive(2);
ProcA;
OvrDrive(0);
ProcC;
OvrDrive(2);
ProcB;

end.

The first call to OvrDrive specifies overlays to be sought on the B: drive.
The call to ProcA therefore causes the first overlay file (containing the
two overlay procedures ProcA and ProcB to be opened here.

Next, the OvrDrive(0) statement specifies that following overlays are to
be found on the logged drive. The call to ProcC opens the second over-
lay file here.

The following ProcB statement calls an overlay procedure in the first
overlay file; and to ensure that it is sought on the B: drive, the
OvrDrive(2) statement must be executed before the call.

266 	 TURBO Pascal Reference Manual

Files

Files

File Names

A file name in CP/M consists of one through eight letters or digits, op-
tionally followed by a period and a file type of one through three letters
or digits:

Drive: Name. Type

Text Files

The Seek and Flush procedures and the FilePos and FileSize functions
are not applicable to CP/M text files.

Absolute Variables

Variables may be declared to reside at specific memory addresses, and
are then called absolute. This is done by adding the reserved word ab-
solute and an address expressed by an integer constant to the variable
declaration.

Example:
var
I0byte: Byte absolute $0003;
CmdLine: string[127] absolute $80;

Absolute may also be used to declare a variable "on top" of another
variable, i.e. that a variable should start at the same address as another
variable. When absolute is followed by the variable (or parameter)
identifier, the new variable will start at the address of that variable (or
parameter).

Example:
var
Str: string[32];
StrLen: Byte absolute Str;

The above declaration specifies that the variable StrLen should start at
the same address as the variable Str, and since the first byte of a string
variable gives the length of the string, StrLen will contain the length of
Str. Notice that only one identifier may be specified in an absolute de-
claration, i.e. the construct:

CP/M-80 	 267

Absolute Variables

Identl, Ident2: Integer absolute $8000

is illegal. Further details on space allocation for variables are given on
pages 278 and 288.

Addr Function

Syntax: Addr(name);

Returns the address in memory of the first byte of the type, variable,
procedure, or function with the identifier name. If name is an array, it
may be subscribed, and if name is a record, specific fields may be
selected. The value returned is of type Integer.

Predefined Arrays

TURBO Pascal offers two predefined arrays of type Byte, called Mem
and Port, which are used to directly access CPU memory and data
ports.

Mem Array

The predeclared array Mem is used to access memory. Each com-
ponent of the array is a Byte, and indexes correspond to addresses in
memory. The index type is Integer. When a value is assigned to a com-
ponent of Mem, it is stored at the address given by the index expres-
sion. When the Mem array is used in an expression, the byte at the ad-
dress specified by the index is used.

Examples:
Mem[WsCursor] := 2;
Mem[WsCursor+1] := $1B;
Mem[WsCursor+2] := Ord(");
I0byte := Mem[3];
Mem[Addr+Offset] := Mem[Addr];

268 	 TURBO Pascal Reference Manual

Predefined Arrays

Port Array

The Port array is used to access the data ports of the Z-80 CPU. Each
element of the array represents a data port with indexes corresponding
to port numbers. As data ports are selected by 8-bit addresses, the in-
dex type is Byte. When a value is assigned to a component of Port, it is
output to the port specified. When a component of Port is referenced in
an expression, its value is input from the port specified.

The use of the port array is restricted to assignment and reference in
expressions only, i.e. components of Port cannot function as variable
parameters to procedures and functions. Furthermore, operations refer-
ring to the entire Port array (reference without index) are not allowed.

Array Subscript Optimization

The X compiler directive allows the programmer to select whether array
subscription should be optimized with regard to execution speed or to
code size. The default mode is active, i.e. ($X +), which causes execu-
tion speed optimization. When passive, i.e. ($X-), the code size is
minimized.

With Statements

The default 'depth' of nesting of With statements is 2, but the W direc-
tive may be used to change this value to between 0 and 9. For each
block, With statements require two bytes of storage for each nesting
level allowed. Keeping the nesting to a minimum may thus greatly affect
the size of the data area in programs with many subprograms.

CP/M-80 	 269

Pointer Related Items

Pointer Related Items

MemAvail

The standard function MemAvail is available to determine the available
space on the heap at any given time. The result is an Integer, and if
more than 32767 bytes is available, MemAvail returns a negative
number. The correct number of free bytes is then calculated as 65536.0
+ MemAvail. Notice the use of a real constant to generate a Real
result, as the result is greater than GMaxlnt. Memory management is
discussed in further detail on page 288.

Pointers and Integers

The standard functions Ord and Ptr provide direct control of the address
contained in a pointer. Ord returns the address contained in its pointer
argument as an Integer, and Ptr converts its Integer argument into a
pointer which is compatible with all pointer types.

These functions are extremely valuable in the hands of an experienced
programmer as they allow a pointer to point to anywhere in memory. If
used carelessly, however, they are very dangerous, as a dynamic vari-
able may be made to overwrite other variables, or even program code.

270 	 TURBO Pascal Reference Manual

CP/M Function Calls

CP/M Function Calls

For the purpose of calling CP/M BDOS and BIOS routines, TURBO Pas-
cal introduces two standard procedures: Bdos and Bios, and four stan-
dard functions: Bdos, BdosHL, Bios, and BiosHL.

Details on BDOS and BIOS routines are found in the CP/M Operating
System Manual published by Digital Research.

Bdos procedure and function

Syntax: Bdos(Func (, Param });

The Bdos procedure is used to invoke CP/M BDOS routines. Func and
Param are integer expressions. Func denotes the number of the called
routine and is loaded into the C register. Param is optional and denotes
a parameter which is loaded into the DE register pair. A call to address 5
then invokes the BDOS.

The Bdos function is called like the procedure and returns an Integer
result which is the value returned by the BDOS in the A register.

BdosHL function

Syntax: BdosHL(Func (, Param });

This function is exactly similar to the Bdos function above, except that
the result is the value returned in the HL register pair.

CP/M-80 	 271

CP/M Function Calls

Bios procedure and function

Syntax: Bios(Func (, Param));

The Bios procedure is used to invoke BIOS routines. Func and Param
are integer expressions. Func denotes the number of the called routine,
with 0 meaning the WBOOT routine, 1 the CONST routine, etc. I.e. the
address of the called routine is Func * 3 plus the WBOOT address con-
tained in addresses 1 and 2. Param is optional and denotes a parameter
which is loaded into the BC register pair prior to the call.

The Bios function is called like the procedure and returns an integer
result which is the value returned by the BIOS in the A register.

BiosHL function

Syntax: BiosHL(Func {, Param));

This function is exactly similar to the Bios function above, except that
the result is the value returned in the HL register pair.

User Written I/O Drivers

For some applications it is practical for a programmer to define his own
input and output drivers, i.e. routines which perform input and output of
characters to and from external devices. The following drivers are part
of the TURBO environment, and used by the standard I/O drivers
(although they are not available as standard procedures or functions):

function 	ConSt: boolean;
function 	Conln: Char;
procedure ConOut (Ch: Char);
procedure LstOut (Ch: Char);
procedure AuxOut (Ch: Char);
function 	Auxin: Char;
procedure UsrOut (Ch: Char);
function 	Usrin: Char;

272 	 TURBO Pascal Reference Manual

User Written I/O Drivers

The ConSt routine is called by the function KeyPressed, the Conin and
ConOut routines are used by the CON:, TRM:, and KBD: devices, the
LstOut routine is used by the LST: device, the AuxOut and Auxin rou-
tines are used by the AUX: device, and the UsrOut and Usrin routines
are used by the USR: device.

By default, these drivers use the corresponding BIOS entry points of the
CP/M operating system, i.e. ConSt uses CONST, Conin uses CONIN,
ConOut uses CONOUT, LstOut uses LIST, AuxOut uses PUNCH, Auxin
uses READER, UsrOut uses CONOUT, and Usrin uses CONIN. This,
however, may be changed by the programmer by assigning the address
of a self-defined driver procedure or a driver function to one of the fol-
lowing standard variables:

Variable 	 Contains the address of the

ConStPtr 	ConSt function
ConinPtr 	Conin function
ConOutPtr 	ConOut procedure
LstOutPtr 	LstOut procedure
AuxOutPtr 	AuxOut procedure
AuxlnPtr 	Auxin function
UsrOutPtr 	UsrOut procedure
UsrinPtr 	 Usrin function

A user defined driver procedure or driver function must match the
definitions given above, i.e. a ConSt driver must be a Boolean function,
a Conin driver must be a Char function, etc.

CP/M-80 	 273

External Subprograms

External Subprograms

The reserved word external is used to declare external procedures and
functions, typically procedures and functions written in machine code.

An external subprogram has no block, i.e. no declaration part and no
statement part. Only the subprogram heading is specified, immediately
followed by the reserved word external and an integer constant defining
the memory address of the subprogram:

procedure DiskReset; external $ECOO;
function IOstatus: boolean; external $D123

Parameters may be passed to external subprograms, and the syntax is
exactly the same as that of calls to ordinary procedures and functions:

procedure Plot(X,Y: Integer); external $F003;
procedure QuickSort(var List: PartNo); external $1C00;

Parameter passing to external subprograms is discussed further on
page 283.

In-line Machine Code

TURBO Pascal features the inline statements as a very convenient way
of inserting machine code instructions directly into the program text. An
inline statement consists of the reserved word inline followed by one or
more code elements separated by slashes and enclosed in parentheses.

A code element is built from one or more data elements, separated by
plus (+) or minus (—) signs. A data element is either an integer con-
stant, a variable identifier, a procedure identifier, a function identifier, or
a location counter reference. A location counter reference is written as
an asterisk (*).

Example:
inline (10/$2345/count+1/sort-*+2);

274 	 TURBO Pascal Reference Manual

In-line Machine Code

Each code element generates one byte or one word (two bytes) of code.
The value of the byte or the word is calculated by adding or subtracting
the values of the data elements according to the signs that separate
them. The value of a variable identifier is the address (or offset) of the
variable. The value of a procedure or function identifier is the address
(or offset) of the procedure or function. The value of a location counter
reference is the address (or offset) of the location counter, i.e. the ad-
dress at which to generate the next byte of code.

A code element will generate one byte of code if it consists of integer
constants only, and if its value is within the 8-bit range (0..255). If the
value is outside the 8-bit range, or if the code element refers to variable,
procedure, or function identifiers, or if the code element contains a loca-
tion counter reference, one word of code is generated (least significant
byte first).

The < ' and > ' characters may be used to override the automatic
size selection described above. If a code element starts with a <'
character, only the least significant byte of the value is coded, even if it
is a 16-bit value. If a code element starts with a ' > ' character, a word
is always coded, even though the most significant byte is zero.

Example:
inline (<$1234/>$44);

This inline statement generates three bytes of code: $34, $44, $00.

The following example of an inline statement generates machine code
that will convert all characters in its string argument to upper case.

CP/M-80 	 275

In-line Machine Code

procedure UpperCase(var Strg: Str);
{$A+}
begin

{Str is type String[255)}

inline ($2A/Strg/ { LD HL,(Strg) }
$46/ { LD B,(HL) }
$04/ { INC B }
$05/ { 	Ll: DEC B }
$CA/*+20/ { JP Z,L2 }

$23/ { INC HL }
$7E/ { LD A,(HL) }
$FE/$61/ { CP 'a' }
$DA/*-9/ { JP C,L1 }
$FE/$7B/ { CP 'z'+1 }
$D2/*-14/ { JP NC,L1 }
$D6/$20/ { SUB 20H }
$77/ { LD (HL),A }
$C3/*-20); { JP Ll }

{ L2: EQU $ }
end;

Inline statements may be freely mixed with other statements throughout
the statement part of a block, and inline statements may use all CPU
registers. Note, however, that the contents of the stack pointer register
(SP) must be the same on exit as on entry.

276 	 TURBO Pascal Reference Manual

Interrupt Handling

Interrupt Handling

The TURBO Pascal run time package and the code generated by the
compiler are both fully interruptable. Interrupt service routines must
preserve all registers used.

If required, interrupt service procedures may be written in Pascal. Such
procedures should always be compiled with the A compiler directive ac-
tive (($A +)), they must not have parameters, and they must them-
selves insure that all registers used are preserved. This is done by plac-
ing an inline statement with the necessary PUSH instructions at the
very beginning of the procedure, and another inline statement with the
corresponding POP instructions at the very end of the procedure. The
last instruction of the ending inline statement should be an El instruction
($FB) to enable further interrupts. If daisy chained interrupts are used,
the inline statement may also specify a RETI instruction ($ED, $4D),
which will override the RET instruction generated by the compiler.

The general rules for register usage are that integer operations use only
the AF, BC, DE, and HL registers, other operations may use IX and IY,
and real operations use the alternate registers.

An interrupt service procedure should not employ any I/O operations us-
ing the standard procedures and functions of TURBO Pascal, as these
routines are not re-entrant. Also note that BDOS calls (and in some in-
stances BIOS calls, depending on the specific CP/M implementation)
should not be performed from interrupt handlers, as these routines are
not re-entrant.

The programmer may disable and enable interrupts throughout a pro-
gram using DI and El instructions generated by inline statements.

If mode 0 (IM 0) or mode 1 (IM 1) interrupts are employed, it is the
responsibility of the programmer to initialize the restart locations in the
base page (note that RST 0 cannot be used, as CP/M uses locations 0
through 7).

If mode 2 (IM 2) interrupts are employed, the programmer should gen-
erate an initialized jump table (an array of integers) at an
absolute address, and initialize the I register through a inline statement
at the beginning of the program.

CP/M-80 	 277

Internal Data Formats

Internal Data Formats

In the following descriptions, the symbol @ denotes the address of the
first byte occupied by a variable of the given type. The standard function
Addr may be used to obtain this value for any variable.

Basic Data Types

The basic data types may be grouped into structures (arrays, records,
and disk files), but this structuring will not affect their internal formats.

Scalars

The following scalars are all stored in a single byte: Integer subranges
with both bounds in the range 0..255, Booleans, Chars, and declared
scalars with less than 256 possible values. This byte contains the ordinal
value of the variable.

The following scalars are all stored in two bytes: Integers, Integer
subranges with one or both bounds not within the range 0..255, and de-
clared scalars with more than 256 possible values. These bytes contain
a 2's complement 16-bit value with the least significant byte stored first.

Reals

Reals occupy 6 bytes, giving a floating point value with a 40-bit mantissa
and an 8-bit 2's exponent. The exponent is stored in the first byte and
the mantissa in the next five bytes which the least significant byte first:

Exponent
LSB of mantissa

MSB of mantissa

The exponent uses binary format with an offset of $80. Hence, an ex-
ponent of $84 indicates that the value of the mantissa is to be multiplied
by 2"($84-$80) = 2 ^4 = 16. If the exponent is zero, the floating point
value is considered to be zero.

278 	 TURBO Pascal Reference Manual

Internal Data Formats

The value of the mantissa is obtained by dividing the 40-bit unsigned in-
teger by 2"40. The mantissa is always normalized, i.e. the most
significant bit (bit 7 of the fifth byte) should be interpreted as a 1. The
sign of the mantissa is stored in this bit, a 1 indicating that the number is
negative, and a 0 indicating that the number is positive.

Strings

A string occupies the number of bytes corresponding to one plus the
maximum length of the string. The first byte contains the current length
of the string. The following bytes contain the actual characters, with the
first character stored at the lowest address. In the table shown below, L
denotes the current length of the string, and Max denotes the maximum
length:

@ Current length (L)
@ + 1 	First character
@ + 2 	Second character

@ + L 	Last character
@ + L + 1 Unused

@ + Max Unused

Sets

An element in a set occupies one, bit, and as the maximum number of
elements in a set is 256, a set variable will never occupy more than 32
bytes (256/8).

If a set contains less than 256 elements, some of the bits are bound to
be zero at all times and need therefore not be stored. In terms of
memory efficiency, the best way to store a set variable of a given type
would then be to "cut off" all insignificant bits, and rotate the remaining
bits so that the first element of the set would occupy the first bit of the
first byte. Such rotate operations, however, are quite slow, and TURBO
therefore employs a compromise: Only bytes which are statically zero
(i.e. bytes of which no bits are used) are not stored. This method of
compression is very fast and in most cases as memory efficient as the
rotation method.

CP/M-80 	 279

Internal Data Formats

The number of bytes occupied by a set variable is calculated as (Max
div 8) — (Min div 8) + 1, where Max and Min are the upper and lower
bounds of the base type of that set. The memory address of a specific
element E is:

MemAddress = @ + (E div 8) — (Min div 8)

and the bit address within the byte at MemAddress is:

BitAddress = E mod 8

where E denotes the ordinal value of the element.

File Interface Blocks

The table below shows the format of a FIB in TURBO Pascal-80:

@ + 0 	Flags byte.
@ + 1 	Character buffer.
@ + 2 	Sector buffer pointer (LSB).
@ + 3 	Sector buffer pointer (MSB).
@ + 4 	Number of records (LSB).
@ + 5 	Number of records (MSB).
@ + 6 	Record length (LSB).
@ + 7 	Record length (MSB).
@ + 8 	Current record (LSB).
@ + 9 	Current record (MSB).
@ + 10 	Unused.
@ + 11 	Unused.
@ + 12 	First byte of CP/M FCB.

@ + 47 	Last byte of CP/M FCB.
@ + 48 	First byte of sector buffer.

@ + 175 	Last byte of sector buffer.

The format of the flags byte at @ + 0 is:

Bit 0..3 	File type.
Bit 4 	Read semaphore.
Bit 5 	Write semaphore.
Bit 6 	Output flag.
Bit 7 	Input flag.

280 	 TURBO Pascal Reference Manual

Internal Data Formats

File type 0 denotes a disk file, and 1 through 5 denote the TURBO Pas-
cal logical I/O devices (CON:, KBD:, LST:, AUX:, and USR:). For typed
files, bit 4 is set if the contents of the sector buffer is undefined, and bit
5 is set if data has been written to the sector buffer. For textfiles, bit 5 is
set if the character buffer contains a pre-read character. Bit 6 is set if
output is allowed, and bit 7 is set if input is allowed.

The sector buffer pointer stores an offset (0..127) in the sector buffer at
+ 48. For typed and untyped files, the three words from @ + 4 to
+ 9 store the number of records in the file, the record length in bytes,

and the current record number. The FIB of an untyped file has no sector
buffer, and so the sector buffer pointer is not used.

When a text file is assigned to a logical device, only the flags byte and
the character buffer are used.

Pointers

A pointer consists of two bytes containing a 16-bit memory address, and
it is stored in memory using byte reversed format, i.e. the least
significant byte is stored first. The value nil corresponds to a zero word.

Data Structures

Data structures are built from the basic data types using various struc-
turing methods. Three different structuring methods exist: arrays,
records, and disk files. The structuring of data does not in any way
affect the internal formats of the basic data types.

Arrays

The components with the lowest index values are stored at the lowest
memory address. A multi-dimensional array is stored with the rightmost
dimension increasing first, e.g. given the array

Board: array[1..8,1..8] of Square

you have the following memory layout of its components:

CP/M-80 	 281

Internal Data Formats

lowest address: Board[1,1]
Board[1,2]

Board[1,8]
Board[20 1]
Board[2,2]

Highest address: Board [8 , 8]

Records

The first field of a record is stored at the lowest memory address. If the
record contains no variant parts, the length is given by the sum of the
lengths of the individual fields. If a record contains a variant, the total
number of bytes occupied by the record is given by the length of the
fixed part plus the length of largest of its variant parts. Each variant
starts at the same memory address.

Disk Files

Disk files are different from other data structures in that data is not
stored in internal memory but in a file on an external device. A disk file is
controlled through a file interface block (FIB) as described on page 280.
In general there are two different types of disk files: random access files
and text files.

Random Access Files

A random access file consists of a sequence of records, all of the same
length and same internal format. To optimize file storage capacity, the
records of a file are totally contiguous. The first four bytes of the first
sector of a file contains the number of records in the file and the length
of each record in bytes. The first record of the file is stored starting at
the fourth byte.

sector 0, byte 0: Number of records (LSB)
sector 0, byte 1: Number of records (MSB)
sector 0, byte 2: Record length (LSB)
sector 0, byte 3: Record length (MSB)

282 	 TURBO Pascal Reference Manual

Internal Data Formats

Text Files

The basic components of a text file are characters, but a text file is sub-
divided into lines. Each line consists of any number of characters ended
by a CR/LF sequence (ASCII $0D/ $0A). The file is terminated by a
Ctrl-Z (ASCII $1A).

Parameters

Parameters are transferred to procedures and functions via the Z-80
stack. Normally, this is of no interest to the programmer, as the machine
code generated by TURBO Pascal will automatically PUSH parameters
onto the stack before a call, and POP them at the beginning of the sub-
program. However, if the programmer wishes to use external subpro-
grams, these must POP the parameters from the stack themselves.

On entry to an external subroutine, the top of the stack always contains
the return address (a word). The parameters, if any, are located below
the return address, i.e. at higher addresses on the stack. Therefore, to
access the parameters, the subroutine must first POP off the return ad-
dress, then all the parameters, and finally it must restore the return ad-
dress by PUSHing it back onto the stack.

