
TURBO TUTOR
The Turbo Pascal Tutorial For Everone

TURBO TWOR
Borland's No-Nonsense License Statement!

This software is protected by both United States Copyright Law and International
Treaty provisions. Therefore, you must treat this software just like a book with
the following single exception. Borland International authorizes you to make
archival copies of the software for the sole purpose of backing up your software
and protecting your investment from loss.

By saying, "just like a book", Borland means, for example, that this software may
be used by any number of people and may be freely moved from one computer
location to another—so long as there is No Possibility of it being used at one
location while it's being used at another. Just like a book that can't be read by two
different people in two different places at the same time, neither can the software
be used by two different people in two different places at the same time. (Unless,
of course, Borland's Copyright has been violated.)

WARRANTY

With respect to the physical diskette and physical documentation enclosed
herein, BORLAND INTERNATIONAL, INC. ("BORLAND"), warrants the same to
be free of defects in materials and workmanship for period of 60 days from the
date of purchase. In the event of notification within the warranty period of defects
in material or workmanship, BORLAND will replace the defective diskette or
documentation. The remedy for breach of this warranty shall be limited to
replacement and shall not encompass any other damages, including but not
limited to loss of profit, special, incidental, consequential, or other similar claims.

BORLAND INTERNATIONAL, INC., SPECIFICALLY DISCLAIMS ALL OTHER
WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO,
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE WITH RESPECT TO DEFECTS IN THE DISKETTE
AND DOCUMENTATION, AND THE PROGRAM LICENSE GRANTED HEREIN,
IN PARTICULAR, AND WITHOUT LIMITING OPERATION OF THE PROGRAM
LICENSE WITH RESPECT TO ANY PARTICULAR APPLICATION, USE, OR
PURPOSE. IN NO EVENT SHALL BORLAND BE LIABLE FOR ANY LOSS OF
PROFIT OR ANY OTHER COMMERCIAL DAMAGE, INCLUDING BUT NOT
LIMITED TO SPECIAL, INCIDENTAL, CONSEQUENTIAL OR OTHER
DAMAGES.

GOVERNING LAW

This Statement shall be construed, interpreted and governed by the laws of the
state of California.

Third Edition
Printed in USA
9 8 7 6 5 4 3 2

The TURBO
Pascal Tutor

A Self-Study Guide to TURBO Pascal

Copyright @1984
Copyright ®1985

BORLAND INTERNATIONAL, INC.
4585 Scotts Valley Drive
Scotts Valley, CA 95066

U.S.A.

Borland's No-Nonsense License Statement!

This software is protected by both United States Copyright Law and
International Treaty provisions. Therefore you must treat this software just
like a book with the following single exception. Borland International
authorizes you to make archival copies of the software for the sole purpose
of backing-up your.software and protecting your investment from loss.

By saying, "just like a book", i3orland means for example that this software may be
used by any number of people and may be freely moved from one computer location to
another so long as there is No Possibility of it being used at one location while it's
being used at another. Just like a book that can't be read by two different people in
two different places at the same time, neither can the software be used by two different
people in two different places at the same time. (Unless, of course, Borland's Copyright
has been violated.)

WARRANTY

With respect to the physical diskette and physical documentation enclosed
herein, BORLAND INTERNATIONAL, INC., ("BORLAND") warrants the same
to be free of defects in materials and workmanship for a period of 30 days from
the date of purchase. In the event of notification within the warranty period of
defects in material or workmanship, BORLAND will replace the defective
diskette or documentation. The remedy for breach of this warranty shall be
limited to replacement and shall not encompass any other damages, including
but not limited to loss of profit, special, incidental, consequential, or other similar
claims.

BORLAND INTERNATIONAL, INC., SPECIFICALLY DISCLAIMS ALL OTHER
WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED
TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE WITH RESPECT TO DEFECTS IN THE DISKETTE
AND DOCUMENTAITON, AND THE PROGRAM LICENSE GRANTED HEREIN.
IN PARTICULAR, AND WITHOUT LIMIMTING OPERATION OF THE
PROGRAM LICENSE WITH RESPECT TO ANY PARTICULAR APPLICATION,
USE, OR PURPOSE. IN NO EVENT SHALL BORLAND BE LIABLE FOR ANY
LOSS OF PROFIT OR ANY OTHER COMMERCIAL DAMAGE, INCLUDING
BUT NOT LIMITED TO SPECIAL, INCIDENTAL, CONSEQUENTIAL OR OTHER
DAMAGES.

GOVERNING LAW

This Statement shall be construed, interpreted and governed by the laws of the
state of California.

PREFACE

Congratulations! Since you have this book, you have undoubtedly
joined the ranks of the 200,000+ owners and users of TURBO
Pascal. And you've probably bought this book to help you better
learn how to use TURBO Pascal. That's what this book is for, and
we don't think that you'll be disappointed.