Variable Parameters

With a variable (VAR) parameter, a word is transferred on the stack giv-
ing the absolute memory address of the first byte occupied by the actual
parameter.

Value Parameters

With value parameters, the data transferred on the stack depends upon
the type of the parameter as described in the following sections.

Scalars

Integers, Booleans, Chars and declared scalars are transferred on the
stack as a word. If the variable occupies only one byte when it is stored,
the most significant byte of the parameter is zero. Normally, a word is
POPped off the stack using an instruction like POP HL.

CP/M-80 	 283

internal Data Formats

Reels

A real is transferred on the stack using six bytes. If these bytes are
POPped using the instruction sequence:

POP 	HL
POP 	DE
POP 	BC

then L will contain the exponent, H the fifth (least significant) byte of the
mantissa, E the fourth byte, D the third byte, C the second byte, and B
the first (most significant) byte.

Strings

When a string is at the top of the stack, the byte pointed to by SP con-
tains the length of the string. The bytes at addresses SP + 1 through
SP + n (where n is the length of the string) contain the string with the
first character stored at the lowest address. The following machine code
instructions may be used to POP the string at the top of the stack and
store it in StrBuf

LD 	DE,StrBuf
LD 	HL,O
LD 	B,H
ADD 	HL,SP
LD 	C,(HL)
INC 	BC
LDIR
LD 	SP,HL

Sets

A set always occupies 32 bytes on the stack (set compression only ap-
plies to the loading and storing of sets). The following machine code in-
structions may be used to POP the set at the top of the stack and store
it in SetBuf.

284 	 TURBO Pascal Reference Manual

Internal Data Formats

LD 	DE,SetBuf
LD 	HL,0
ADD 	HL,SP
LD 	BC,32
LDIR
LD 	SP,HL

This will store the least significant byte of the set at the lowest address
in SetBuf.

Pointers

A pointer value is transferred on the stack as a word containing the
memory address of a dynamic variable. The value NIL corresponds to a
zero word.

Arrays and Records

Even when used as value parameters, Array and Record parameters are
not actually PUSHed onto the stack. Instead, a word containing the ad-
dress of the first byte of the parameter is transferred. It is then the
responsibility of the subroutine to POP this word, and use it as the
source address in a block copy operation.

Function Results

User written external functions must return their results exactly as
specified in the following:

Values of scalar types, must be returned in the HL register pair. If the
type of the result is expressed in one byte, then it must be returned in L
and H must by zero.

Reals must be returned in the BC, DE, and HL register pairs. B, C, D, E,
and H must contain the mantissa (most significant byte in B), and L
must contain the exponent.

Strings and sets must be returned on the top of the stack on the for-
mats described on page 284.

Pointer values must be returned in the HL register pair.

CP/M-80 	 285

Internal Data Formats

The Heap and The Stacks

As indicated by the memory maps in previous sections, three stack-like
structures are maintained during execution of a program: The heap, the
CPU stack, and the recursion stack.

The heap is used to store dynamic variables, and is controlled with jhe
standard procedures New, Mark, and Release. At the beginning of a
program, the heap pointer HeapPtr is set to the address of the bottom
of free memory, i.e the first free byte after the object code.

The CPU stack is used to store intermediate results during evaluation of
expressions and to transfer parameters to procedures and functions. An
active for statement also uses the CPU stack, and occupies one word.
At the beginning of a program, the CPU stack pointer StackPtr is set to
the address of the top of free memory.

The recursion stack is used only by recursive procedures and functions,
i.e. procedures and functions compiled with the A compiler directive pas-
sive (($A-}). On entry to a recursive subprogram it copies its workspace
onto the recursion stack, and on exit the entire workspace is restored to
its original state. The default initial value of RecurPtr at the beginning of
a program, is 1K ($400) bytes below the CPU stack pointer.

Because of this technique, variables local to a subprogram must not be
used as var parameters in recursive calls.

The pre-defined variables:

HeapPtr: 	The heap pointer,
RecurPtr: 	The recursion stack pointer, and
StackPtr: 	The CPU stack pointer

allow the programmer to control the position of the heap and the stacks.

The type of these variables is Integer. Notice that HeapPtr and RecurPtr
may be used in the same context as any other Integer variable, whereas
StackPtr may only be used in assignments and expressions.

When these variables are manipulated, always make sure that they point
to addresses within free memory, and that:

HeapPtr < RecurPtr < StackPtr

286 	 TURBO Pascal Reference Manual

Internal Data Formats

Failure to adhere to these rules will cause unpredictable, perhaps fatal,
results.

Needless to say, assignments to the heap and stack pointers must nev-
er occur once the stacks or the heap are in use.

On each call to the procedure New and on entering a recursive pro-
cedure or function, the system checks for collision between the heap
and the recursion stack, i.e. checks if HeapPtr is less than RecurPtr. If
not, a collision has occurred, which results in an execution error.

Note that no checks are made at any time to insure that the CPU stack
does not overflow into the bottom of the recursion stack. For this to
happen, a recursive subroutine must call itself some 300-400 times,
which must be considered a rare situation. If, however, a program re-
quires such nesting, the following statement executed at the beginning
of the program block will move the recursion stack pointer downwards
to create a larger CPU stack:

RecurPtr := StackPtr -2 *MaxDepth -512;

where MaxDepth is the maximum required depth of calls to the recur-
sive subprogram(s). The extra approx. 512 bytes are needed as a
margin to make room for parameter transfers and intermediate results
during the evaluation of expressions.

CP/M-80 	 287

Memory Management

Memory Management

Memory Maps

The following diagrams illustrate the contents of memory at different
stages of working with the TURBO system. Solid lines indicate, fixed
boundaries (i.e. determined by amount of memory, size of your CP/M,
version of TURBO, etc.), whereas dotted lines indicate boundaries which
are determined at run-time (e.g. by the size of the source text, and by
possible user manipulation of various pointers, etc.). The sizes of the
segments in the diagrams do not necessarily reflect the amounts of
memory actually consumed.

Compilation in Memory

During compilation of a program in memory (Memory-mode on compiler
Options menu, see page 259), the memory is mapped as follows:

0000
CP/M and run-time workspace
Pascal Library

Turbo interface, editor, and compiler

Error messages, optional

Source text

Object code growing upward

Symbol table growing downward

CPU stack growing downward

CP/M
HighMem

Figure 22-5: Memory map during compilation in memory

288 	 TURBO Pascal Reference Manual

Memory Management

If the error message file is not loaded when starting TURBO, the source
text starts that much lower in memory. When the compiler is invoked, it
generates object code working upwards from the end of the source
text. The CPU stack works downwards from the logical top of memory,
and the compiler's symbol table works downwards from an address 1K
($400 bytes) below the logical top of memory.

Compilation To Disk

During compilation to a .COM or .CHN file (Com-mode or cHn-mode on
compiler Options menu, see page 259), the memory looks much as dur-
ing compilation in memory (see preceding section) except that generated
object code does not reside in memory but is written to a disk file. Also,
the code starts at a higher address (right after the Pascal library instead
of after the source text). Compilation of much larger programs is thus
possible in this mode.

0000
CP/M and run-time workspace
Pascal Library

Turbo interface, editor, and compiler

Error messages, optional

Source text

Symbol table growing downward

CPU stack growing downward

CP/M
HighMem

Figure 22-6: Memory map during compilation to a file

CP/M-80 	 289

Memory Management

Execution in Memory

When a program is executed in direct - or memory - mode (i.e. the
Memory-mode on compiler Options menu is selected, see page 259), the
memory is mapped as follows:

0000
CP/M and run-time workspace
Pascal Library

Turbo interface, editor, and compiler

Error messages, optional

Source text

Object code

Default initial value of HeapPtr
Heap growing upward

Recursion stack growing downward
Default initial value of RecurPtr
CPU stack growing downward
Default initial state of StackPtr

Program variables growing downward
CP/M
HighMem

Figure 22-7: Memory map during execution in direct mode

When a program is compiled, the end of the object code is known. The
heap pointer HeapPtr is set to this value by default, and the heap grows
from here and upwards in memory towards the recursion stack. The
maximum memory size is BDOS minus one (indicated on the compiler
Options menu). Program variables are stored from this address and
downwards. The end of the variables is the 'top of free memory' which
is the initial value of the CPU stack pointer StackPtr. The CPU stack
grows downwards from here towards the position of the recursion stack
pointer RecurPtr, $400 bytes lower than StackPtr. The recursion stack
grows from here downward towards the heap.

290 	 TURBO Pascal Reference Manual

0000
CP/M and run-time workspace
Pascal Library
Default program start address

Object code

Default initial value of HeapPtr
Heap growing upward

	_ _ 	
I-

Recursion stack growing downward
Default initial value of RecurPtr
CPU stack growing downward
Default initial state of StackPtr

Program variables growing downward
	 Default end address

Loader 	Maximum memory size
CP/M

	 HighMem

Memory Management

Execution of A Program File

When a program file is executed (either by the Run command with the
Memory-mode on the compiler Options menu selected, by an eXecute
command, or directly from CP/M), the memory is mapped as follows:

Figure 22-8: Memory map during execution of a program file

This map resembles the previous, except for the absence of the TURBO
interface, editor, and compiler (and possible error messages) and of the
source text. The default program start address (shown on the compiler
Options menu) is the first free byte after the Pascal runtime library. This
value may be manipulated with the Start address command of the com-
piler Options menu, e.g. to create space for absolute variables and/or
external procedures between the library and the code. The maximum
memory size is BDOS minus one, and the default value is determined by
the BDOS location on the computer in use.

CP/M-80 	 291

Memory Management

If programs are to be translated for other systems, care should be taken
to avoid collision with the BDOS. The maximum memory may be mani-
pulated with the End address command of the compiler Options menu.
Notice that the default end address setting is approx. 700 to 1000 bytes
lower than maximum memory. This is to allow space for the loader
which resides just below BDOS when .COM files are Run or eXecuted
from the TURBO system. This loader restores the TURBO editor, com-
piler, and possible error messages when the program finishes and thus
returns control to the TURBO system.

292 	 TURBO Pascal Reference Manual

TURBO-BCD

Chapter 23
TURBO-BCD

TURBO-BCD is a special version of TURBO Pascal which is not included
in the standard TURBO Pascal package. It employs binary coded de-
cimal (BCD) Real numbers to obtain higher accuracy, especially needed
in programs for business applications.

If you are interested in purchasing TURBO-BCD, please see page 3 for
ordering information.

TURBO-BCD will compile and run any program written for standard
TURBO or TURBO-87 Pascal; the only difference being in real number
processing and real number format.

Files On the TURBO-BCD Distribution Diskette

In addition to the files listed on page 8, the TURBO-BCD distribution
diskette contains the file

TURBOBCD.COM

(TURBOBCD.CMD for CP/M-86). This file contains the special TURBO-
BCD system. If you want to install it with TINST, you must first tem-
porarily rename it to TURBO.COM (or .CMD).

BCD Range

TURBO-BCD's BCD Reals have a range of 1E-63 through 1E + 63 with
18 significant digits.

TURBO-BCD 	 293

Form function

Form function

Syntax: Form(St, Varl ,Var2,..,VarIV)

The Form function provides advanced numeric and string formatting. St
is a string expression giving an image of the format string, as detailed in
the following, and Varl,Var2,..,VarN are Real, Integer, or String expres-
sions. The result is a String of the same length as St.

St is made up of a number of field specifiers, each of which corresponds
to one parameter in the parameter list. Blanks and characters other than
the ones defined in the following serve to separate fields and will also
appear in the formatted result, viz:

Form('Total: $#,###.##',1234.56) = 'Total: $1,234.56'

The arguments in the argument list use the field specifiers in the order
of appearance:

Form('Please M414 us at (###) ### ####','phone',408,438,8400)
'Please phone us at (408) 438 8400 '

If there are more arguments in the argument list than there are field
specifiers in the format string, the arguments in excess are ignored. If
there are less arguments than field specifiers, the field specifiers in ex-
cess are returned unchanged:

Form('###.##',12.34,43.21) = 	' 12.34'
Form('###.## -##.##',123.4) = '123.40 -##.##'

There are two types of field specifiers: numeric and string.

Numeric Fields

A numeric field is a sequence of one or more of the following characters:

# ® 	$ - + ,

294 	 TURBO Pascal Reference Manual

Form function

Any other character terminates the numeric field. The number is re-
turned right-justified within the field, decimals are rounded if they exceed
the number of decimals specified by the format, and if the number is too
large to be returned in the field, all digit positions are filled with aster-
isks.

# 	A digit position. If the numeric field contains no @ or * characters,
unused digits are returned as blanks. If the numeric field contains no
sign positions ('-' or + ' characters) and the number is negative, a float-
ing minus is returned in front of the number.

Examples:
Form(' #### ' , 34.567) 	= ' 35'
Form('###.##' ,12.345') = ' 12.35'
Form('####.##' ,-12.3) = ' -12.30'
Form('###.##',1234.5) = v***.**1

@ 	A digit position. Unused digits are forced to be returned as zeros instead
of blanks. The @ character needs only occur once in the numeric field
to activate this effect. The sign of the number will not be returned unless
the field contains a sign position ('-' or + ' character).

Examples:
Form(@## , 9) 	 = '009'
Form(' ®@®.@@' , 12.345) = '012.35'

A digit position. Unused digits are forced to be returned as asterisks in-
stead of blanks. The * character needs only occur once in the numeric
field to activate this effect. The sign of the number will not be returned
unless the field contains a sign position ('-' or + ' character).

Examples:
Form('*##.#',4.567) = '**4.57'
Form('****',123) 	= '*123'

TURBO-BCD 	 295

Form function

$ 	A digit position. A floating $-sign is returned in front of the number. The
`$' character need only occur once in the numeric field to activate this
effect.

Examples:
Form('$#####.##',123.45) = ' $123.45'
Form('######.#$',-12.345) = ' -$12.35'
Form("$####.## 1 ,12.34) = '***$12.34'

A sign position. If the number is negative, a minus will be returned in
that position; if it is positive, a blank is returned.

Examples:
Form(' -### . ## ' , -1.2) = ' - 1.20'
Form (' -### . ## ' , 12) = ' 12.00'
Form (' *##### ##- ' , -123.45) = '***123.45- '

+ 	A sign position. If the number is positive, a plus will be returned in that
position; if it is negative, a minus is returned.

Examples:
Form(' +### . ## ' , -1.2) = ' - 1.20'
Form(' +### . ## ' , 12) = '+ 12.00'
Form("$####.##+',12.34) = '***$12.34+'

A decimal comma or a separator comma. The last period or comma in
the numeric image is considered the decimal delimiter.

A decimal period or a separator period. The last period or comma in the
numeric image is considered the decimal delimiter.

Examples:
Form(' ## , ### ### . ## ' , 12345.6) = ' 	12,345.60'
Form(' $# . ### . ### , ## ' , -12345.6) = ' 	-$12.345,60'
Form(' *$ ### , ### . ##+ ' , 12345.6) = ' ***$12,345.60+ '
Form(' ## ,### ## , 123456.0) = 1** 	*** . **T

296 	 TURBO Pascal Reference Manual

Form function

String Fields

A string field is a sequence of # or @ characters. If the string parameter
is longer than the string field, only the first characters of the string are
returned.

# 	If the field contains only # characters, the string will be returned left
justified.

@ 	If one or more V' characters are present in the field, the string will be
returned right justified within the length of the field.

Examples:

Form('##########','Pascal') = 'Pascal '
Form('@#########','Pascal') = ' 	Pascal'
Form('####','TURBO Pascal') = 'TURBO '
Form(WW,'TURBO Pascal') = 'TURBO '

Writing BCD Reals

BCD Reals are written on a format slightly different from the standard
format, as described below.

R 	The decimal representation of the value of R is output in a field 25 char-
acters wide, using floating point format. For R > = 0.0, the format is:

L_Li#.#################E*##

For R < 0.0, the format is:

t_J-#.#################E*##

where LJ represents a blank, # represents a digit, and * represents ei-
ther plus or minus.

TURBO-BCD 	 297

Writing BCD Reals

R:n The decimal representation of the value of R is output, right adjusted in
a field n characters wide, using floating point format. For R > = 0.0:

blanks#.digitsE*##

ForR<0.0:

blanks-#.digitsE*##

where blanks represents zero or more blanks, digits represents from 1
to 17 digits, # represents a digit, and * represents either plus or minus.

Formatted Writing

The Form standard function can be used as a write parameter to pro-
duce formatted output:

Write(Form('The price is $###,###,###.##',Price));

Internal Data Format

The BCD Real variable occupies 10 bytes, and consists of a floating
point value with an 18 digit binary coded decimal mantissa, a 7-bit 10's
exponent, and a 1-bit sign. The exponent and the sign are stored in the
first byte and the mantissa in the next nine bytes with the least
significant byte first:

@+0 	Exponent and sign.
@+1 	LSB of mantissa.

@+9 	MSB of mantissa.

298 	 TURBO Pascal Reference Manual

Internal Data Format

The most significant bit of the first byte contains the sign. 0 means posi-
tive and 1 means negative. The remaining seven bits contain the ex-
ponent in binary format with an offset of $3F. Thus, an exponent of $41
indicates that the value of the mantissa is to be multiplied by 10-'($41-
$3F) = 10'2 = 100. If the first byte is zero, the floating point value is
considered to be zero. Starting with the tenth byte, each byte of the
mantissa contains two digits in BCD format, with the most significant di-
git in the upper four bits. The first digit contains the 1/10's, the second
contains the 1/100's, etc. The mantissa is always normalized, i.e. the
first digit is never 0 unless the entire number is 0.

This 10-byte Real is not compatible with TURBO standard or 8087
Reels. This, however, should only be a problem if you develop programs
in different versions of TURBO which must interchange data. The trick
then is simply to provide an interchange-format between the programs
in which you transfer Reals on ASCII format, for instance.

TURBO-BCD 	 299

Internal Data Format

Notes:

300 	 TURBO Pascal Reference Manual

TURBO-87

Chapter 24
TURBO-87

TURBO-87
TURBO-87 is a special version of TURBO Pascal which is not included
in the standard TURBO Pascal package. It uses the Intel 8087 math-
processor for real number arithmetic, providing a significant gain in
speed. TURBO-87 does not include the 8087 chip.

If you are interested in purchasing TURBO-87, please see page 3 for
ordering information.

TURBO-87 will compile and run any program written for standard
TURBO Pascal; the only difference being in real number processing and
real number format.

TURBO-87 programs will not run on a computer without the 8087-chip
installed, whereas the opposite will work.

Files On the TURBO-87 Distribution Diskette

In addition to the files listed on page 8, the TURBO-87 distribution
diskette contains the file

TURBO-87.COM

(TURBO-87.CMD for CP/M-86). This file contains the special TURBO-87
system. If you want to install it with TINST, you must first temporarily
rename it to TURBO.COM (or .CMD).

TURBO-87 	 301

Writing 8087 Reals

Writing 8087 Reals

8087 Reals are written on a format slightly different from the standard
format, as described below.

R 	The decimal representation of the value of R is output in a field 23 char-
acters wide, using floating point format. For R > = 0.0, the format is:

uu#.###############E*##

For R < 0.0, the format is:

.###############E*##

where 	represents a blank, # represents a digit, and * represents ei-
ther plus or minus.

R:n The decimal representation of the value of R is output, right adjusted in
a field n characters wide, using floating point format. For R > = 0.0:

blanks# . di gi t sE*##

For R < 0.0:

bl anks-# . digitsE*##

where blanks represents zero or more blanks, digits represents from 1
to 14 digits, # represents a digit, and * represents either plus or minus.

Internal Data Format

The 8087 chip supports a range of data types. The one used by
TURBO-87 is the long real; its 64-bits yielding 16 digits accuracy and a
range of 4.19E-307 to 1.67E + 308.

This 8-byte Real is not compatible with TURBO standard or BCD Reals.
This, however,' should only be a problem if you develop programs in
different versions of TURBO which must interchange data. The trick
then is simply to provide an interchange-format between the programs
in which you transfer Reals on ASCII format, for instance.

302 	 TURBO Pascal Reference Manual

SUMMARY

Appendix A
SUMMARY OF STANDARD PROCEDURES
AND FUNCTIONS

This appendix lists all standard procedures and functions available in
TURBO Pascal and describes their application, syntax, parameters, and
type. The following symbols are used to denote elements of various
types:

type 	 any type
string 	 any string type
file 	 any file type
scalar 	 any scalar type
pointer 	any pointer type

Where parameter type specification is not present, it means that the
procedure or function accepts variable parameters of any type.

Input/Output Procedures and Functions

The following procedures use a non-standard syntax in their parameter
lists:

procedure
Read (var F: file of type; var V: type);
Read (var F: text; var h. Integer);
Read (var F: text; var R: Real);
Read (var F: text; var C. Char);
Read (var F: text; var S: string);
Readln (var F: text);
Write (var F: file of type; var V: type);
Write (var F: text; I: Integer);
Write (var F: text; R: Real);
Write (var F: text; B: Boolean);
Write (var F: text; C. Char);
Write (var F: text; 5: string);
Writeln (var F: text);

TURBO-87 	 303

Arithmetic Functions

Arithmetic Functions

function
Abs (I: Integer): Integer;
Abs (R: Real): Real;
ArcTan (R: Real): Real;
Cos (R: Real): Real;
Exp (R. Real): Real;
Frac (R: Real): Real;
Int (R: Real): Real;
Ln (R: Real): Real;
Sin (R: Real): Real;
Sqr (I: Integer): Integer;
Sqr (R: Real): Real;
Sqrt (R: Real): Real;

Scalar Functions

function
Odd (I: Integer): Boolean;
Pred (X: scalar): scalar;
Succ (X: scalar): scalar;

Transfer Functions

function
Chr (I: Integer): Char;
Ord (X: scalar): Integer;
Round (R: Real): Integer;
Trunc (R: Real): Integer;

304 	 TURBO Pascal Reference Manual

String Procedures and Functions

String Procedures and Functions

The Str procedure uses a non-standard syntax for its numeric parame-
ter.

procedure
Delete (var S: string; Pos, Len: Integer);
Insert (S: string; var D: string; Pos: Integer);
Str (I: Integer; var S: string);
Str (R: Real; var S: string);
Val (S: string; var R: Real; var P: Integer);
Val (S: string; var I, P: Integer);

function
Concat (S1,S2,...,Sn: string): string;
Copy (S: string; Pos, Len: Integer): string;
Length (S: string): Integer;
Pos (Pattern, Source: string): Integer;

File Handling Routines

procedure
Append (var F: file; Name: String);
Assign (var F: file; Name: string);
BlockRead (var F: file; var Dest: Type; Num: Integer);
BlockWrite (var F: file; var Dest:Type; Num: Integer);
Chain (var F: file);
Close (var F: file);
Erase (var F: file);
Execute (var F: file);
Rename (var F: file; Name: string);
Reset (var F: file);
Rewrite (var F: file);
Seek (var F: file of type; Pos: Integer);

function
Eof (var F: file): Boolean;
Eoln (var F: Text): Boolean;
FilePos (var F: file of type): Integer;
FilePos (var F: file): Integer;
FileSize (var F: file of type): Integer;
FileSize (var F: file): Integer;
SeekEof (var F: file): Boolean;
SeekEoln (var F: Text): Boolean;

SUMMARY OF STANDARD PROCEDURES AND FUNCTIONS 	305

Heap Control Procedures and Functions

Heap Control Procedures and Functions

procedure
Dispose(var P: Pointer);
FreeMem(var P: Pointer, I: Integer);
GetMem (var P: pointer; I: Integer);
Mark (var P: pointer);
New (var P: pointer);
Release (var P: pointer);

function
MaxAvail: Integer;
MemAvail: Integer;
Ord (P: pointer): Integer;
Ptr (I: Integer): Pointer;

Screen Related Procedures and Functions

procedure
CrtExit;
Crtlnit;
ClrEol;
CIrScr;
DelLine;
GotoXY (X, Y: Integer);
InsLine;
LowVideo;
NormVideo;

function
WhereX: Integer; (IBM PC only)
WhereY: Integer; (IBM PC only)

306 	 TURBO Pascal Reference Manual

Miscellaneous Procedures and Functions

Miscellaneous Procedures and Functions

procedure
Bdos (Func,Param: Integer); (CP/M only)
Bios (Func,Param: Integer); (CP/M only)
ChDir (Path: String);
Delay (mS: Integer);
FillChar (var Dest, Length: Integer; Data: Char);
FillChar (var Dest, Length: Integer; Data: byte);
Halt;
GetDir (Drv:integer; var Path: String);
MkDir (Path: String);
MsDos (Func: Integer; Param: record); (PC/MS-DOS only)
Move (var Source,Dest:type; Length: Integer);
Randomize;
RmDir (Path: String);

function
Addr (var Variable): Pointer; (PC/MS-DOS, CP/M-86)
Addr (var Variable): Integer; (CP/M-80)
Addr (< function identifier >): Integer; (CP/M-80)
Addr"(< procedure identifier >): Integer;(CP/M-80)
Bdos (Func, Param: Integer): Byte;
BdosHL (Func, Param: Integer): Integer;
Bios (Func, Param: Integer): Byte;
BiosHL (Func, Param: Integer): Integer;
Hi (I: Integer): Integer;
IOresult : Boolean;
KeyPressed : Boolean;
Lo (I: Integer): Integer;
ParamCount : Integer;
ParamStr (N: Integer): String
ParamCount: Integer;
ParamStr (N: Integer): String;
Random (Range: Integer): Integer;
Random : Real;
SizeOf (var Variable): Integer;
SizeOf (< type identifier >): Integer;
Swap (I: Integer): Integer;
UpCase (Ch: Char): Char;

SUMMARY OF STANDARD PROCEDURES AND FUNCTIONS 	307

IBM PC Procedures and Functions

IBM PC Procedures and Functions

The following procedures and functions apply to the IBM PC implemen-
tations only.

Basic Graphics, Windows, and Sound

procedure
Draw(X1 ,Y1 ,X2,Y2,Color);
GraphBackground(Color: Integer);
GraphColorMode;
GraphMode;
GraphWindow(X1 ,Y1 ,X2,Y2: Integer);
HiRes;
HiResColor(Color:Integer);
NoSound;
Palette(Color:Integer);
Plot(X,Y,Color:Integer);
Sound(I: Integer);
TextBackground(Color:Integer);
TextColor(Color:Integer);
TextMode(Color:Integer);
Window(X1 ,Y1 ,X2,Y2:Integer);

function
WhereX:Integer;
WhereY:Integer;

constant
BW40:Integer; = 0
C40:Integer; = 1
BVV80:Integer; = 2
C80:Integer; = 3
Black:Integer; = 0
Blue:Integer; = 1
Green:Integer; = 2
Cyan:Integer; = 3
Red:Integer; = 4
Magenta:Integer; = 5
Brown:Integer; = 6
LightGray:Integer; = 7
DarkGray:Integer; = 8
LightBlue:Integer; = 9
LightGreen:Integer; = 10

308 	 TURBO Pascal Reference Manual

IBM PC Procedures and Functions

LightCyan:Integer; = 11
LightRed:Integer; = 12
Lig htMagenta: Integer; = 13
Yellow:Integer; = 14
White:Integer; = 15
Blink:Integer; = 16

Extended Graphics

procedure
Arc(X,Y,Angle,Radius,Color: Integer);
Circle(X,Y,Radius,Color: Integer);
ColorTable(C1,C2,C3,C4: Integer);
FillScreen(Color: Integer);
FillShape(X,Y,FillColor,BorderColor: Integer);
FillPattern(X1,Y1,X2,Y2,Color: Integer);
GetPic(var Buffer: AnyType;X1,Y1,X2,Y2: Integer);
Pattern(P: array[0..7] of Byte);
PutPic(var Buffer: AnyType;X,Y: Integer);

function
GetDotColor(X,Y: Integer): Integer;

Turtlegraphics

procedure
Back(Dist: Integer);
ClearScreen;
Forward(Dist: Integer);
HideTurtle;
Home;
NoWrap;
PenDown;
PenUp;
SetHeading(Angle: Integer);
SetPenColor(Color: Integer);
SetPosition(X,Y: Integer);
ShowTurtle;
TurnLeft(Angle: Integer);
TurnRight(Angle: Integer);
TurtleWindow(X,Y,W,H: Integer);
Wrap;

SUMMARY OF STANDARD PROCEDURES AND FUNCTIONS 	 309

Turtlegraphics

function
Heading: Integer;
Xcor: Integer;
Ycor: Integer;
TurtleThere: Boolean;

constant
North:Integer constant = 0
East:Integer constant = 90
South:Integer constant = 180
West:Integer constant = 270

310 	 TURBO Pascal Reference Manual

SUMMARY OF OPERATORS

Appendix B
SUMMARY OF OPERATORS

The following table summarizes all operators of TURBO Pascal. The
operators are grouped in order of descending precedence. Where Type
of operand is indicated as Integer, Real, the result is as follows:

Operand
Integer, Integer
Real, Real
Real, Integer

Result
Integer
Real
Real

Operator Operation Type of operand(s) Type of result

+ unary sign identity Integer, Real as operand
- unary sign inversion Integer, Real as operand

not negation Integer, Boolean as operand

multiplication Integer, Real Integer, Real
set intersection any set type as operand
division Integer, Real Real

div Integer division Integer Integer
mod modulus Integer Integer
and arithmetical and Integer Integer

logical and Boolean Boolean
shl shift left Integer Integer
shr shift right Integer Integer

addition Integer, Real Integer, Real
concatenation string string
set union any set type as operand
subtraction Integer, Real Integer, Real
set difference any set type as operand

or arithmetical or Integer Integer
logical or Boolean Boolean

xor arithmetical xor Integer Integer
logical xor Boolean Boolean

SUMMARY OF OPERATORS 	 311

Operator 	Operation 	Type of operand(s) 	Type of result

<>

in

equality
equality
equality
equality
inequality
inequality
inequality
inequality
greater or equal
greater or equal
set inclusion
less or equal
less or equal
set inclusion
greater than
greater than
less than
less than
set membership

any scalar type
string
any set type
any pointer type
any scalar type
string
any set type
any pointer type
any scalar type
string
any set type
any scalar type
string
any set type
any scalar type
string
any scalar type
string
see below

Boolean
Boolean
Boolean
Boolean
Boolean
Boolean
Boolean
Boolean
Boolean
Boolean
Boolean
Boolean
Boolean
Boolean
Boolean
Boolean
Boolean
Boolean
Boolean

>=

<=

The first operand of the in operator may be of any scalar type, and the
second operand must be a set of that type.

312 	 TURBO Pascal Reference Manual

SUMMARY OF COMPILER DIRECTIVES

Appendix C
SUMMARY OF COMPILER
DIRECTIVES

A number of features of the TURBO Pascal compiler are controlled
through compiler directives. A compiler directive is introduced as a com-
ment with a special syntax which means that whenever a comment is al-
lowed in a program, a compiler directive is also allowed.

A compiler directive consists of an opening bracket immediately followed
by a dollar-sign immediately followed by one compiler directive letter or a
list of compiler directive letters separated by commas, ultimately ter-
minated by a closing bracket.

Examples:
{$I-}
{$I INCLUDE . FIL}
{$B- R+ , V-}
(*$U+*)

Notice that no spaces are allowed before or after the dollar-sign. A +
sign after a directive indicates that the associated compiler feature is en-
abled (active), and a minus sign indicates that is disabled (passive).

IMPORTANT NOTICE

All compiler directives have default values. These have been chosen
to optimize execution speed and minimize code size. This means
that e.g. code generation for recursive procedures (CP/M-80 only)
and index checking has been disabled. Check below to make sure
that your programs include the required compiler directive settings!

SUMMARY OF COMPILER DIRECTIVES 	 313

Common Compiler Directives

Common Compiler Directives

B - I/O Mode Selection

Default: B +

The B directive controls input/output mode selection. When active,
{$B + }, the CON: device is assigned to the standard files Input and Out-
put, i.e. the default input/output channel. When passive, {$B-}, the TRM:
device is used. This directive is global to an entire program block and
cannot be re-defined throughout the program. See pages 105 and 108
for further details.

C - Control C and S

Default: C +

The C directive controls control character interpretation during console
I/O. When active, {$C + }, a Ctrl-C entered in response to a Read or
Readln statement will interrupt program execution, and a Ctrl-S will tog-
gle screen output off and on. When passive, ($C-}, control characters
are not interpreted. The active state slows screen output somewhat, so
if screen, output speed is imperative, you should switch off this directive.
This directive is global to an entire program block and cannot be re-
defined throughout the program.

I - I/O Error Handling

Default: I +

The I directive controls I/O error handling. When active, ($1+), all I/O
operations are checked for errors. When passive, ($1-), it is the respon-
sibility of the programmer to check I/O errors through the standard func-
tion lOresult. See page 116 for further details.

I - Include Files

The I directive succeeded by a file name instructs the compiler to in-
clude the file with the specified name in the compilation. Include files are
discussed in detail in chapter 17.

314 	 TURBO Pascal Reference Manual

Common Compiler Directives

R - Index Range Check

Default: R-

The R directive controls run-time index checks. When active, ($R +), all
array indexing operations are checked to be within the defined bounds,
and all assignments to scalar and subrange variables are checked to be
within range. When passive, ($R-}, no checks are performed, and index
errors may well cause a program to go haywire. It is a good idea to ac-
tivate this directive while developing a program. Once debugged, execu-
tion will be speeded up by setting it passive (the default state).

V - Var-parameter Type Checking

Default: V +

The V compiler directive controls type checking on strings passed as
var-parameters. When active, ($V +), strict type checking is performed,
i.e. the lengths of actual and formal parameters must match. When pas-
sive, ($V-), the compiler allows passing of actual parameters which do
not match the length of the formal parameter. See pages 203, 236, and
267 for further details.

U - User Interrupt

Default: U-

The U directive controls user interrupts. When active, ($U +), the user
may interrupt the program anytime during execution by entering a Ctrl-
C. When passive, ($U-}, this has no effect. Activating this directive will
significantly slow down execution speed.

SUMMARY OF COMPILER DIRECTIVES 	 315

PC-DOS and MS-DOS Compiler Directives

PC-DOS and MS-DOS Compiler Directives

The following directives are unique to the PC/MS-DOS implementations:

G - Input File Buffer

Default: GO

The G (get) directive enables I/O re-direction by defining the standard
Input file buffer. When the buffer size is zero (default), the Input file
refers to the CON: or TRM: device. When non-zero (e.g. ($G256)), it
refers to the MS-DOS standard input handle.

The D compiler directive applies to such non-zero-buffer input and out-
put files. The G compiler directive must be placed before the declaration
part.

P - Output File Buffer

Default: PO

The P (put) directive enables I/O re-direction by defining the standard
Output file buffer. When the buffer size is zero (default), the Output file
refers to the CON: or TRM: device. When non-zero (e.g. ($G512)), it
refers to the MS-DOS standard output handle.

The D compiler directive applies to such non-zero-buffer input and out-
put files. The P compiler directive must be placed before the declaration
part.

D - Device Checking

Default: D +

When a text file is opened by Reset, Rewrite or Append, TURBO Pascal
asks MS-DOS for the status of the file. If MS-DOS reports that the file is
a device, TURBO Pascal disables the buffering that normally occurs on
text files, and all I/O operations on the file are done on a character by
character basis.

316 	 TURBO Pascal Reference Manual

PC-DOS and MS-DOS Compiler Directives

The D directive may be used to disable this check. The default state
($D +), and in this state, device checks are made. In the {$D-) state, no
checks are made and all device I/O operations are buffered. In this case,
a call to the standard procedure Flush will ensure that the characters
you have written to a file have actually been sent to it.

F - Number of Open Files

Default: F16

The F directive controls the number of files that may be open simultane-
ously. The default setting is ($F16), which means that up to 16 files
may be open at any one time. This directive is global to a program and
must be placed before the declaration part. The F compiler directive
does not limit the number of files that may be declared in a program; it
only sets a limit to the number of files that may be open at the same
time.

Note that even if the F compiler directive has been used to allocate
sufficient file space, you may still experience a 'too many open files' er-
ror condition if the operating system runs out of file buffers. If that hap-
pens, you should supply a higher value for the files = xx parameter in
the CONFIG.SYS file. The default value is usually 8. For further detail,
please refer to your MS-DOS documentation.

PC-DOS, MS-DOS, and CP/M-86 Compiler Directive

The following directive is unique to the 16-bit implementations:

K - Stack Checking

Default: K +

The K directive controls the generation of stack check code. When ac-
tive, ($K +), a check is made to insure that space is available for local
variables on the stack before each call to a subprogram. When passive,
($K-), no checks are made.

SUMMARY OF COMPILER DIRECTIVES 	 317

CP/M-80 Compiler Directives

CP/M-80 Compiler Directives

The following directives are unique to the 8-bit implementation:

A - Absolute Code

Default: A +

The A directive controls generation of absolute, i.e. non-recursive, code.
When active, {$A + }, absolute code is generated. When passive, ($A-),
the compiler generates code which allows recursive calls. This code re-
quires more memory and executes slower.

W - Nesting of With Statements

Default: W2

The W directive controls the level of nesting of With statements, i.e. the
number of records which may be 'opened' within one block. The W
must be immediately followed by a digit between 1 and 9. For further
details, please refer to page 81.

X - Array Optimization

Default: X +

The X directive controls array optimization. When active, {$X + }, code
generation for arrays is optimized for maximum speed. When passive,
($X-), the compiler minimizes the code size instead. This is discussed
further on page 75.

318 	 TURBO Pascal Reference Manual

TURBO VS. STANDARD PASCAL

Appendix D
TURBO VS. STANDARD PASCAL

The TURBO Pascal language follows the Standard Pascal defined by
Jensen & Wirth in their User Manual and Report, with only minor
differences introduced for the sheer purpose of efficiency. These
differences are described in the following. Notice that the extensions
offered by TURBO Pascal are not discussed.

Dynamic Variables

The procedure New will not accept variant record specifications. This
restriction, however, is easily circumvented by using the standard pro-
cedure GetMem.

Recursion

CP/M-80 version only: Because of the way local variables are handled
during recursion, a variable local to a subprogram must not be passed
as a var-parameter in recursive calls.

Get and Put

The standard procedures Get and Put are not implemented. Instead,
the Read and Write procedures have been extended to handle all I/O
needs. The reason for this is threefold: Firstly, Read and Write give
much faster I/O; secondly, variable space overhead is reduced, as file
buffer variables are not required, and thirdly, the Read and Write pro-
cedures are far more versatile and easier to understand that Get and
Put.

Goto Statements

A goto statement must not leave the current block.

TURBO VS. STANDARD PASCAL 	 319

Page Procedure

Page Procedure

The standard procedure Page is not implemented, as the CP/M operat-
ing system does not define a form-feed character.

Packed Variables

The reserved word packed has no effect in TURBO Pascal, but it is still
allowed. This is because packing occurs automatically whenever possi-
ble. For the same reason, standard procedures Pack and Unpack are
not implemented.

Procedural Parameters

Procedures and functions cannot be passed as parameters.

320 	 TURBO Pascal Reference Manual

COMPILER ERROR MESSAGES

Appendix E
COMPILER ERROR MESSAGES

The following is a listing of error messages you may get from the com-
piler. When encountering an error, the compiler will always print the er-
ror number on the screen. Explanatory texts will only be issued if you
have included error messages (answer Y to the first question when you
start TURBO).

Many error messages are totally self-explanatory, but some need a little
elaboration as provided in the following.

01 	';' expected
02 	':' expected
03 	',' expected
04 	'(' expected
05 	')' expected
06 	' = ' expected
07 	': = ' expected
08 	'[' expected
09 	']' expected
10 	'.' expected
11 	'..' expected
12 	BEGIN expected
13 	DO expected
14 	END expected
15 	OF expected
16 	PROCEDURE or FUNCTION expected
17 	THEN expected
18 	TO or DOWNTO expected
20 	Boolean expression expected
21 	File variable expected
22 	Integer constant expected
23 	Integer expression expected
24 	Integer variable expected
25 	Integer or real constant expected
26 	Integer or real expression expected
27 	Integer or real variable expected
28 	Pointer variable expected
29 	Record variable expected

COMPILER ERROR MESSAGES 	 321

COMPILER ERROR MESSAGES

30 	Simple type expected
Simple types are all scalar types, except real.

31 	Simple expression expected
32 	String constant expected
33 	String expression expected
34 	String variable expected
35 	Textfile expected
36 	Type identifier expected
37 	Untyped file expected
40 	Undefined label

A statement references an undefined label.
41 	Unknown identifier or syntax error

Unknown label, constant, type, variable, or field identifier, or syntax
error in statement.

42 	Undefined pointer type in preceding type definitions
A preceding pointer type definition contains a reference to an unk-
nown type identifier.

43 	Duplicate identifier or label
This identifier or label has already been used within the current block.

44 	Type mismatch
1) Incompatible types of the variable and the expression in an assign-
ment statement 2) Incompatible types of the actual and the formal
parameter in a call to a subprogram. 3) Expression type incompatible
with index type in array assignment. 4) Types of operands in an ex-
pression are not compatible.

45 	Constant out of range
46 	Constant and CASE selector type does not match
47 	Operand type(s) does not match operator

Example: 'A' div '2'
48 	Invalid result type

Valid types are all scalar types, string types, and pointer types.
49 	Invalid string length

The length of a string must be in the range 1..255.
50 	String constant length does not match type
51 	Invalid subrange base type

Valid base types are all scalar types, except real.
52 	Lower bound > upper bound

The ordinal value of the upper bound must be greater than or equal
to the ordinal value of the lower bound.

53 	Reserved word
These may not be used as identifiers.

54 	Illegal assignment

322 	 TURBO Pascal Reference Manual

COMPILER ERROR MESSAGES

55 	String constant exceeds line
String constants must not span lines.

56 	Error in integer constant
An Integer constant does not conform to the syntax described in
page 43, or it is not within the Integer range -32768..32767. Whole
Real numbers should be followed by a decimal point and a zero, e.g.
123456789.0.

57 	Error in real constant
The syntax of Real constants is defined on page 43.

58 	Illegal character in identifier
60 	Constants are not allowed here
61 	Files and pointers are not allowed here
62 	Structured variables are not allowed here
63 	Textfiles are not allowed here
64 	Textfiles and untyped files are not allowed here
65 	Untyped files are not allowed here
66 	I/O not allowed here

Variables of this type cannot be input or output.
67 	Files must be VAR parameters
68 	File components may not be files

file of file constructs are not allowed.
69 	Invalid ordering of fields
70 	Set base type out of range

The base type of a set must be a scalar with no more than 256 pos-
sible values or a subrange with bounds in the range 0..255.

71 	Invalid GOTO
A GOTO cannot reference a label within a FOR loop from outside
that FOR loop.

72 	Label not within current block
A GOTO statement cannot reference a label outside the current
block.

73 	Undefined FORWARD procedure(s)
A subprogram has been forward declared, but the body never oc-
curred.

74 	INLINE error
75 	Illegal use of ABSOLUTE

1) Only one identifier may appear before the colon in an absolute
variable declaration. 2) The absolute clause may not be used in a
record.

76 	Overlays can not be forwarded
The FORWARD specification cannot not be used in connection with
overlays.

77 	Overlays not allowed in direct mode
Overlays can only be used from programs compiled to a file.

COMPILER ERROR MESSAGES 	 323

COMPILER ERROR MESSAGES

90 	File not found
The specified include file does not exist.

91 	Unexpected end of source
Your program cannot end the way it does. The program probably has
more begins than ends.

92 	Unable to create overlay file
93 	Invalid compiler directive
97 	Too many nested WITHs

Use the W compiler directive to increase the maximum number of
nested WITH statements. Default is 2. (CP/M-80 only).

98 	Memory overflow
You are trying to allocate more storage for variables than is available.

99 	Compiler overflow
There is not enough memory to compile the program. This error may
occur even if free memory seems to exist; it is, however, used by the
stack and the symbol table during compilation. Break your source
text into smaller segments and use include files.

324 	 TURBO Pascal Reference Manual

Appendix F.
RUN-TIME ERROR MESSAGES

Fatal errors at run-time result in a program halt and the display of the
message:

Run-time error NN, PC=addr
Program aborted

where NN is the run-time error number, and addr is the address in the
program code where the error occurred. The following contains explana-
tions of all run-time error numbers. Notice that the numbers are hexade-
cimal!

01 	Floating point overflow.
02 	Division by zero attempted.
03 	Sqrt argument error.

The argument passed to the Sqrt function was negative.
04 	Ln argument error.

The argument passed to the Ln function was zero or negative.
10 	String length error.

1) A string concatenation resulted in a string of more than 255
characters. 2) Only strings of length 1 can be converted to a charac-
ter.

11 	Invalid string index.
Index expression is not within 1..255 with Copy, Delete or Insert pro-
cedure calls.

90 	Index out of range.
The index expression of an array subscript was out of range.

91 	Scalar or subrange out of range.
The value assigned to a scalar or a subrange variable was out of
range.

92 	Out of integer range.
The real value passed to Trunc or Round was not within the Integer
range — 32768..32767.

FO 	Overlay file not found.
FF 	Heap/stack collision.

A call was made to the standard procedure New or to a recursive
subprogram, and there is insufficient free memory between the heap
pointer (HeapPtr) and the recursion stack pointer (RecurPtr).

RUN-TIME ERROR MESSAGES 	 325

RUN-TIME ERROR MESSAGES

Notes:

326 	 TURBO Pascal Reference Manual

I/O ERROR MESSAGES

Appendix G
I/O ERROR MESSAGES

An error in an input or output operation at run-time results in in I/O er-
ror. If I/O checking is active (I compiler directive active), an I/O error
causes the program to halt and the following error message is
displayed:

I/O error NN, PC=addr
Program aborted

Where NN is the I/O error number, and addr is the address in the pro-
gram code where the error occurred.

If I/O error checking is passive (($1-}), an I/O error will not cause the pro-
gram to halt. Instead, all further I/O is suspended until the result of the
I/O operation has been examined with the standard function lOresult. If
I/O is attempted before lOresult is called after en error, a new error oc-
curs, possibly hanging the program.

The following contains explanations of all run-time error numbers. Notice
that the numbers are hexadecimal!

01 	File does not exist.
The file name used with Reset, Erase, Rename, Execute, or Chain
does not specify an existing file.

02 	File not open for input.
1) You are trying to read (with Read or ReadIn) from a file without a
previous Reset or Rewrite. 2) You are trying to read from a text file
which was prepared with Rewrite (and thus is empty). 3) You are try-
ing to read from the logical device LST:, which is an output-only dev-
ice.

03 	File not open for output.
1) You are trying to write (with Write or WriteIn) to a file without a
previous Reset or Rewrite. 2) You are trying to read from a text file
which was prepared with Reset. 3) You are trying to read from the
logical device KBD:, which is an input-only device.

I/O ERROR MESSAGES 	 327

I/O ERROR MESSAGES

04 	File not open.
You are trying to access (with BlockRead or BlockWrite) a file
without a previous Reset or Rewrite.

10 	Error in numeric format.
The string read from a text file into a numeric variable does not con-
form to the proper numeric format (see page 43).

20 	Operation not allowed on a logical device.
You are trying to Erase, Rename, Execute, or Chain a file assigned
to a logical device.

21 	Not allowed in direct mode.
Programs cannot be Executed or Chained from a program running in
direct mode (i.e. a program activated with a Run command while the
Memory compiler option is set).

22 	Assign to std files not allowed.
90 	Record length mismatch.

The record length of a file variable does not match the file you are
trying to associate it with.

91 	Seek beyond end-of-file.
99 	Unexpected end-of-file.

1) Physical end-of-file encountered before EOF-character (Ctrl-Z)
when reading from a text file. 2) An attempt was made to read
beyond end-of-file on a defined file. 3) A Read or BlockRead is un-
able to read the next sector of a defined file. Something may be
wrong with the file, or (in the case of BlockRead) you may be trying
to read past physical EOF.

FO 	Disk write error.
Disk full while attempting to expand a file. This may occur with the
output operations Write, WriteLn, BlockWrite, and Flush, but also
Read, ReadLn, and Close may cause this error, as they cause the
write buffer to be flushed.

Fl 	Directory is full.
You are trying to Rewrite a file, and there is no more room in the disk
directory.

F2 	File size overflow.
You are trying to Write a record beyond 65535 to a defined file.

F3 	Too many open files.
FF 	File disappeared.

An attempt was made to Close a file which was no longer present in
the disk directory, e.g. because of an unexpected disk change.

328 	 TURBO Pascal Reference Manual

TRANSLATING

Appendix H
TRANSLATING ERROR MESSAGES

The compiler error messages are collected in the file TURBO.MSG.
These messages are in English but may easily be translated into any
other language as described in the following.

The first 24 lines of this file define a number of text constants for subse-
quent inclusion in the error message lines; a technique which drastically
reduces the disk and memory requirements of the error messages. Each
constant is identified by a control character, denoted by a A character
in the following listing. The value of each constant is anything that fol-
lows on the same line. All characters are significant, also leading and
trailing blanks.

The remaining lines each contain one error message, starting with the
error number and immediately followed by the message text. The mes-
sage text may consist of any characters and may include previously
defined constant identifiers (control characters). Appendix E lists the
resulting messages in full.

When you translate the error messages, the relation between constants
and error messages will probably be quite different from the English ver-
sion listed here. Start therefore with writing each error message in full,
disregarding the use of constants. You may use these error messages,
but they will require excessive space. When all messages are translated,
you should find as many common denominators as possible. Then
define these as constants at the top of the file and include only the con-
stant identifiers in subsequent message texts. You may define as few or
as many constants as you need, the restriction being only the number of
control characters.

As a good example of the use of constants, consider errors 25, 26, and
27. These are defined exclusively by constant identifiers, 15 in total, but
would require 101 characters if written in clear text.

The TURBO editor may be used to edit the TURBOMSG.OVR file. Con-
trol characters are entered with the Ctrl-P prefix, i.e. to enter a Ctrl-A
(^ A) into the file, hold down the < CONTROL > key and press first P,
then A. Control characters appear dim on the screen (if it has any video
attributes).

TRANSLATING ERROR MESSAGES 	 329

TRANSLATING ERROR MESSAGES

Notice that the TURBO editor deletes all trailing blanks. The original
message therefore does not use trailing blanks in any messages.

Error Message File Listing

"A are not allowed
"B can not be
"C constant
"D does not
"E expression
"F identifier
AG file
AH here
"Klnteger
"LFile
"NIllegal
"0 or
APUndefined
"Q match
"R real
"SString
"TTextfile
"U out of range
AV variable
"W overflow
"X expected
"Y type
"[Invalid
A] pointer
01';'AX

03','AX
04'('AX
05')'AX
06'='AX
07':="X
081[IAX

09']'AX
10'.'AX
11'..'AX
12BEGINAX
13DOAX
14END"X

330 	 TURBO Pascal Reference Manual

Error Message File Listing

150FAX
17THENAX
18T0A0 DOWNTOAX
20BooleanAEAX
21ALAVAX
22AKACAX
23AKAEAX
24AKAVAX
25AKAOARACAX
26 AKAOARAEAX
27AKAOARAVAX
28PointerAVAX
29RecordAVAX
30SimpleAYAX
31SimpleAEAX
32ASACAX
33ASAEAX
34ASAVAX
35ATAX
36TypeAFAX
37UntypedAGAX
40AP label
41UnknownAFAO syntax error
42 APA]AY in precedingAY definitions
43DuplicateAFAO label
44Type mismatch
45ACAU
46AC and CASE selectorAYADAQ
470perandAY(s)ADAQ operator
48A[resultAY
49A[AS length
50ASAC lengthADAQAY
51A[subrange baseAY
52Lower bound > upper bound
53Reserved word
54AN assignment
55ASAC exceeds line
56Error in integerAC
57Error inARAC
58AN character inAF
60ACsAAAH
61ALs andA]sAAAH
62StructuredAVsAAAH
63ATsAAAH

TRANSLATING ERROR MESSAGES 	 331

Error Message File Listing

64^Ts and untyped^Gs^A^H
65Untyped^Gs^A^H
66I/O^A
67^Ls must be^V parameters
68^L components^B^Gs
69^[^Ordering of fields
70Set base^Y^U
7l^[GOTO
72Label not within current block
73^P FORWARD procedure(s)
74INLINE error
75^N use of ABSOLUTE
90^L not found
91Unexpected end of source
97Too many nested WITH's
98Memory^W
99Compiler^W

332 	 TURBO Pascal Reference Manual

TURBO SYNTAX

Appendix I
TURBO SYNTAX

The syntax of the TURBO Pascal language is presented here using the
formalism known as the Backus-Naur Form. The following symbols are
meta-symbols belonging to the BNF formalism, and not symbols of the
TURBO Pascal language:

Means "is defined as".
I 	Means "or".
() 	Enclose items which may be repeated zero or more times.

All other symbols are part of the language. Each syntactic construct is
printed in italics, e.g.: block and case-element. reserved words are
printed in boldface, e.g.: array and for.

actual-parameter = expression I variable
adding-operator :: = + I - I or I xor
array-aOnstant = (structured-constant (, structured-constant))
array-type :: = array [index-type (, index-type)] of component-type
array-variable :: = variable
assignment-statement :: = variable : = expression I

function-identifier :: = expression
base-type :: simple-type
block :: = declaration-part statement-part
case-element :: = case-list : statement
case-label = constant
case-label-list = case-label (, case-label)
case-list :: = case-list-element (, case-list-element)
case-list-element = constant I constant .. constant
case-statement = case expression of case-element (; case-element) end I

case expression of case-element (;case-element)
otherwise statement (; statement } end

complemented-factor :: = signed-factor I not signed-factor
component-type :: = type
component-variable :: = indexed-variable I field-designator
compound-statement :: = begin statement (; statement) end
conditional-statement :: = if-statement I case-statement

TURBO SYNTAX 	 333

TURBO SYNTAX

constant :: = unsigned-number I sign unsigned-number I constant-identifier
I sign constant-identifier I string

constant-definition-part = const constant-definition
(; constant-definition) ;

constant-definition = untyped-constant-definition I
typed-constant-definition

constant-identifier = identifier
control-character = # unsigned-integer I^ character
control-variable = variable-identifier
declaration-part = (declaration-section)
declaration-section = label-declaration-part I constant-definition-part I

type-definition-part I variable-declaration-part I
procedure-and-function-declaration-part

digit :: = 011 1213141516171819
digit-sequence = digit { digit)
empty :: =
empty-statement = empty
entire-variable = variable-identifier I typed-constant-identifier
expression :: = simple-expression (relational-operator simple-expression)
factor :: = variable I unsigned-constant I (expression)1

function-designator I set
field-designator = record-variable . field-identifier
field-identifier :: = identifier
field-list = fixed-part I fixed-part ; variant-part I variant-part
file-identifier = identifier
file-identifier-list = empty I (file-identifier (, file-identifier)
file-type = file of type
final-value = expression
fixed-part = record-section ; record-section)
for-list = initial-value to final-value I initial-value downto final-value
for-statement = for control-variable : = for-list do statement
formal-parameter-section = parameter-group I var parameter-group
function-declaration :: = function-heading block ;
function-designator = function-identifier I function-identifier

(actual-parameter (, actual-parameter)
function-heading = function identifier : result-type ; I

function identifier (formal-parameter-section
(, formal-parameter-section }): result-type ;

function-identifier = identifier
goto-statement = goto label
hexdigit ::= digitIAIBICIDIEIF
hexdigit-sequence = hexdigit (hexdigit)
identifier :: = letter (letter-or-digit)
identifier-list = identifier (, identifier)

334 	 TURBO Pascal Reference Manual

TURBO SYNTAX

if-statement :: = if expression then statement (else statement)
index-type :: = simple-type
indexed-variable = array-variable [expression , expression)
initial-value = expression
inline-list-element = unsigned-integer I constant-identifier I

variable-identifier 1 location-counter-reference
inline-statement = inline inline-fist-element (, inline-list-element)
label :: = letter-or-digit (letter-or-digit)
label-declaration-part = label label (, label) ;
letter :: = AIBICIDIEIFIGIHIIIJIKILIMI

NIOIPIQIRISITIUIVIWIXIYIZI
alblcIdlelfIglhliljlkIllml
nlolplqlrlsItlulvIwIxlylz

letter-or-digit = letter I digit
location-counter-reference = * I* sign constant
multiplying-operator = * I I div I mod landl shl I shr
parameter-group :: = identifier-fist : type-identifier
pointer-type = ^ type-identifier
pointer-variable = variable
procedure-and-function-declaration-part',:: =

(procedure-or-function-declaration)
procedure-declaration = procedure-heading block ;
procedure-heading :: = procedure identifier ; I procedure identifier

(formal-parameter-section
(, formal-parameter-section)) ;

procedure-or-function-declaration = procedure-declaration I
function-declaration

procedure-statement = procedure-identifier I procedure-identifier
(actual-parameter (, actual-parameter))

program-heading :: = empty I program program-identifier
file-identifier-list

program :: = program-heading block .
program-identifier = identifier
record-constant :: = (record-constant-element

(; record-constant-element))
record-constant-element = field-identifier : structured-constant
record-section :: = empty I field-identifier (, field-identifier) : type
record-type :: = record field-list end
record-variable = variable
record-variable-list = record-variable (, record-variable)
referenced-variable = pointer-variable ^
relational-operator = =I<>1<=1>=1<l>1 in
repeat-statement = repeat statement ; statement) until expression
repetitive-statement = while-statement I repeat-statement I for-statement

TURBO SYNTAX 	 335

TURBO SYNTAX

result-type = type-identifier
scalar-type = (identifier (, identifier))
scale-factor :: = digit-sequence I sign digit-sequence
set :: = [(set-element)
set-constant = [(set-constant-element)
set-constant-element = constant I constant .. constant
set-element = expression I expression .. expression
set-type = set of base-type
sign :: = + I -
signed-factor :: = factor I sign factor
simple-expression = term (adding-operator term
simple-statement = assignment-statement I procedure-statement I

goto-statement I inline-statement I empty-statement
simple-type = scalar-type I subrange-type I type-identifier
statement :: = simple-statement I structured-statement
statement-part = compound-statement
string :: = string-element)
string-element = text-string I control-character
string-type :: = string [constant]
structured-constant :: = constant I array-constant I record-constant I

set-constant
structured-constant-definition = identifier : type = structured-constant
structured-statement :: = compound-statement I conditional-statement I

repetitive-statement I with-statement
structured-type = unpacked-structured-type I

packed unpacked-structured-type
subrange-type = constant .. constant
tag-field = empty I field-identifier :
term :: = complemented-factor (multiplying-operator complemented-factor)
text-string = ' (character) '
type-definition :: = identifier = type
type-definition-part = type type-definition (; type-definition) ;
type-identifier = identifier
type :: = simple-type I structured-type I pointer-type
typed-constant-identifier = identifier
unpacked-structured-type :: = string-type I array-type I record-type I

set-type I file-type
unsigned-constant :: = unsigned-number I string I constant-identifier I nil
unsigned-integer = digit-sequence I $ hexdigit-sequence
unsigned-number :: = unsigned-integer I unsigned-real
unsigned-real :: = digit-sequence . digit-sequence I

digit-sequence . digit-sequence E scale-factor I
digit-sequence E scale-factor

untyped-constant-definition = identifier = constant

336 	 TURBO Pascal Reference Manual

TURBO SYNTAX

variable :: = entire-variable I component-variable I referenced-variable
variable-declaration = identifier-list : type I

identifier-list : type absolute constant
variable-declaration-part = var variable-declaration

{ ; variable-declaration } ;
variable-identifier = identifier
variant :: = empty I case-label list : (field-list)
variant-part = case tag-field type-identifier of variant { ; variant
while-statement = while expression do statement
with-statement = with record-variable-list do statement

TURBO SYNTAX 	 337

TURBO SYNTAX

Notes:

338 	 TURBO Pascal Reference Manual

ASCII TABLE

Appendix J
ASCII TABLE

DEC HEX CHAR DEC HEX CHAR DEC HEX CHAR DEC HEX CHAR

0 00 '1 NUL 32 20 SPC 64 40 t 96 60 '
1 01 ^A SOH 33 21 ! 65 41 A 97 61 a
2 02 AB STX 34 22 " 66 42 B 98 62 b
3 03 AC ETX 35 23 # 67 43 C 99 63 c
4 04 ^D EOT 36 24 $ 68 44 D 100 64 d
5 05 AE ENQ 37 25 % 69 45 E 101 65 e
6 06 AF ACK 38 26 & 70 46 F 102 66 f
7 07 ^G BEL 39 27 ' 71 47 G 103 67 g
8 08 AH BS 40 28 (72 48 H 104 68 h
9 09 'I HT 41 29) 73 49 I 105 69 i
10 OA AJ LF 42 2A * 74 4A J 106 6A j
11 OB AK VT 43 2B + 75 4B K 107 6B k
12 OC AL FF 44 2C , 76 4C L 108 6C 1
13 OD AM CR 45 2D - 77 4D M 109 6D m
14 OE AN SO 46 2E . 78 4E N 110 6E n
15 OF ^0 SI 47 2F / 79 4F 0 111 6F o
16 10 AP DLE 48 30 0 80 50 P 112 70 p
17 11 AQ DC1 49 31 1 81 51 Q 113 71 q
18 12 ^R DC2 50 32 2 82 52 R 114 72 r
19 13 AS DC3 51 33 3 83 53 S 115 73 s
20 14 AT DC4 52 34 4 84 54 T 116 74 t
21 15 AU NAK 53 35 5 85 55 U 117 75 u
22 16 ^V SYN 54 36 6 86 56 V 118 76 v
23 17 AW ETB 55 37 7 87 57 W 119 77 w
24 18 AX CAN 56 38 8 88 58 X 120 78 x
25 19 AY EM 57 39 9 89 59 Y 121 79 y
26 1A AZ SUB 58 3A : 90 5A Z 122 7A z
27 1B A[ESC 59 3B ; 91 5B [123 7B {
28 1C A\ FS 60 3C < 92 5C \ 124 7C I
29 1D A] 	GS 61 3D = 93 5D] 125 7D }
30 1E AA RS 62 3E > 94 5E A 126 7E
31 1F A 	US 63 3F ? 95 5F _ 127 7F DEL

ASCII TABLE
	

339

ASCII TABLE

Notes:

340 	 TURBO Pascal Reference Manual

KEYBOARD RETURN CODES

Appendix K
KEYBOARD RETURN CODES

This appendix lists the codes returned from all combinations of keys on
the entire IBM PC keyboard, as they are seen by TURBO Pascal. Actu-
ally, function keys and 'Alt-ed' keys generate 'extended scan codes',
but these are turned into 'escape sequences' by TURBO.

To read the escape sequences, you let your read routine check for ESC,
and if detected see if there is another character in the keyboard buffer.
If there is, an escape code was received, so you read the next character
and set a flag to signal that what you got is not a normal character, but
the second part of an 'escape sequence'

if KeyPressed then
begin
Read(Kbd,Ch) 	 ch is char
if (ch = #27) and KeyPressed then { one more char?
begin
Read(Kbd,Ch)
FuncKey := True; 	 { FuncKey is boolean }

end
end;

The following table lists the return codes as decimal ASCII values. Nor-
mal keys only return a single code; extended codes return an ESC (27)
followed by one more character.

Key Unshifted Shift Ctrl Alt

Fl 27 59 27 84 27 94 27 104
F2 27 60 27 85 27 95 27 105
F3 27 61 27 86 27 96 27 106
F4 27 62 27 87 27 97 27 107
F5 27 63 27 88 27 98 27 108
F6 27 64 27 89 27 99 27 109
F7 27 65 27 90 27 100 27 110
F8 27 66 27 91 27 101 27 111
F9 27 67 27 92 27 102 27 112
F10 27 68 27 93 27 103 27 113

KEYBOARD RETURN CODES 	 341

KEYBOARD RETURN CODES

Key 	Unshi f ted Shift Ctrl Alt

LA r r 27 75 52 27 115 27 178
RA r r 27 77 54 27 116 27 180
UArr 27 72 56 27 160 27 175
DA r r 27 80 50 27 164 27 183
Home 27 71 55 27 174
End 27 79 49 27 117 27 182
PgUp 27 73 57 27 132 27 176
PgDn 27 81 51 27 118 27 184
Ins 27 82 48 27 165 27 185
Del 27 83 46 27 166 27 186
Esc 27 27 27
BackSp 8 8 127
Tab 9 27 15
RETURN 13 13 10
A 97 65 1 27 30
B 98 66 2 27 48
C 99 67 3 27 46
D 100 68 4 27 32
E 101 69 5 27 18
F 102 70 6 27 33
G 103 71 7 27 34
H 104 72 8 27 35
I 105 73 7 27 23
J 106 74 10 27 36
K 107 75 11 27 3.7
L 108 76 12 27 38
M 109 77 13 27 50
N 110 78 14 27 49
0 111 79 15 27 24
P 112 80 16 27 25
Q 113 81 17 27 16
R 114 82 18 27 19
S 115 83 19 27 31
T 116 84 20 27 20
U 117 85 21 27 22
V 118 86 22 27 47
W 119 87 23 27 17
X 120 88 24 27 45
Y 121 89 25 27 21
Z 122 90 26 27 44

342 	 TURBO Pascal Reference Manual

KEYBOARD RETURN CODES

Key
	

Unshifted Shift 	Ctrl 	Alt

[91 123 27
\ 92 124 28
] 93 125 29
' 96 126
0 48 41 27 129
1 49 33 27 120
2 50 64 27 3 27 121
3 51 35 27 122
4 52 36 27 123
5 53 37 27 124
6 54 94 30 27 125
7 55 38 27 126
8 56 42 27 127
9 57 40 27 128
* 42 27 114
+ 43 43
- 45 95 31 27 130
= 61 43 27 131

44 60
/ 47 63

59 58

Table K-1: Keyboard Return Codes

KEYBOARD RETURN CODES 	 343

KEYBOARD RETURN CODES

Notes:

344 	 TURBO Pascal Reference Manual

INSTALLATION

Appendix L
INSTALLATION

Terminal Installation

Before you use TURBO Pascal, it must be installed to your particular
terminal, i.e. provided with information regarding control characters re-
quired for certain functions. This installation is easily performed using
the program TINST which is described in this chapter.

After having made a work-copy, please store your distribution diskette
safely away and work only on the copy.

Now start the installation by typing TINST at your terminal. Select
Screen installation from the main menu. Depending on your version of
TURBO Pascal, the installation proceeds as described in the following
two sections.

IBM PC Display Selection

If you use TURBO Pascal without installation, the default screen set-up
will be used. You may override this default by selecting another screen
mode from this menu:

Choose one of the following displays:

0) Default display mode
1) Monochrome display
2) Color display 80x25
3) Color display 40x25
4) b/w display 80x25
5) b/w display 40x25

Which display (enter no. or AX to exit) ■

Figure L-1: IBM PC Screen Installation Menu

INSTALLATION
	

345

Terminal Installation

Each time TURBO Pascal runs, the selected mode will be used, and you
will return to the default mode on exit.

Non-IBM PC Installation

A menu listing a number of popular terminals will appear, inviting you to
choose one by entering its number:

Choose one of the following terminals:

1) ADDS 20/25/30 15) Lear-Siegler ADM-31
2) ADDS 40/60 16) Liberty
3) ADDS Viewpoint-1A 17) Morrow MDT-20
4) ADM 3A 18) Otrona Attache
5) Ampex D80 19) Qume
6) ANSI 20) Soroc IQ-120
7) Apple/graphics 21) Soroc new models
8) Hazeltine 1500 22) Teletext 3000
9) Hazeltine Esprit 23) Televideo 912/920/925
10) IBM PC CCP/M b/w 24) Visual 200
11) IBM PC CCP/M color 25) Wyse WY-100/200/300
12) Kaypro 10 26) Zenith
13) Kaypro II and 4 27) None of the above
14) Lear-Siegler ADM-20 28) Delete a definition

Which terminal? (Enter no. or ^X to exit):

Figure L-2: Terminal Installation Menu

If your terminal is mentioned, just enter the corresponding number, and
the installation is complete. Before installation is actually performed, you
are asked the question:

Do you want to modify the definition before installation?

This allows you to modify one or more of the values being installed as
described in the following. If you do not want to modify the terminal
definition, just type N, and the installation completes by asking you the
operating frequency of your CPU (see last item in this appendix).

346 	 TURBO Pascal Reference Manual

Terminal Installation

If your terminal is not on the menu, however, you must define the re-
quired values yourself. The values can most probably be found in the
manual supplied with your terminal.

Enter the number corresponding to None of the above and answer the
questions one by one as they appear on the screen.

In the following, each command you may install is described in detail.
Your terminal may not support all the commands that can be installed. If
so, just pass the command not needed by typing RETURN in response
to the prompt. If Delete line, Insert line, or Erase to end of line is not in-
stalled, these functions will be emulated in software, slowing screen per-
formance somewhat.

Commands may be entered either simply by pressing the appropriate
keys or by entering the decimal or hexadecimal ASCII value of the com-
mand. If a command requires the two characters 'ESCAPE' and ' =
may:

either: press first the Esc key, then the = . The entry will be echoed
with appropriate labels, i.e. <ESC> =.

or: enter the decimal or hexadecimal values separated by spaces. Hexa-
decimal values must be preceded by a dollar-sign. Enter e.g. 27 61
or $1B 61 or $1B $3D which are all equivalent.

The two methods cannot be mixed, i.e. once you have entered a non-
numeric character, the rest of that command must be defined in that
mode, and vise versa.

A hyphen entered as the very first character is used to delete a com-
mand, and echoes the text Nothing.

Terminal type:
Enter the name of the terminal you are about to install. When you com-
plete TINST , the values will be stored, and the terminal name will ap-
pear on the initial list of terminals. If you later need to reinstall TURBO
Pascal to this terminal, you can do that by choosing it from the list.

INSTALLATION 	 347

Terminal Installation

Send an initialization string to the terminal?
If you want to initialize your terminal when TURBO Pascal starts (e.g. to
download commands to programmable function keys), you answer Y for
yes to this question. If not, just hit RETURN.

Send a reset string to the terminal?
Define a string to be sent to the terminal when TURBO Pascal ter-
minates. The description of the initialization command above applies
here.

CURSOR LEAD-IN command:
Cursor Lead-in is a special sequence of characters which tells your ter-
minal that the following characters are an address on the screen on
which the cursor should be placed.

When you define this command, you are asked the following supplemen-
tary questions:

CURSOR POSITIONING COMMAND to send between line and
column:

Some terminals need a command between the two numbers defining
the row- and column cursor address.

CURSOR POSITIONING COMMAND to send after line and column:
Some terminals need a command after the two numbers defining the
row- and column cursor address.

Column first?
Most terminals require the address on the format: first ROW, then
COLUMN. If this is the case on your terminal, answer N. If your ter-
minal wants COLUMN first, then ROW, then answer Y.

OFFSET to add to LINE
Enter the number to add to the LINE (ROW) address.

OFFSET to add to COLUMN
Enter the number to add to the COLUMN address.

Binary address?
Most terminals need the cursor address sent on binary form. If that is
true for your terminal, enter Y. If your terminal expects the cursor ad-
dress as ASCII digits, enter N. If so, you are asked the supplementa-
ry question:

348 	 TURBO Pascal Reference Manual

Terminal Installation

2 or 3 ASCII digits?
Enter the number of digits in the cursor address for your terminal.

CLEAR SCREEN command:
Enter the command that will clear the entire contents of your screen,
both foreground and background, if applicable.

Does CLEAR SCREEN also HOME cursor?
This is normally the case; if it is not so on your terminal, enter N, and
define the cursor HOME command.

DELETE LINE command:
Enter the command that deletes the entire line at the cursor position.

INSERT LINE command:
Enter the command that inserts a line at the cursor position.

ERASE TO END OF LINE command:
Enter the command that erases the line at the cursor position from the
cursor position through the right end of the line.

START OF 'LOW VIDEO' command:
If your terminal supports different video intensities, then define the com-
mand that initiates the dim video here. If this command is defined, the
following question is asked:

START OF 'NORMAL VIDEO' command:
Define the command that sets the screen to show characters in 'normal'
video.

Number of rows (lines) on your screen:
Enter the number of horizontal lines on your screen.

Number of columns on your screen:
Enter the number of vertical column positions on your screen.

Delay after CURSOR ADDRESS (0-255 ms):
Delay after CLEAR, DELETE, and INSERT (0-255 ms):
Delay after ERASE TO END OF LINE and HIGHLIGHT On/Off (0-255 ms):

Enter the delay in milliseconds required after the functions specified.
RETURN means 0 (no delay).

INSTALLATION 	 349

Terminal Installation

Is this definition correct?
If you have made any errors in the definitions, enter N. You will then re-
turn to the terminal selection menu. The installation data you have just
entered will be included in the installation data file and appear on the ter-
minal selection menu, but installation will not be performed. When you
enter Y in response to this question, you are asked:

Operating frequency of your microprocessor in MHz (for delays):
As the delays specified earlier are depending on the operating frequency
of your CPU, you must define this value.

The installation is finished, installation data is written to TURBO Pascal,
and you return to the outer menu (see section 12). Installation data is
also saved in the installation data file and the new terminal will appear
on the terminal selection list when you run TINST in future.

Editing Command Installation

The built-in editor responds to a number of commands which are used
to move the cursor around on the screen, delete and insert text, move
text etc. Each of these functions may be activated by either of two com-
mands: a primary command and a secondary command. The secondary
commands are installed by Borland and comply with the 'standard' set
by WordStar. The primary commands are un-defined for most systems,
and using the installation program, they may easily be defined to fit your
taste or your keyboard. IBM PC systems are supplied with the arrows
and dedicated function keys installed as primary commands as
described in chapter 19.

When you hit C for Command installation, the first command appears:

CURSOR MOVEMENTS:

1: Character left 	Nothing -> ■

350 	 TURBO Pascal Reference Manual

Editing Command Installation

This means that no primary command has been installed to move the
cursor one character left. If you want to install a primary command (in
addition to the secondary WordStar-like Ctrl-S, which is not shown
here), you may enter the desired command following the -> prompt in
either of two ways:

Simply press the key you want to use. It could be a function key (for ex-
ample a left-arrow-key, if you have it) or any other key or sequence of
keys that you choose (max. 4). The installation program responds with a
mnemonic of each character it receives. If you have a left-arrow-key that
transmits an < ESCAPE > character followed by a lower case a, and
you press this key in the situation above, your screen will look like this:

CURSOR MOVEMENTS:

1: Character left 	Nothing -> <ESC> a ■

2) 	Instead of pressing the actual key you want to use, you may enter the
ASCII value(s) of the character(s) in the command. The values of multi-
ple characters are entered separated by spaces. Decimal values are just
entered: 27; hexadecimal values are prefixed by a dollar-sign: 161B. This
may be useful to install commands which are not presently available on
your keyboard, for example if you want to install the values of a new
terminal while still using the old one. This facility has just been provided
for very few and rare instances, because there is really no idea in
defining a command that cannot be generated by pressing a key. But
it's there for those who wish to use it.

In both cases terminate your input by pressing < RETURN > .Notice
that the two methods cannot be mixed within one command. If you have
started defining a command sequence by pressing keys, you must
define all characters in that command by pressing keys and vise versa.

You may enter a - (minus) to remove a command from the list, or a B to
back through the list one item at a time.

INSTALLATION 	 351

Editing Command Installation

The editor accepts a total of 45 commands, and they may all be installed
to your specification. If you make an error in the installation, like defining
the same command for two different purposes, an self-explanatory error
message is issued, and you must correct the error before terminating
the installation. A primary command, however, may conflict with one of
the WordStar-like secondary commands; that will just render the secon-
dary command inaccessible.

The following table lists the secondary commands, and allows you(10
mark any primary commands installed by yourself:

CURSOR MOVEMENTS:
1: Character left 	Ctrl-S
2: Alternative 	Ctrl-H
3: Character right 	Ctrl-D
4: Word left 	Ctrl-A
5: Word right 	Ctrl-F
6: Line up 	 Ctrl-E
7: Line down 	Ctrl-X
8: Scroll up 	Ctrl-W
9: Scroll down 	Ctrl-Z
10: Page up 	 Ctrl-R
11: Page down 	Ctrl-C
12: To left on line 	Ctrl-Q Ctrl-S
13: To right on line Ctrl-Q Ctrl-D
14: To top of page 	Ctrl-Q Ctrl-E
15: To bottom of page Ctrl-Q Ctrl-X
16: To top of file 	Ctrl-Q Ctrl-R
17: To end of file 	Ctrl-Q Ctrl-C
18: To beginning of block 	Ctrl-Q Ctrl-B
19: To end of block 	Ctrl-Q Ctrl-B
20: To last cursor position Ctrl-Q Ctrl-P

352 	 TURBO Pascal Reference Manual

INSERT & DELETE:

Editing Command Installation

21: Insert mode on/off Ctrl-V
22: Insert line Ctrl-N
23: Delete line Ctrl-Y
24: Delete to end of line Ctrl-Q Ctrl-Y
25: Delete right word Ctrl-T
26: Delete character under cursor Ctrl-G
27: Delete left character
28: Alternative: Nothing 	

BLOCK COMMANDS:

29: Mark block begin Ctrl-K Ctrl-B
30: Mark block end Ctrl-K Ctrl-K
31: Mark single word Ctrl-K Ctrl-T
32: Hide/display block Ctrk-K Ctrl-H
33: Copy block Ctrl-K Ctrl-C
34: Move block Ctrl-K Ctrl-V
35: Delete block Ctrl-K Ctrl-Y
36: Read block from disk Ctrl-K Ctrl-R
37: Write block to disk Ctrl-K Ctrl-W

MISC. EDITING COMMANDS:

38: End edit Ctrl-K Ctrl-D
39: Tab Ctrl-I
40: Auto tab on/off Ctrl-Q Ctrl-I
41: Restore line Ctrl-Q Ctrl-L
42: Find Ctrl-Q Ctrl-F
43: Find & replace Ctrl-Q Ctrl-A
44: Repeat last find Ctrl-L
45: Control character prefix Ctrl-P

Table L-1: Secondary Editing Commands

Items 2 and 28 let you define alternative commands to Character Left
and Delete left Character commands. Normally < BS > is the alterna-
tive to Ctrl-S, and there is no defined alternative to < DEL > . You may
install primary commands to suit your keyboard, for example to use the
< BS > as an alternative to < DEL > if the < BS > key is more con-
veniently located. Of course, the two alternative commands must be
unambiguous like all other commands.

INSTALLATION 	 353

Editing Command Installation

Notes:

354 	 TURBO Pascal Reference Manual

CP/M PRIMER

Appendix M
CP/M PRIMER

How to use TURBO on a CP/M system

When you turn on your computer, it reads the first couple of tracks on
your CP/M diskette and loads a copy of the CP/M operating system into
memory. Each time you re-boot your computer, CP/M also creates a list
of the disk space available for each disk drive. Whenever you try to save
a file to the disk, CP/M checks to make sure that the diskettes have not
been changed. If you have changed the diskette in Drive A without re-
booting, for example, CP/M will generate the following error message
when a disk-write is attempted:

BDOS ERROR ON A: R/O

Control will return to the operating system and your work was NOT
saved! This can make copying diskette a little confusing for the be-
ginner. If you are new to CP/M, follow these instructions:

Copying Your TURBO Disk

To make a working copy of your TURBO MASTER DISK, do the follow-
ing:

1. Make a blank diskette and put a copy of CP/M on it (see your CP/M
manual for details). This will be is your TURBO work disk.

2. Place this disk in Drive A:. Place a CP/M diskette with a copy of
PIP.COM in Drive B (PIP.COM is CP/M's file copy program that should
be on your CP/M diskette. See your CP/M manual for details).

3. Re-boot the computer. Type B: PIP and then press < RETURN >

4. Remove the diskette from Drive B: and insert your TURBO MASTER
DISK.

5. Now type: A : =B:* . *[V) and then press < RETURN >

You have instructed PIP it to copy all the files from the diskette in Drive
B: onto the diskette in Drive A:. Consult your CP/M manual if any errors
occur.

CP/M PRIMER 	 355

Copying Your TURBO Disk

The last few lines on your screen should look like this:

A> B:PIP

A:=B:.*[V]

COPYING -
FIRSTFILE
•
•
LASTFILE
*

6. 	Press < RETURN > , and the PIP program will end.

Using Your TURBO Disk

Store your TURBO MASTER DISK in a safe place. To use TURBO
PASCAL, place your new TURBO work disk in drive A: and re-boot the
system. Unless your TURBO came pre-installed for your computer and
terminal, you should install TURBO (see 12). When done, type

TURBO

and TURBO Pascal will start.

If you have trouble copying your diskette, please consult your CP/M
user manual or contact your hardware vendor for CP/M support.

356 	 TURBO Pascal Reference Manual

HELP!!!

Appendix N
HELP!!!

This appendix lists a number of the most commonly asked questions
and their answers. If you don't find the answer to your question here,
you can either call Borland's technical support staff, or you can access
CompuServe's Consumer Information 24 hours a day and 'talk' to the
Borland Special Interest Group. See insert in the front of this manual for
details.

Q: How do I use the system?
A: Please read the manual, specifically chapter 1 . If you must get start-

ed immediately do the following:
1) Boot up your operating system
2) If you have a computer other than an IBM PC, run Tinst to

install Turbo for your equipment.
3) Run Turbo
4) Start programming!

Q: I am having trouble installing my terminal!
A: If your terminal is not one that is on the installation menu you must

create your own. All terminals come with a manual containing infor-
mation on codes that control video I/O. You must answer the ques-
tions in the installation program according to the information in your
hardware manual. The terminology we use is the closest we could
find to a standard. Note: most terminals do not require an initializa-
tion string or reset string. These are usually used to access
enhanced features of a particular terminal; for example on some ter-
minals you can send an initialization string to make the keypad act as
a cursor pad. You can put up to 13 characters into the initialization or
reset strings.

Q: I am having disk problems. How do I copy my disks?
A: Most disk problems do not mean you have a defective disk.

Specifically, if you are on a CP/M-80 system you may want to look
up the brief CP/M primer on page 355. If you can get a directory of
your distribution disk, then chances are that it is a good disk.

HELP!!! 	 357

HELP!!!

To make a backup copy of Turbo you should use a file-by-file copy pro-
gram like COPY for PC/MS-DOS or PIP for CP/M-80/86. The reason is
that for those of you who have quad density disk drives, you may have
trouble using a DISKCOPY type program. These programs are expect-
ing the exact same format for the Source diskette as well as the Desti-
nation diskette.

Q: Do I need an 8087 chip to use Turbo-87?
A: Yes, if you want to compile programs for the 8087 chip, that chip

must be in your machine. The standard TURBO compiler, however, is
included on the Turbo-87 disk, so you can have it both ways!

Q: Do I need any special equipment to use TURBO-BCD?
A: No, but the BCD reals package works on 16 bit implementations of

Turbo only.

Q: Do I need Turbo to run programs I developed in Turbo?
A: No, Turbo can make .COM or .CMD files.

sa How do I make .COM or .CMD files?
A: Type 0 from the main menu for Compiler Options and then select

"C" for .COM or .CMD file.

0: What are the limits on the compiler as far as code and data?
A: The compiler can handle up to 64K of code, 64K of data, 64K of

stack and unlimited heap. The object code, however, cannot exceed
64K.

0: What are the limits of the editor as far as space?
A: The editor can edit as much as 64K at a time. If this is not enough,

you can split your source into more than one file using the $1 com-
piler directive. This is explained in chapter 17.

Q: What do I do when I get error 99 (Compiler overflow)?
A: You can do two things: break your code into smaller segments and

use the $1 compiler directive (explained in chapter 17) or compile to a
.COM or .CMD file.

Q: What do I do if my object code is going to be larger than 64K?
A: Either use the chain facility or use overlays.

358 	 TURBO Pascal Reference Manual

HELP!!!

Q: How do I read from the keyboard without having to hit return
(duplicate BASIC's INKEY$ function)?

A: Like this: read (Kbd, Ch) where Ch:Char.

Q: How do I get output to go to the printer?
A: Try: Writeln(Lst, . . .).

Q: How can I get a listing of my source code to my printer?
A: You can use the following program. If you wish to have a listing that

underlines or highlights reserved words, puts in page breaks, and
lists all Include files, there is one included free (including source) on
the Turbo Tutor diskette.

program TextFileDemo;

var
TextFile : Text;
Scratch : String[128];

begin
Write('File to print: '); 	 { Get file name
Readln(Scratch);
Assign(TextFile, Scratch); 	{ Open the file
{$I-}
Reset(TextFile);
{$I+}
if IOresult <> 0 then

Writeln('Cannot find ', Scratch) { File not found 	}
else 	 { Print the file..
begin
while not Eof(TextFile) do
begin
Readln(TextFile, Scratch); 	{ Read a line 	}
Writeln(Lst, Scratch) 	 { Print a line

end; { while
Writeln(Lst) 	 { Flush printer buffer

end { else
end.

Q: How do I get output to and input from COM1:?
A: Try: writeln(AUX, ...) after setting up the port using MODE from

MSDOS or an equivalent ASSIGN type program from CP/M. To read
try read(AUX, ...). You must remember that there is no buffer set up
automatically when reading from AUX.

HELP!!! 	 359

HELP!!!

Q: How do I read a function key?
A: Function keys generate 'extended scan codes' which are turned into

'escape sequences' by TURBO, that is, two characters are sent from
the keyboard: first an Esc (decimal ASCII value 27), then some other
character. You'll find a table of all values on page 341.

To read these extended codes, you check for ESC and if detected
see if there is another character in the keyboard buffer. If there is, a
function key was pressed, so you read the next character and set a
flag to signal that what you got is not a normal character, but the
second part of an 'escape sequence'

if KeyPressed then
begin
Read(Kbd,Ch) 	 {ch is char)
if (ch = #27) and KeyPressed then {one more char?)
begin
Read(Kbd,Ch)
FuncKey := True; 	 {FuncKey is boolean}

end
end;

Q: I am having trouble with file handling. What is the correct
order of instructions to open a file?

A: The correct manner to handle files is as follows:

To create a new file:

Assign(FileVar,'Name0f.Fil');
Rewrite(FileVar);

•
Close(FileVar);

To open an existing file:

Assign(fileVar,'Name0f.Fil');
Reset(FileVar);

Close(FileVar);

360 	 TURBO Pascal Reference Manual

HELP!!!

Q: Why do my recursive procedures not work?
A: Set the A compiler directive off:($A-)(CP/M-80 only)

Q: How can I use EOF and EOLN without a file variable as a parameter?
A: Turn off buffered input:{$B-}

Q: How do I find out if a file exists on the disk?
A: Use ($1-) and {I + }. The following function returns True if the file

name passed as a parameter exists, otherwise it returns False:

type
Name=string[66];

function Exist(FileName: Name): Boolean;
Var

Fil: file;
begin

Assign(Fil, FileName);
{$1-}
Reset(Fil);
{$1+}
Exist := (I0result = 0)

end;

0: How do I disable CTRL-C?
A: Set compiler directive: ($C-).

0: I get a Type Mismatch error when passing a string to a function or
procedure as a parameter.

A: Turn off type checking of variable parameters: ($V-).

Q: I get file not found error on my include file when I compile my
program - even though the file is in the directory.

A: When using the include compiler directive ($/ filename.ext) there
must be a space separating the filename from the terminating brace,
if the extension is not three letters long: {$1Sample.F }. Other-
wise the brace will be interpreted as part of the file name.

Q: Why does my program behave differently when I run it several times
in a row?

A: If you are running programs in Memory mode and use typed con-
stants as initialized variables, these constants will only be initialized
right after a compilation, not each time you Run the program as they
reside in the code segment. With .COM files, this problem does not
exist, but if you still experience different results when using arrays
and sets, turn on range checking ($R +).

HELP!!! 	 361

HELP!!!

0: I don't get the results I think I should when using Reals and
Integers in the same expression.

A: When assigning an Integer expression to a Real variable, the expres-
sion is converted to Real. However, the expression itself is calculated
as an integer, and you should therefore be aware of possible integer
overflow in the expression. This can lead to surprising results. Take
for instance:

RealVar := 40 * 1000;

First, the compiler multiplies integers 40 and 1000, resulting in 40,000
which gives integer overflow. It will actually come out to -25536 as
Integers wrap around. Now it will be assigned to the RealVar as
-25536. To prevent this, use either:

RealVar := 40.0 * 1000;
or

RealVar := 1.0 * IntVarl * IntVar2;

to ensure that the expression is calculated as a Real.

Q: How do I get a disk directory from my TURBO program?
A: Sample procedures for accessing the directory are included in the

TURBO Tutor package (see how to order the TURBO Tutor on page
3).

Q: My program works well with TURBO 2.0, but now it keeps getting
I/O Error F3 (or TURBO Access error 243)

A: TURBO 3.0 uses DOS file handles. When booting your computer,
you should have a CONFIG.SYS file in the root directory of your boot
drive. Place the statement:

FILES=16

in this file and re-boot your system. For more information about file
handles, please refer to your DOS reference manual.

NOTE: If you distribute your programs, you should include similar in-
structions in the documentation that you provide.

362 	 TURBO Pascal Reference Manual

Appendix 0.
SUBJECT INDEX

A
A-command, 192, 229
A-compiler directive, 286
Abort command, 34
Abs, 139
Absolute address function,

204, 237
Absolute value, 139
Absolute variable, 203,

236, 261, 267
Adding operator, 51, 53
Addr, 204, 237
Addr Function, 268
Allocating variable (New),

120
Append procedure, 200
Arc, 173
ArcTan, 139
Arithmetic functions, 139,

304
Array component, 75
Array constant, 90
Array definition, 75
Array of characters, 112
Array subscript optimization,

269
Array, 75, 219, 224, 254,

285, 249, 281
Assign, 94
Assignment operator, 37
Assignment statement, 55
Auto indent on/off switch, 31
Auto indentation, 35
Automatic overlay management,

155
AUX:, 104

B
Back, 178
Background color, 161
Backslash, 188
Backspace, 109
Backup, 17
BAK file, 17
Basic data types, 216, 246,

278
Basic graphics, 171

Windows, and sound, 308
Basic movement commands, 22
Basic symbols, 37
BCD range, 293
BDOS, 261
Bdos procedure and function,

271
BdosHL function, 271
Begin block, 28
Bios procedure and function,

272
BiosHL function, 272
Blanks, 39
Blink, 161
Block, 127
Block size, 235
Block commands, 28

Begin block, 28
Copy block, 29
Delete block, 29
End block, 28
Hide/display block, 29
Mark single word, 28
Move block, 29
Read block from disk, 29
Write block to disk, 30

BlockRead, 114

SUBJECT INDEX 	 363

SUBJECT INDEX

BlockWrite, 114
Boolean, 42
Brackets, 37
Buffer size, 200, 235
BW40, 160
BW80, 160
Byte, 41

C
C-command, 17, 190, 227,

260
C40, 160
C80, 160
Call by reference, 128
Call by value, 127
Case statement, 58
Chain, 193, 231, 263
Chain and execute, 193, 231,

263
Char, 42
Character array constant, 90
Character array, 77
Character color, 161
Character left, 24
Character right, 24
Characters, 73
ChDir, 189
Chr, 142
Circle, 173
Clear screen

in graphics, 163
ClearScreen, 179
Clipping, 163, 177, 183
Close, 96
ClrEol, 133
ClrScr, 133
Code segment, 191, 228
Col(umn) indicator in editor,

20
Color identifierg, 161
Color modes, 161
ColorTable, 172
COM1:, 104

Command-line parameters, 192,
229, 262

Comments, 37, 39, 46
Common compiler directives,

314
Common data, 194, 231, 264
Compilation

in memory, 288
to disk, 289

Compile command, 17
Compiler directives, 46

A: absolute code, 286,
318

B: input/output mode
selection, 106, 109, 314

C: "C and "S interpretation,
314

D: device check, 201, 316
F: open files, 317
G: input file buffer, 201,

316
I: I/O error handling,

116, 314
I: include files, 16, 147,

314
in include files, 148
K: stack check, 317
P: output file buffer,

201, 316
R: Range checking, 65,

73, 76, 315
U: user interrupt, 315
V: Type checking, 129,

315
W: With statement nesting,

318
X: Array optimization,

269, 318
Compiler error messages, 321
Compiler options, 18, 190,

227, 259
Compound statement, 57
CON:, 104
Concat, 71

364 	 TURBO Pascal Reference Manual

SUBJECT INDEX

Concatenation, 68
Concurrent CP/M, 229
Conditional statement, 57
Consecutive subprograms, 152
Constant definition part, 48
Constants

typed, 89
Control character, 22, 31,

32, 45, 341
Control character prefix, 34
Conversion, 65
Coordinates, 177
Copy, 71
Copy block, 29
Cosine, 139
CP/M function calls, 271
CP/M-80 compiler directives,

318
CPU stack, 225, 256, 286
CR as numeric input, 109
Creating overlays, 152
CrtExit, 134
Crtlnit, 133
Cseg, 205, 237
Ctrl-A, 24
Ctrl-A in search strings, 31,

32
Ctrl-C, 314, 315
Ctrl-D, 24, 110
Ctrl-E, 24
Ctrl-F, 24
Ctrl-G, 27
Ctrl-K-B, 28
Ctrl-K-C, 29
Ctrl-K-D, 30
Ctrl-K-H, 29
Ctrl-K-K, 28
Ctrl-K-R, 29
Ctrl-K-T, 28
Ctrl-K-V, 29
Ctrl-K-W, 30
Ctrl-L, 33
Ctrl-M, 110
Ctrl-N, 27
Ctrl-P, 34

Ctrl-Q-A, 32
Ctrl-Q-B, 26
Ctrl-Q-C, 26
Ctrl-Q-D, 25
Ctrl-Q-E, 26
Ctrl-Q-F, 31
Ctrl-Q-1, 31
Ctrl-Q-K, 26
Ctrl-Q-L, 31
Ctrl-Q-P, 26
Ctrl-Q-R, 26
Ctrl-Q-S, 25
Ctrl-Q-X, 26
Ctrl-Q-Y, 28
Ctrl-R, 25, 110
Ctrl-S, 24
Ctrl-T, 27
Ctrl-U, 34
Ctrl-V, 27
Ctrl-W, 24
Ctrl-X, 24, 109
Ctrl-Y, 27
Ctrl-Z, 24, 110
Current directory, 196
Cursor movement, 34
Cursor movement commands

Character left, 24
Character right, 24
Line down, 24
Line up, 24
Page down, 25
Page up, 25
Scroll down, 24
Scroll up, 24
To beginning of block, 26
To bottom of screen, 26
To end of block, 26
To end of file, 26
To last position, 26
To left on line, 25
To right on line, 25
To top of file, 26
To top of screen, 26
Word left, 24
Word right, 24

Cursor position, 162

SUBJECT INDEX 	 365

SUBJECT INDEX

D
D - Device checking, 316
D compiler directive, 201
D-command, 18, 191, 229
Data area, 156
Data conversion, 108
Data segment, 191, 229
Data structures, 219, 249,

281
Data transfer between

programs, 194, 231, 264
Declaration part, 47
Declared scalar types, 41
Default graphics window, 169
Default turtlewindow, 182
Default window, 168
DEL, 109
Delay, 134
Delete, 33, 69
Delete a command, 347
Delete block, 29
Delete character under cursor,

27
Delete commands

Delete character under
cursor, 27

Delete left character, 27
Delete line, 27
Delete right word, 27
Delete to end of line, 28

Delimiter, 39
DelLine, 134
Deviations from standard

Pascal, 38, 47, 48, 58,
65, 67, 89, 319

Digit, 37
Direct memory access, 205,

238, 268
Direct port access, 206,

239, 269
Directory command, 18
Directory path, 188
Directory-related procedures,

189
Discriminated unions, 83

Disjunction, 87
Disk change, 15
Disk file, 220, 250, 282
Disk-reset, 15
Dispose, 124
Draw, 163, 171
Dseg, 205, 238
Dynamic variables, 119, 319

E
E-command, 17, 261
Echo, 104, 106

of CR, 110, 111
Edit command, 17
Edit modes

Insert, 27
Overwrite, 27

Editing command installation,
350

Editing commands, 13, 20,
350

Character left, 24
Character right, 24
Line down, 24
Line up, 24
Page down, 25
Page up, 25
Scroll down, 24
Scroll up, 24
To beginning of block, 26
To bottom of screen, 26
To end of block, 26
To end of file, 26
To last position, 26
To left on line, 25
To right on line, 25
To top of file, 26
To top of screen, 26
Word left, 24
Word right, 24

Editing of input, 109

366 	 TURBO Pascal Reference Manual

SUBJECT INDEX

Editor, 19
Command keys, 186
Col, 20
File name, 20
Indent, 20
Insert, 20
Line, 20

Element (of set), 85
Else statement, 58
Empty set, 86
Empty statement, 56
End address, 261
End block, 28
End edit command, 30, 35
End of line, 39
EOF, 97, 108, 109

with text files, 102
EOF function, 115
Eoln, 102, 108, 109
Erase, 96
Error message file listing,

330
Error message translation,

329
Error messages

Compiler, 321
I/O, 327
Run-time, 325

Esc, 109
Execute, 193, 231, 263
eXecute Command, 259
Execution

error messages, 325
in memory, 290
of a program file, 291

Exist function, 97, 361
Exit, 135
Exp, 140
Exponential, 140
Extended file size, 199
Extended graphics, 172, 309
Extended movement commands,

25
Extensions, 2

External procedures, 221,
252, 283

External subprograms, 210,
242, 274

F
F compiler directive, 198
F-command, 192, 229, 262
False, 42
Field constant, 92
Field list, 79
Fields, 79
File handling routines, 305
File identifier, 93
File interface blocks, 220,

250, 280
File name indicator in editor,

20
File names, 15, 198, 235,

267
File of byte, 199
File parameters, 128
File path, 188
File pointer, 93
File standard functions, 97
File type, 93
File type definition, 93
FilePos, 97
FilePos function, 115
FilePos function (CP/M-86),

235, 267
Files, 198, 235, 267
Files on the

distribution disk, 8
TURBO-87 distribution disk,
301

TURBO-BCD distribution disk,
293

FileSize function, 98, 115
(CP/M-86), 235, 267
with text files, 102

FillChar, 136

SUBJECT INDEX 	 367

SUBJECT INDEX

FillPattern, 175
FillScreen, 175
FillShape procedure, 175
Find, 31
Find and replace, 32
Find runtime error, 192,

229, 262
Flush procedure, 96, 199,

200
Flush procedure (CP/M-86),

235, 267
Flush with text files, 102
For statement, 60
Foreign languages, 329
Form function, 294
Formatted writing, 298
Forward procedure, 179
Forward declarations, 156
Forward references, 145
Frac, 140
Fractional part, 140
Free memory, 192, 229
Free unions, 83
FreeMem, 125
Function call, 208, 240
Function declaration, 137
Function designator, 54
Function result, 224, 255,

285
Functions, 137

Concat, 71
Copy, 71
EOF, 97
Eoln, 102
FilePos, 97
FileSize, 98
Length, 72
Pos, 72
Scalar types, 64
SeekEof, 102
SeekEoln, 102

G
G compiler directive, 201

Get, 319
GetDir, 189
GetDotColor, 174
GetMem, 125
GetPic, 173
Global variable access, 215,

246
Goto statement, 56, 319
GotoXY, 134
Graph Background, 166
GraphColorMode, 163
Graphics functions

GetDotColor, 174
Graphics modes, 163
Graphics procedures

Arc, 173
Circle, 173
ColorTable, 172
FillPattern, 175
FillScreen, 175
FillShape, 175
GetPic, 173
Pattern, 176
PutPic, 174

Graphics window, 169
GraphMode, 164

H
H-command, 190, 227, 260
Halt, 135
Heading, 179
Heap, 120, 192, 225, 229,

255, 286, 306
HeapPtr, 225, 255, 286,

290
Hi, 143
Hide/display block, 29
HideTurtle, 179
Highlighting, 14
HiRes, 164
HiResColor, 164
Home, 179
Home position, 134

368 	 TURBO Pascal Reference Manual

SUBJECT INDEX

I-compiler directive, 314
I/O, 108

checking, 116
error messages, 327
redirection, 201
to textfiles, 108

IBM PC display selection, 345
procedures and functions,

308
screen installation, 12

Identifier, 43
If statement, 57
In-line machine code, 211,

243, 274
Include compiler directive,

16
Indent, 31
Indent indicator in editor,

20
Initialized variable, 89
Input character recall, 110
Input line recall, 110
Input without echo, 104, 106
Input

characters, 108
editing, 109
numeric values, 109
strings, 109

Input/output
error handling, 116
mode selection, 106
procedures and functions,

303
Insert

commands, 27
indicator in editor, 20
line, 27
mode, 27
mode on/off switch, 27

Insert procedure, 69
InsLine, 134
Installation, 12, 345
Int, 140

Integer, 41, 44
Integer overflow, 41
Integer part, 140
Intensity signal, 161
Internal data format, 216, 246,

278, 298, 302
Interrupt handling, 214,

245, 277
Intersection, 85
Int procedure, 214, 245
Introduction, 1
lOresult, 116

K
K-compiler directive, 317
KBD:, 104
KeyPressed, 143

L
L-command, 15
Label declaration part, 48
Labels, 56
Large programs, 147
Length, 72
Length of strings, 67
Letters, 37
Limitations on sets, 85
Line break, 31
Line down, 24
Line indicator in editor, 20
Line restore, 35
Line up, 24
Ln, 140
Lo, 143
Local variables as

var-parameters, 319
Logarithm, 140
Logged drive selection, 15
Logical device, 104, 200
LongFilePosition, 199
LongFileSize, 199
LongSeek, 199
Lower case, 43

SUBJECT INDEX 	 369

SUBJECT INDEX

LowVideo, 135
LST:, 104

M
M-command, 16, 190, 227,

260
Main file selection, 16
Mark, 124
Mark single word, 28, 34
MaxAvail, 126
Maximum free dynamic memory,

192, 229
Mem array, 205, 238, 268
MemAvail, 121, 206, 239,

270
Member (of set), 85
Memory / Cmd file / cHn-file,

227
Memory / Corn file / cHn-file,

190, 260
Memory access, 205, 238,

268
Memory management, 226, 256,

288
Memory maps, 288
Menu, 14

C-command, 17
D-command, 18
E-command, 17
L-command, 15
M-command, 16
0-command, 190, 227, 259
0-command, 18
R-command, 17
S-command, 17
W-command, 15
X-command, 259

Minimum code segment size,
191, 228

Minimum data segment size,
191, 229

Minimum free dynamic memory,
192, 229

Miscellaneous commands
Abort command, 34
Auto indent on/off, 31
Control character prefix,

34
End edit, 30
Find, 31
Find and replace, 32
Repeat last find, 33
Restore line, 31
Tab, 30

Miscellaneous
Editing commands, 30
Procedures and functions,

307
Standard functions, 143

MkDir, 189
Move, 136
Move block, 29
MsDos procedure, 208
Multi-dimensional array

constant, 91
Multi-user system, 96
Multidimensional array, 76
Multiplying operator, 51,

52

N
Natural logarithm, 140
Nested overlay, 154
Nesting of With statements,

81, 269
New, 120
Nil, 120
Non-IBM PC installation, 346
Non-IBM PC screen

installation, 12
NormVideo, 135
NoSound, 185
Not operator, 51, 52
NoWrap, 180
Number of open files, 198
Numbers, 43
Numeric field, 294
Numeric input, 109

370 	 TURBO Pascal Reference Manual

SUBJECT INDEX

0
0-command, 190, 191, 227,

228, 259
Odd, 141
Ofs, 204, 237
Oops, 31
Operations on files, 94
Operations on text files, 101
Operator precedence, 51
Operators, 51
Options, 190, 227, 259
Options menu

C-command, 190, 227, 260
D-command, 191, 229
E-command, 261
F-command, 192, 229, 262
H-command, 190, 227, 260
I-command, 192, 229
M-command, 190, 227, 260
0-command, 191, 228
P-command, 192, 229, 262
S-command, 261

Ord, 142, 207, 239, 270
Ordinal value, 142
Overflow

integer, 41
real, 42

Overlay groups, 152
Overlay system, 149
Overlays, 155-, 196, 233,

265
runtime errors, 156

Overwrite mode, 27
OvrDrive procedure, 233, 265
OvrPath procedure, 196

P
P compiler directive, 201
Packed variable, 320
Page down, 25
Page procedure, 320
Page up, 25
Palette, 165
Paragraph, 191, 192, 229
ParamCount, 144

Parameter, 127, 221, 252,
283

command-line, 192, 229,
262

value, 127
variable, 128, 129, 130

ParamStr, 144
Path, 188
Pattern, 176
PC-DOS, MS-DOS, and CP/M-86

compiler directive, 317
PenDown, 180
PenUp, 180
Placing overlay files, 155
Plot, 163, 171
Pointer, 119, 218, 224,

249, 254, 281, 285
Pointer related items, 206,

207, 239, 240, 270
Pointer symbol, 119
Pointer type, 92
Pointer value, 207, 239
Port access, 206, 239, 269
Port array, 206, 239, 269
Pos, 72
Position with text files, 102
Pred, 141
Predecessor, 141
Predefined array, 77, 205,

238, 268
Printer, 359
Procedural parameters, 320
Procedure and function

declaration part, 50
Procedure declaration, 131
Procedure statement, 56, 127

SUBJECT INDEX 	 371

SUBJECT INDEX

Procedures, 131
Assign, 94
Close, 96
Delete, 69
Erase, 96
Flush, 96
Insert, 69
Read, 95
ReadLn, 101
recursive, 131
Rename, 96
Reset, 94
Rewrite, 94
Seek, 95
Str, 70
Val, 70
Write, 95
WriteLn, 101

Program heading, 47
Program lines, 39
Ptr, 207, 239, 270
Put, 319
PutPic, 174

Q
Q-command, 18
Quit command, 18

R
R-command, 17
Random, 143
Random access file, 221,

251, 282
Random(Num), 143
Randomize, 135
Range checking, 65
Read, 95
Read block from disk, 29
Read procedure, 108, 139
Read without echo, 104, 106
ReadLn, 101
Readln procedure, 110, 139

Real, 42, 44, 217, 223, 247,
254, 278, 284, 299, 302

Real overflow, 42
Real

limitations in use of, 42
Recall, 110
Record, 219, 224, 250, 254,

282, 285
Record constant, 91
Record definition, 79
Record type, 79
RecurPtr, 286, 290
Recursion, 131, 156, 286,

318, 319
Recursion stack, 286
Recursion

Local variables as
var-parameters, 319

Redirection of I/O, 201
Reducing run-time, 155
Relational operator, 37,

51, 53
Relative complement, 85
Relaxations on parameter type

checking, 129
Release, 124
Rename, 96
Repeat last find, 33
Repeat statement, 61
Repetitive statements, 59
Reserved words, 37
Reset, 94
Restore line, 31
Restrictions imposed on

overlays, 156
RETURN, 110
Retype, 65
Rewrite, 94
RmDir, 189
Root directory, 188
Root program, 191, 228
Round, 142
Rounding, 142
RUBOUT, 109

372 	 TURBO Pascal Reference Manual

SUBJECT INDEX

Run command, 17
Run-time error messages, 325
Run-Time errors, 156
Runtime range checking, 65,

73, 76

S
S-command, 17, 261
Save command, 17
Saving space, 155
Scalar, 216, 223, 247,

254, 278, 283
Scalar functions, 141, 304
Scalar type, 63
Scope, 131

of identifiers, 49
of labels, 56

Screen intensity, 161
Screen mode control, 160
Screen related procedures and

functions, 306
Scroll down, 24
Scroll up, 24
Search, 31
Seek, 95

with text files, 102
Seek procedure, 115
Seek procedure (CP/M-86),

235, 267
SeekEof, 102
SeekEoln, 102
Seg, 204, 237
Separating overlays, 152
Serial port in MS-DOS, 104
Set assignment, 88
Set constant, 92
Set constructor, 86
Set expression, 86
Set operation, 85
Set operator, 87
Set type, 85
Set type definition, 85
SetHeading, 180
SetPenColor, 181

SetPosition, 181
Sets, 218, 224, 248, 254,

279, 284
Shared data, 194, 231, 264
ShowTurtle, 181
Simple statements, 55
Sin, 140
Sine, 140
SizeOf, 144
Sound, 185
Special symbols, 37
Sqr, 141
Sqrt, 141
Square, 141
Square root, 141
Sseg, 205, 238
Stack, 192, 229
StackPtr, 286, 290
Standard files, 105

SUBJECT INDEX 	 373

SUBJECT INDEX

Standard functions, 139
Abs, 139
Addr, 204, 237, 268
ArcTan, 139
Bdos, 271
Bios, 272
BiosHL, 272
Cos, 139
Cseg, 205, 237
Dseg, 205, 238
EOF, 115
Exp, 140
FilePos, 115
FilePos (CP/M-86), 235,

267
FileSize, 115
FileSize (CP/M-86), 235,

267
Frac, 140
Hi, 143
Int, 140
lOresult, 116
KeyPressed, 143
Ln, 140
Lo, 143
MaxAvail, 126
MemAvail, 121
Odd, 141
Ofs, 204, 237
Ord, 142, 207, 239, 270
Pred, 141
Ptr, 207, 239, 270
Random, 143
Random(Num), 143
Round, 142
Seg, 204, 237
Sin, 140
SizeOf, 144
Sqr, 141
Sqrt, 141
Sseg, 205, 238
Succ, 141
Swap, 144
Trunc, 142

UpCase, 144
WhereX, 162
WhereY, 162

Standard identifier, 38,
193, 230, 263

Standard procedure, 133
Append, 200
Bdos, 271
Bios, 272
Chain, 193, 231, 263
ClrEol, 133
ClrScr, 133
CrtExit, 134
Crtlnit, 133
Delay, 134
DelLine, 134
Dispose, 124
Draw, 163, 171
Execute, 193, 231, 263
Exit, 135
FillChar, 136
Flush, 199, 200
Flush (CP/M-86), 235, 267
FreeMem, 125
GotoXY, 134
GraphBackground, 166
GraphColorMode, 163
GraphMode, 164
GraphWindow, 169
Halt, 135
HiRes, 164
HiResColor, 164
InsLine, 134
Int, 214, 245
LowVideo, 135
Move, 136
New, 120
NormVideo, 135
NoSound, 185
OvrDrive, 233, 265
OvrPath, 196
Palette, 165
Plot, 163, 171
Randomize, 135

374 	 TURBO Pascal Reference Manual

SUBJECT INDEX

Standard procedure (continued)
Read, 108
Seek, 115
Seek (CP/M-86), 235, 267
Sound, 185
TextBackground, 162
TextColor, 161
TextMode, 160
Truncate, 199
Window, 168

Standard scalar type, 41
Start address, 261
Starting TURBO Pascal, 10
Statement part, 50, 55
Statement separator, 55
Static variable, 119
Status line, 19
Str, 70
String assignment, 68
String concatenation, 68
String expression, 67
String field, 297
String function, 71, 305
String indexing, 73
String manipulation, 67
String procedure, 69, 305
String type definition, 67
Strings, 44, 217, 223,

248, 254, 279, 284
Structured statement, 57
Structured typed constant,

90
Subprogram, 127
Subrange, 59
Subrange type, 64
Succ, 141
Successor, 141
Swap, 144

T
Tab, 30
Tabulator, 35
Tag field, 82

Terminal installation, 12,
345

Text file, 101, 200, 221,
235, 252, 267, 283

Text input and output, 108
Text mode, 160
Text window, 168
TextBackground, 162
TextColor, 161
To beginning of block, 26
To bottom of screen, 26
To end of block, 26
To end of file, 26
To last position, 26
To left on line, 25
To right on line, 25
To top of file, 26
To top of screen, 26
TPA, 261
Trailing blanks, 25, 34
Transfer function, 142, 304
Translation of error messages,

329
Tree-structured directories,

187
TRM:, 104
True, 42
Trunc, 142
Truncate procedure, 199
Truncation, 142
TurnLeft, 181
TurnRight, 181
Turtle window, 177
TurtleDelay, 183
Turtlegraphics, 177, 309
Turtlegraphics functions

Heading, 179
TurtleThere, 183
Xcor, 184
Ycor, 184

SUBJECT INDEX 	 375

SUBJECT INDEX

Turtlegraphics procedures
Back, 178
ClearScreen, 179
Forward, 179
HideTurtle, 179
Home, 179
NoWrap, 180
PenDown, 180
SetHeading, 180
SetPenColor, 181
SetPosition, 181
ShowTurtle, 181
TurnLeft, 181
TurnRight, 181
TurtleWindow, 182
Wrap, 184

TurtleThere, 183
TurtleWindow, 182
Type checking, 129
Type conversion, 65
Type definition part, 49
Typed constant, 89

U
U-compiler directive, 315
Unary minus, 51
Union, 85

Discriminating, 83
Free, 83

Unstructured typed constant,
89

Untyped files, 114
Untyped variable parameter,

130
UpCase, 144
Upper case, 43
Upper left corner, 134, 163
User written I/O driver,

209, 241, 272
USR:, 104

V
V-compiler directive, 315
Val, 70

Value parameter, 127, 223,
253, 283

Var-parameter, 319
Variable declaration part, 49
Variable parameter, 128,

129, 130, 223, 253, 283
Variables, 49, 119

Absolute, 203, 236, 267
Variant records, 82

W-compiler directive
W-command, 15
WhereX, 162
WhereY, 162
While statement, 61
Windows, 168
With statement, 81, 206, 239,

269
Word left, 24
Word right, 24
WordStar compatibility, 13,

350
Work file selection, 15
Wrap, 184
Write, 95
Write block to disk, 30
Write parameters, 112
Write procedure, 111, 139
WriteLn procedure, 101, 113,

139
Writing 8087 reals, 302
Writing BCD reals, 297

X
X - Array optimization, 318
X-command, 259
X-coordinate, 163
Xcor, 184

Y
Y-coordinate, 163
Ycor, 184

376 	 TURBO Pascal Reference Manual

OF
BORLAND
PRODUCTS

As of August 1, 1985

BORLAND
INTERNATIONAL

4585 Scotts Valley Drive
Scotts Valley, CA 95066

Available at better dealers nationwide. Call (800) 556-2283 for the dealer
nearest you. To order by Credit Card cal/ (800) 255-8008, CA (800) 742-1133

. INTERNATIONAL
BORLAND

4i VERSION 15
INFOWORLD'S

SOFTWARE PRODUCT OF THE YEAR
Whether you're running WordStarrm, Lotusrm, dBaseTM,
or any other program, SIDEKICK puts all these desktop

accessories at your fingertips. Instantly.

A lull-screen WordSlar-like Editor You may jot
down notes and edit files up to 25 pages long.

A Phone Directory for your names, addresses
and telephone numbers. Finding a name or a
number becomes a snap.

An Autodlaler for all your phone calls. It will
look up and dial telephone numbers for you.
(A modem is required to use this function.)

A Monthly Calendar functional from year 1901
through year 2099.

A Datebook to remind you of important
meetings and appointments.

A lull-featured Calculator ideal for business use.
It also performs decimal to hexadecimal to
binary conversions.

An ASCII Table for easy reference.

All the SIDEKICK windows stacked up over Lotus 1-2-3.
From bottom to top: SIDEKICK'S "Menu Window," ASCII
Table, Notepad, Calculator, Datebook, Monthly Calendar and
Phone Dialer.

Here's SIDEKICK running over Lotus 1-2-3. In the SIDEKICK
Notepad you'll notice data that's been imported directly from
the Lotus screen. In the upper right you can see the Calculator.

The Critics' Choice
"In a simple, beautiful implementation of WordStar's"
block copy commands, SIDEKICK can transport all or
any part of the display screen (even an area overlaid by
the notepad display) to the notepad."

—Charles Petzold, PC MAGAZINE

"SIDEKICK deserves a place in every PC."
—Barry Ray, PC WEEK

"SIDEKICK is by far the best we've seen. It is also the
least expensive." 	—Ron Mansfield, ENTREPRENEUR

"If you use a PC, get SIDEKICK. You'll soon become
dependent on it." 	 —Jerry Penmen', BYTE

SIDEKICK IS AN UNPARALLELED BARGAIN AT ONLY $54.95 (copy-protected)

OR $84.95 (not copy-protected)

Minimum System Configuration: SIDEKICK is available now for your IBM PC, XT, AT, PC1r., and 100% compatible microcomputers.
The IBM PC Ir. will only accept the SIDEKICK not copy-protected version. Your computer must have at least 128K RAM, one disk
drive and PC-DOS 2.0 or greater. A Hayes" compatible modem, IBM PCIr.'" internal modem, or AT&T® Modem 4000 is required for
the autedialer function.

SideKick and SuperKey are registered trademarks of Borland International, Inc dBase is a trademark of Ashton-Tale. IBM is a registered trademark and PC jr. is a trademark of International Business
Machines Corp. AT&T is a registered trademark of American Telephone & Telegraph Company. Infoworld is a trademark of Popular Computing, Inc., a subsidiary of CW Communications Inc. Lotus 1-2-3 is

a trademark of Lotus Development Corp. WordStar is a trademark of Micropro International Corp. Hayes is a trademark of Hayes Microcomputer Products, Inc.

Sett
INCREASE YOUR PRODUCTIVITY
BY 50% OR YOUR MONEY BACK

SuperKey turns 1,000 keystrokes into 1!
Yes, SuperKey can record lengthy keystroke sequences and play them back at the
touch of a single key. Instantly. Like Magic.
Say, for example, you want to add a column of figures in 1-2-3. Without SuperKey you'd
have to type seven keystrokes just to get started. ["shift-@-s-u-m-shift-(1. With SuperKey
you can turn those 7 keystrokes into 1.

SuperKey keeps your t onfidential' files. . .CONFIDENTIALI
Time after time you've experienced it: anyone can walk up to your PC, and read your
confidential files (tax returns, business plans, customer lists, personal letters. . .).
With SuperKey you can encrypt any file, even while running another program. As long
as you keep the password secret, only YOU can decode your file. SuperKey imple-
ments the U.S. government Data Encryption Standard (DES).

SuperKey helps protect your capital investment.
SuperKey, at your convenience, will make your screen go blank after a predetermined
time of screen/keyboard inactivity. You've paid hard-earned money for your PC.
SuperKey will protect your monitor's precious phosphor. . . and your investment.

SuperKey protects your work from intruders while you take a break.
Now you can lock your keyboard at any time. Prevent anyone from changing hours of
work. Type in your secret password and everything comes back to life. . . just as you left it.

SUPERKEY is now available for an unbelievable $69.95 (not copy-protected).

Minimum System Configuration: SUPERKEY is compatible with your IBM PC, XT AT, PCjr. and 100%
compatible microcomputers. Your computer must have at least 128K RAM, one disk drive and PC-DOS 2.0
or greater.

BORLAND
INTERNATIONAL

SideKick and SuperKey are registered trademarks of Borland International. Inc.
IBM and PC-DOS are trademarks of International Business Machines Corp. 	Lotus 1-2-3 is a trademark of Lotus Development Corp.

22 all 2102 he. 221 1211

IA
Pau
1202
ban

12.21

IiA
1202

ham
haat
2•121
Trawl
Xam

I our Na 22102 21211 222 2221

	

ANIMA 	
Saw: ME] 724:1120

bra IV V2 IN

	

111.2 	 361

: 	
1121

	

TM. 	I Hi 	OS
1737 	1111 	au

The CROSSTAB VIEW gives you
amazing "cross-referenced"
pictures of the links and
relationships hidden in your data.

The REPORT VIEW allows you to
import and export to and from

Reflex, 1-2-3, dBASE, PFS File and
other applications and prints out

information in the formats you want.

RE,E4Rx
Reflex" is the most amazing and easy to use database management
system. And if you already use Lotus 1-2-3, dBASE or PFS File, you

need Reflex—because it's a totally new way to look at your data. It shows
you patterns and interrelationships you didn't know were there, because

they were hidden in data and numbers. It's also the greatest
report generator for 1-2-3.

REFLEX OPENS MULTIPLE WINDOWS WITH NEW VIEWS AND GRAPHIC INSIGHTS INTO YOUR DATA.

The FORM VIEW lets you build and view your database. 	The LIST VIEW lets you put data in tabular List form
	

The GRAPH VIEW gives you instant interactive
just like a spreadsheet
	

graphic representations.

So Reflex shows you. Instant answers. Instant pictures. Instant analysis. Instant understanding.

THE CRITICS' CHOICE:
"The next generation of software has officially arrived."

Peter Norton, PC WEEK
"Reflex is one of the most powerful database programs on
the market. Its multiple views, interactive windows and graphics, great
report writer, pull-down menus and cross tabulation make this
one of the best programs we have seen in a long time ...

The program is easy to use and not intimidating to the novice ...
Reflex not only handles the usual database functions such as sorting
and searching, but also "what-if" and statistical analysis ... it can
create interactive graphics with the graphics module. The separate
report module is one of the best we've ever seen."

Mare Stern, INFOWORLD

Minimum System Itsettiremsats: Reflex runs on the IBM' PC, ST, AT and comestibles. 3845 RAM Widmann. IBM Color GmbH, Adapter', Hercules
Monochrome Graphics Card", w scolveleat. PC-DOS 2.0 or greater. Hard disk and mouse optional. Lotus 1.2-3, dBASE, or PFS File optimal.

BORLAND 	Suggested Retail Price $99.95 (not copy-protected)
• INTERNATIONAL

Reflex W a trademark of BORLAND/Analytica Inc. Lotus Is a registered trademark and Lotus 1-2.3 is a trademark of Lotus Development Corporation. dBASE is a registered
trademark of Ashton-Tate. PFS is a registered trademark and PFS File is a trademark of Software Publishing Corporation. IBM PC, XT, AT, PC-DOS and IBM Color Graphics Adapter are
registered trademarks of international Business Machines Caporation. Hercules Graphics Card is a trademark of Hercules Computer Technology.

II you ever write a word, think
a word, or say a word, you
need Turbo Lightning.

The Turbo Lightning Thesaurus.

If you use an IBM PC, you need

4 hinke
Turbo Lightning"' teams up
with the Random House
spelling Dictionary® to check
your spelling as you type!
Turbo Lightning, using the
83,000-word Random House
Dictionary, checks your spelling
as you type. If you misspell a
word, it alerts you with a 'beep'.
At the touch of a key, Turbo
Lightning opens a window on top
of your application program and
suggests the correct spelling.
Just press ENTER and the
misspelled word is instantly
replaced with the correct word.
It's that easy!

Turbo Lightning works hand-in-
hand with the Random House
Thesaurus® to give you instant
access to synonyms.
Turbo Lightning lets you choose
just the right word from a list of
alternates, so you don't say the
same thing the same way every
time. Once Turbo Lightning opens
the Thesaurus window, you see a
list of alternate words, organized by
parts of speech. You just select the
word you want, press ENTER and
your new word will instantly replace
the original word. Pure magic!

Turbo Lightning's intelligence
lets you teach it new words.
The more you use Turbo
Lightning, the smarter it gets!
You can also teach your new Turbo
Lightning your name, business
associates' names, street names,
addresses, correct capitalizations,
and any specialized words you use
frequently. Teach Turbo Lightning
once, and it knows forever.

Turbo Lightning- is the
engine that powers Borland's
Turbo Lightning Library".
Turbo Lightning brings electronic
power to the Random House
Dictionary® and Random House
Thesaurus®. They're at your
fingertips —even while you're
running other programs. Turbo
Lightning will also 'drive' soon-to-
be-released encyclopedias,
extended thesauruses, specialized
dictionaries, and many other
popular reference works. You get
a head start with this first volume
in the Turbo Lightning Library.

And because Turbo Lightning is a
Borland product, you know you can
rely on our quality, our 60-day
money-back guarantee, and our
eminently fair prices.

BORLAND
INTERNATIONAL

Suggeited Retail Price $99.95 .
(not copy-protected)

IBM PC. XT, AT, and PCjr. are registered trademarks of International Business Machines Corp Lotus 1-2-3 is a registered trademark of Lotus
Development Corporation WordStar is a registered trademark of MicroPro International Corp dBASE is a registered trademark of Ashton-Tate.
Microsoft is a registered trademark of Microsoft Corporation. SideKick is a registered trademark and Turbo Lightning and Turbo Lightning
Library are trademarks of Borland International. Random House Dictionary and Random House Thesaurus are registered trademarks of
Random House Inc. Reflex is a trademark of BORLAND/Analytica Inc. MultiMate is a trademark of MultiMate International Inc.

Minimum System Requirements:
128K IBM PCe or 100% compatible computer,
with 2 floppy disk drives and PC-DOS (MS-DOS)
2.0 or greater

Sidekick, the Macintosh Office Manager, brings
information management, desktop organization and
telecommunications to your Macintosh. Instantly,

while running any other program.

A full-screen editor/mini-word processor
lets you jot down notes and create or edit
files. Your files can also be used by your
favorite word processing program like
MacWriteTM or MicroSoft® Word .
A complete telecommunication
program sends or receives information
from any on-line network or electronic
bulletin board while using any of your
favorite application programs. A modem is
required to use this feature.
A full-featured financial and scientific
calculator sends a paper-tape output to
your screen or printer and comes complete
with function keys for financial modeling
purposes.
A print spooler prints any text file while
you run other programs.
A versatile calendar lets you view your
appointments for a day, a week or an entire
month. You can easily print out your
schedule for quick reference.
A convenient "Things-to-Do" file
reminds you of important tasks.

A convenient alarm system alerts you to
daily engagements.
A phone log keeps a complete record of all
your telephone activities. It even computes
the cost of every call. Area code hook-up
provides instant access to the state, region
and time zone for all area codes.
An expense account file records your
business and travel expenses.
A credit card file keeps track of your
credit card balances and credit limits.
A report generator prints-out your mailing
list labels, phone directory and weekly
calendar in convenient sizes.
A convenient analog clock with a
sweeping second-hand can be displayed
anywhere on your screen.
On-line help is available for all of the
powerful SIDEKICK features.
Best of all, everything runs
concurrently.
SIDEKICK, the software Macintosh
owners have been waiting for.

Sidekick, Macintosh's Office Manager is available now for
$84.95 (not copy-protected).

Minimum System Configuration: SIDEKICK is available now for your Macintosh microcomputer in a format that is not copy-protected.
Your computer must have at least 128K RAM and one disk drive. Two disk drives are recommended It you wish to use other application
programs. A Hayes-compatible modem is required for the telecommunications function. To use SIDEKICK'S autodialing capability you
need the Borland phone-link interface.

SIDEKICK is a registered trademark of Borland International, Inc. Macintosh is a trademark of McIntosh Laboratory, Inc. MacWrite is trademark of Apple
Computer, Inc. IBM is a trademark of International Business Machines Corp. Microsoft is a registered trademark of MicroSoft Corp,

Hayes is a trademark of Hayes Microcomputer Products, Inc.

. INTERNATIONAL
BORLAND

TURBO
TM

Is The Perfect Complement To Turbo Pascal.
It contains a complete library of Pascal procedures that allows you to sort

and search your data and build powerful applications. It's another set of tools
from Borland that will give even the beginning programmer

the expert's edge.

THE TOOLS YOU NEED!
TURBOACCESS Files Using B+Trees- The best way to organize and search your data.
Makes it possible to access records in a file using key words instead of numbers. Now
available with complete source code on disk ready to be included in your programs.

TURBOSORT -The fastest way to sort data—and TURBOSORT is the method preferred by
knowledgeable professionals. Includes source code.

GINST (General Installation Program)- Gets your programs up and running on other ter-
minals. This feature alone will save hours of work and research. Adds tremendous value
to all your programs.

GET STARTED RIGHT AWAY: FREE DATABASE!
Included on every Toolbox disk is the source code to a working database which demon-
strates the power and simplicity of our Turbo Access search system. Modify it to suit
your individual needs or just compile it and run. Remember, no royalties!

THE CRITICS' CHOICE!
"The tools include a B+tree search and a sorting system. I've seen stuff like this, but not
as well thought out, sell for hundreds of dollars."

—Jerry Pournelle, BYTE MAGAZINE

"The Turbo Database Toolbox is solid enough and useful enough to come recommended."
—Jeff Duntemann, PC TECH JOURNAL

TURBO DATABASE TOOLBOX—ONLY $54.95 (not copy-protected).

Minimum system configurations: 64K RAM and one disk drive. 16-bit systems: TURBO PASCAL 2.0 or greater for MS-DOS or PC-DOS
2.0 or greater. TURBO PASCAL 2.1 or greater for CP/M-86 1.1 or greater. Eight-bit systems: TURBO PASCAL 2.0 or greater for
CP/M-80 2.2 or greater.

Turbo Pascal is a registered trademark and Turbo Database Toolbox is a trademark of Borland International, Inc. CP/ M and CP/M-86 are registered trademarks of Digital Research, Inc.
IBM and PC-DOS are registered trademarks of International Business Machines Corp. MS-DOS is a trademark of Microsoft Corp.

*INTERNATIONAL
BORLAND

Yu/thee
Tat-ot

LEARN PASCAL FROM THE FOLKS WHO INVENTED
TURBO PASCAL° AND TURBO DATABASE TOOLBOX®.

Borland International proudly introduces Turbo Tutor °. The perfect
complement to your Turbo Pascal compiler. Turbo Tutor is really for everyone—

even if you've never programmed before.

And if you're already proficient, Turbo Tutor can sharpen up the fine points. The 300
page manual and program disk divides your study of Pascal into three learning modules:

FOR THE NOVICE: Gives you a concise history of Pascal, tells you how to write a simple program, and
defines the basic programming terms you need to know.

ADVANCED CONCEPTS: If you're an expert, you'll love the sections detailing subjects such as "how to
use assembly language routines with your Turbo Pascal programs."

PROGRAMMER'S GUIDE: The heart of Turbo Pascal. This section covers the fine points of every aspect
of Turbo Pascal programming: program structure, data types, control structures, procedures and
functions, scalar types, arrays, strings, pointers, sets, files and records.

A MUST You'll find the source code for all the examples in the book on the accompanying disk ready to
compile.

Turbo Tutor may be the only reference on Pascal and programming you'll ever need!

TURBO TUTOR-A REAL EDUCATION FOR ONLY $34.95.
(not copy-protected)

*Minimum System Configuration: TURBO TUTOR is available today for your computer running TURBO PASCAL for PC-00S, MS-DOS,
CP/M-80, and CP/M-86. Your computer must have at least 128K RAM, one disk drive and PC-DOS 1.0 or greater, MS-DOS 1.0 or
greater, CP/M-80 2.2 or greater, or CP/M-86 1.1 or greater.

Turbo Pascal and Turbo Tutor are registered trademarks and Turbo Database Toolbox is a trademark of Borland International. Inc., CP/M is a
trademark of Digital Research, Inc, MS-DOS is a trademark of Microsoft Corp., PC-DOS is a trademark of International Business Machines Corp.

*INTERNATIONAL
BORLAND

TURBO GRAPHIX TOOLBOX
HIGH RESOLUTION GRAPHICS AND GRAPHIC WINDOW MANAGEMENT

FOR THE IBM PC

Dazzling graphics and painless windows.
The Turbo Graphix Toolbox" will give even a beginning programmer the expert's edge. It's a
complete library of Pascal procedures that include:

• Full graphics window management.

• Tools that allow you to draw and hatch pie charts, bar charts, circles, rectangles
and a full range of geometric shapes.

• Procedures that save and restore graphic images to and from disk.

• Functions that allow you to precisely plot curves.

• Tools that allow you to create animation or solve those difficult curve fitting
problems.

No swat and no royalties.
You can incorporate part, or all of these tools in your programs, and yet, we won't charge you
any royalties. Best of all, these functions and procedures come complete with source code on
disk ready to compile!

John Markoff & Paul Freiberger, syndicated columnists:
"While most people only talk about low-cost personal computer software, Borland has been
doing something about it. And Borland provides good technical support as part of the price."

Turbo Graphix Toolbox—only $54.95 Mot copy protected).

Minimum System Configuration: Turbo Graphix Toolbox is available today for your computer running Turbo Pascal 2.0 or greater for
PC-DOS, or truly compatible MS-DOS. Your computer must have at least 128K RAM, one disk drive and PC-DOS 2.0 or greater, and
MS-DOS 2.0 or greater with IBM Graphics Adapter or Enhanced Graphics Adapter, IBM-compatible Graphics Adapter, or Hercules
Graphics Card.

•
INTERNATIONAL

Turbo Pascal is a registered trademark and Turbo Graphix Toolbox is a trademark of Borland International, Inc.
IBM and PC-DOS are trademarks of International Business Machines Corp. 	MS-DOS is a trademark of Microsoft Corp.

BORLAND

GarEWORKs
Secrets And Strategies Of The Masters Are

Revealed For The First Time
Explore the world of state-of-the-art computer games with Turbo GameWorksTM. Using

easy-to-understand examples, Turbo GameWorks teaches you techniques to quickly create
your own computer games using Turbo Pascal®. Or, for instant excitement, play the three

great computer games we've included on disk—compiled and ready-to-run.

TURBO CHESS

Test your chess-playing skills against your computer challenger. With Turbo GameWorks, you're on your
way to becoming a master chess player. Explore the complete Turbo Pascal source code and discover
the secrets of Turbo Chess.

"What impressed me the most was the fact that with this program you can become a computer
chess analyst. You can add new variations to the program at any time and make the program play
stronger and stronger chess. There's no limit to the fun and enjoyment of playing Turbo GameWorks'
Chess, and most important of all, with this chess program there's no limit to how it can help you
improve your game." 	—George Koltanowski, Dean of American Chess, former President of

the United Chess Federation and syndicated chess columnist.

TURBO BRIDGE

Now play the world's most popular card game—Bridge. Play one-on-one with your computer or against
up to three other opponents. With Turbo Pascal source code, you can even program your own bidding
or scoring conventions.

"There has never been a bridge program written which plays at the expert level, and the ambitious
user will enjoy tackling that challenge, with the format already structured in the program. And for the
inexperienced player, the bridge program provides an easy-to-follow format that allows the user to start
right out playing. The user can "play bridge" against real competition without having to gather three
other people." 	 —Kit Woolsey, writer and author of several articles and books

and twice champion of the Blue Ribbon Pairs.

TURBO GO-MOKU

Prepare for battle when you challenge your computer to a game of Go-Moku—the exciting strategy
game also know as "Pente"TM. In this battle of wits, you and the computer take turns placing X's and
O's on a grid of 19X19 squares until five pieces are lined up in a row. Vary the game if you like using
the source code available on your disk.

Minimum system configuration: IBM PC, XT, AT, Portable, 3270, PC)r, and true compatibles with 192K system memory, running
PC-DOS (MS-00S) 2.0 or later. To edit and compile the Turbo Pascal source code, you must be using Turbo Pascal 3.0 for IBM PC
and compatibles.

Suggested Retail Price: $69.95 (not copy-protected)

BORLAND Turbo Pascal is a registered trademark and Turbo GameWorks is a trademark of
Borland International, Inc. Pente is a registered trademark of Parker Brothers.
IBM PC, XT, AT, PCjr and PC-DOS are registered trademarks of International Business

INTERNATIONAL 	Machines Corporation. MS-DOS is a trademark of Microsoft Corporation.

Erjritromit Tborasox
It's All You Need To Build Your Own Text Editor

Or Word Processor.
Build your own lightning-last editor and incor-
porate It into your Turbo Pascal programs.Turbo
Editor Toolbox's gives you easy-to-install modules.
Now you can integrate a fast and powerful editor into
your own programs. You get the source code, the
manual and the know how.

Create your own word processor. We provide all
the editing routines. You plug in the features you want.
You could build a WordStare-like editor with pull-
down menus like Microsoft's® Word, and make it work
as fast as WordPerfect's.

To demonstrate the tremendous power of Turbo Editor Toolbox, we give you the source code for two
sample editors:
Simple Editor 	A complete editor ready to include in your programs. With windows, block commands, and

memory-mapped screen routines.
MicroStar'" 	A full-blown text editor with a complete pull-down menu user interface, plus a lot more.

Modify MicroStar's pull-down menu system and include it in your Turbo Pascal programs.

MicroStar's pull-down menus.

And Turbo Editor Toolbox has features that word processors selling for several hundred dollars can't begin to match.
Just to name a few:

2' RAM-based editor. You can edit very large 	g Multiple windows. See and edit up to eight
files and yet editing is lightning fast. 	 documents—or up to eight parts of the same

Er Memory-mapped screen routines. In- 	document—all at the same time.
stant paging, scrolling and text display. 	g Multi-Tasking. Automatically save your

Q' Keyboard installation. Change control 	text. Plug in a digital clock . . . an appointment
keys from WordStar-like commands to any that 	alarm—see how it's done with MicroStar's
you prefer. 	 "background" printing.

Best of all, source code is included for everything in the Editor Toolbox. Use any of the Turbo Editor Toolbox's
features in your programs. And pay no royalties.

Minimum system configuration: The Turbo Editor Toolbox requires an IBM PC, XT, AT, 3270, nir or true compatible with a minimum
192K RAM, running PC-DOS (MS-DOS) 2.0 or greater. You must be using Turbo Pascal 3.0 for IBM and compatibles.

Suggested Retail Price $69.95
(not copy-protected)

BORLAND
INTERNATIONAL

Turbo Pascal is a registered trademark and Turbo Editor Toolbox and MicroStar are trademarks of Borland
International, Inc. WordStar is a registered trademark of MicroPro International Corp. Microsoft and MS-DOS are
registered trademarks of Microsoft Corp. WordPerfect is a trademark of Satellite Software International. IBM,
IBM PC, XT, AT, PCir. and PC-DOS are registered trademarks of International Business Machine Corp.

The Turbo Editor Toolbox gives you all the
standard features you would expect to find
in any word processor:

• Word wrap
• UNDO last change
• Auto indent
• Find and Find/Replace with options
• Set left and right margin
• Block mark, move and copy.
• Tab, insert and overstrike modes,

centering, etc.

HOW TO BUY
BORLAND
SOFTWARE

-61

For The

I Dealer
Nearest

g 	You,
Call

401w To Order
vtozhA By Credit

%Gamm 	
Card,

Call
(800)

255-8008

I
 800)

5(
	

3 	
In Calitornta (800) 742-11

ION ONO OW WOO 1110 100 WO

Notes:

Notes:

EDITOR QUICK REFEREDCE

PAGE UP 111171WiTIONAL

DELETE CHARACTER

DELETE WORD

DELETE LINE

DELETE FIF1D BLOCK

Ctrl K D 	END EDIT

FIND & CHANGE

REPEAT LAST FIND

OPTIONS: U ■UPPER/LOWER CASE
W■WHOLE WORDS ONLY
B -BACKWARDS
G ■GLOBAL
N ■NO QUESTION

Gja43.°.i 	41ERCII/
MARK BEGINNING 	MARK END

MARK WORD

COPY BLOCK

MOVE BLOCK

DELETE BLOCK

ORO
PAGE
DOWN

GIRO
WORD
LEFT

Ctrl J F

WORD
RIGHT

LINE UP

OKI
CHARACTER

LEFT
CHARACTER

RIGHT

LINE
DOWN

FREE MICROCALC SPREADSHEET
WITH COMMENTED SOURCE CODE I

VERSION 3.0

THE CRITICS' CHOICE:

"Language deal of the century . . . Turbo
Pascal: it introduces a new programming
environment and runs like magic."

—Jeff Duntemann, PC Magazine

"Most Pascal compilers barely fit on a disk,
but Turbo Pascal packs an editor, compiler,
linker, and run-time library into just 39K
bytes of random-access memory."

—Dave Garland, Popular Computing

"What I think the computer industry is
headed for: well - documented, standard,
plenty of good features, and a reasonable
price." 	 —Jerry Pournelle, BYTE

LOOK AT TI,A80 .NOW!

❑ More than 400,000 users worldwide.

❑ TURBO PASCAL is proclaimed as the
de facto industry standard.

D TURBO PASCAL PC MAGAZINE'S award
for technical excellence.

MINIMUM SYSTEM CONFIGURATION:
To use Turbo Pascal 3.0 requires 64K RAM,
one disk drive, Z-80, 8088/86, 80186 or 80286
microprocessor running either CP/M-80 2.2 or
greater, CP/M-86 1.1 or greater, MS-DOS 2.0
or greater, or PC-DOS 2.0 or greater.

THE FEATURES:

One-Step Compile: No hunting & fishing
expeditions! Turbo finds the errors, takes you
to them, lets you correct, then instantly
recompiles. You're off and running in record
time.

Built-in Interactive Editor: WordStar-like easy
editing lets you debug quickly.

Automatic Overlays: Fits big programs into
small amounts of memory.

Microcalc: A sample spreadsheet on your disk
with ready-to-compile source code.

IBM PC VERSION: Supports Turtle Graphics,
Color, Sound, Full Tree Directories, Window
Routines, Input/Output Redirection and much
more.

E TURBO PASCAL named 'Most Significant
Product of the Year' by PC WEEK.

E TURBO PASCAL 3.0 — the FASTEST
Pascal development environment on the
planet, PERIOD.

OPTIONS FOR 16-BIT SYSTEMS:
8087 math co-processor support for intensive
calculations.

Binary Coded Decimals (BCD): Eliminates round-
off error! A must for any serious business
application. (No additional hardware required.)

BORulf1D
Software's Newest Direction

4585 Scotts Valley Drive
0) f N1 ERN ATI N AL Scotts Valley, CA 95066 ISBN 0-87524-003-8

Turbo Pascal is a registered trademark of Borland International. Inc
CP/ M is registered trademark of Digital Research, Inc. 	 MS-DOS is a trademark of Microsoft Corp.
IBM and PC-DOS are registered trademarks of International Business Machines Corp. 	Z80 is a trademark of Zilog Corp.

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128
	Page 129
	Page 130
	Page 131
	Page 132
	Page 133
	Page 134
	Page 135
	Page 136
	Page 137
	Page 138
	Page 139
	Page 140
	Page 141
	Page 142
	Page 143
	Page 144
	Page 145
	Page 146
	Page 147
	Page 148
	Page 149
	Page 150
	Page 151
	Page 152
	Page 153
	Page 154
	Page 155
	Page 156
	Page 157
	Page 158
	Page 159
	Page 160
	Page 161
	Page 162
	Page 163
	Page 164
	Page 165
	Page 166
	Page 167
	Page 168
	Page 169
	Page 170
	Page 171
	Page 172
	Page 173
	Page 174
	Page 175
	Page 176
	Page 177
	Page 178
	Page 179
	Page 180
	Page 181
	Page 182
	Page 183
	Page 184
	Page 185
	Page 186
	Page 187
	Page 188
	Page 189
	Page 190
	Page 191
	Page 192
	Page 193
	Page 194
	Page 195
	Page 196
	Page 197
	Page 198
	Page 199
	Page 200
	Page 201
	Page 202
	Page 203
	Page 204
	Page 205
	Page 206
	Page 207
	Page 208
	Page 209
	Page 210
	Page 211
	Page 212
	Page 213
	Page 214
	Page 215
	Page 216
	Page 217
	Page 218
	Page 219
	Page 220
	Page 221
	Page 222
	Page 223
	Page 224
	Page 225
	Page 226
	Page 227
	Page 228
	Page 229
	Page 230
	Page 231
	Page 232
	Page 233
	Page 234
	Page 235
	Page 236
	Page 237
	Page 238
	Page 239
	Page 240
	Page 241
	Page 242
	Page 243
	Page 244
	Page 245
	Page 246
	Page 247
	Page 248
	Page 249
	Page 250
	Page 251
	Page 252
	Page 253
	Page 254
	Page 255
	Page 256
	Page 257
	Page 258
	Page 259
	Page 260
	Page 261
	Page 262
	Page 263
	Page 264
	Page 265
	Page 266
	Page 267
	Page 268
	Page 269
	Page 270
	Page 271
	Page 272
	Page 273
	Page 274
	Page 275
	Page 276
	Page 277
	Page 278
	Page 279
	Page 280
	Page 281
	Page 282
	Page 283
	Page 284
	Page 285
	Page 286
	Page 287
	Page 288
	Page 289
	Page 290
	Page 291
	Page 292
	Page 293
	Page 294
	Page 295
	Page 296
	Page 297
	Page 298
	Page 299
	Page 300
	Page 301
	Page 302
	Page 303
	Page 304
	Page 305
	Page 306
	Page 307
	Page 308
	Page 309
	Page 310
	Page 311
	Page 312
	Page 313
	Page 314
	Page 315
	Page 316
	Page 317
	Page 318
	Page 319
	Page 320
	Page 321
	Page 322
	Page 323
	Page 324
	Page 325
	Page 326
	Page 327
	Page 328
	Page 329
	Page 330
	Page 331
	Page 332
	Page 333
	Page 334
	Page 335
	Page 336
	Page 337
	Page 338
	Page 339
	Page 340
	Page 341
	Page 342
	Page 343
	Page 344
	Page 345
	Page 346
	Page 347
	Page 348
	Page 349
	Page 350
	Page 351
	Page 352
	Page 353
	Page 354
	Page 355
	Page 356
	Page 357
	Page 358
	Page 359
	Page 360
	Page 361
	Page 362
	Page 363
	Page 364
	Page 365
	Page 366
	Page 367
	Page 368
	Page 369
	Page 370
	Page 371
	Page 372
	Page 373
	Page 374
	Page 375
	Page 376
	Page 377
	Page 378
	Page 379
	Page 380
	Page 381
	Page 382
	Page 383
	Page 384
	Page 385
	Page 386
	Page 387
	Page 388
	Page 389
	Page 390
	Page 391
	Page 392
	Page 393
	Page 394
	Page 395
	Page 396
	Page 397
	Page 398
	Page 399
	Page 400
	Page 401
	Page 402
	Page 403
	Page 404
	Page 405
	Page 406
	Page 407
	Page 408
	Page 409
	Page 410
	Page 411
	Page 412
	Page 413
	Page 414