If you're a novice computer user, or novice programmer, then
you'll probably want to begin with Part I, TURBO Pascal for the
Absolute Novice. This will help you to get your feet wet, showing
you just how to get started with TURBO Pascal. If you're a more
experienced programmer, you may want to skim through these
chapters, especially Chapter 6, Getting Started with TURBO
Pascal.

If you know your way around a computer pretty well, then you're
probably ready to dive into Part II, A Programmer's Guide to
TURBO Pascal. This starts right at rock bottom and builds swiftly,
taking you step by step through all the different aspects of Pascal
in general, and TURBO Pascal in particular. By the time you get to
the end, you should have a solid foundation in Pascal and be able
to glean any additional needed information from the TURBO
Pascal Reference Manual and other books.

Once you feel comfortable with TURBO Pascal, you might take a
look at Part III, Advanced Topics in TURBO Pascal. This section
contains listings of working programs, showing you how to do
things like read the directory off a disk or communicate through a
serial port. The listings also demonstrate different programming
techniques; they're worth studying for that, if for no other reason.

Of course, this book is more than just a book: it comes with a disk
as well. The disk is filled with running programs and tutorial
information, giving you a ready-made library of routines to copy
into your own programs. This is both time-saving and edu-
cational, especially as you adapt these routines to suit your
needs.

iii

This book, of course, can't replace the TURBO Pascal Reference
Manual. Rather, this book's goal is to help you grasp the basic
principles underlying Pascal and its various aspects; the Re-
ference Manual can then help point out the exact definitions of
the TURBO Pascal implementation.

Hope you enjoy your exploration. Good luck and have fun!

— Borland International Inc.

Acknowledgements
The following products mentioned in this manual are manufactured and/or sold by the following
companies:

The IBM Personal Computer (PC) is a product of IBM. IBM® is a registered trademark of International
Business Machines Corporation.

MicroPro® and WordStar® are registered trademarks of MicroPro International Corporation.

CP/M® is a registered trademark and CP/M-80" and CP/M-86T" are trademarks of Digital Research, Inc.

Microsoft® is a registered trademark and MST" is a trademark of Microsoft Corporation.

Tupperware® is a registered trademark of Dart Industries Inc.

TURBOT" Pascal and Sidekick" are trademarks of Borland International, Inc.

Third Edition, January, 1985
Printed in the United States of America

9 8 7 6 5 4 3 2

iv

ABOUT THE AUTHOR

Frank Borland is more mystique than mystic, as elusive as the
Trinity Alps big foot, as shy as the famous Loch Ness monster.
Even at Borland International, his namesake, few people have
ever seen him. The old-timers recognize him for his remarkable
algorithms, still the fastest in the west. Borland lives deep in the
Santa Cruz mountains with his transportable computer, his
burro, and his dogs. In the early days, he didn't have a permanent
homestead, but lived in a couple of camps deep in the redwood
groves. Now, Frank has settled down a little, bought a cabin, and
is raising a family, thanks to the success of his programming.

These days he is seen even less around town, but still can
occasionally be reached by modem.

If you are a Compuserve user, you are closer to Frank Borland
than you realize. He is writing either a gothic novel or an epic
poem—he hasn't decided which—entirely in bulletin board
messages left on different SIGS (Special Interest Groups). But he
never uses his real name, and he switches names often, so his
writing is hard to follow. Look for messages in cadence, or
rhymes. (You can find information on Borland products and a
Borland SIG by typing GO BOR from any Compuserve prompt.)

Frank is a warm-hearted person. He wrote Sidekick (one of his
latest programming efforts) for humanitarian reasons. Carrying
notepads, calculator, and calendar from camp to camp was
beginning to stunt the growth of his burro, Lotus, so he wrote
Sidekick to make all that unnecessary. He left a note in our
mailbox, saying he'd saved Lotus' development.

He rarely talks about his background, or why he chose to
abandon normal life and take to the mountains. Some say it had
do to with changing the whole motherboard on a PC, just to
replace a single chip. Others blame the high price of micro-
computer software. We don't really know. Do you?

TABLE OF CONTENTS

Preface 	
About the Author 	

PART I TURBO PASCAL FOR THE ABSOLUTE NOVICE

1. Introduction to TURBO Pascal 	 1-1
2. A Short History of Pascal 	 2-1
3. Writing a Simple Program 	 3-1
4. Programming is More Than

Writing a Program 	 4-1
4.1 Data 	 4-1
4.2 Variables 	 4-4
4.3 Statements 	 4-5

5. Developing a Program 	 5-1
5.1 Pseudocode 	 5-4

6. Getting Started with TURBO Pascal 	 6-1
6.1 Turbo Pascal 	 6-2
6.2 The Main Menu 	 6-3
6.3 Conclusion 	 6-16

PART II A PROGRAMMER'S GUIDE TO TURBO PASCAL

7. The Basics of Pascal 	 7-1
7.1 A Quick Example 	 7-1
7.2 Some Pascal Terms 	 7-5

7.2.1 Characters 	 7-6
7.2.2 Identifiers 	 7-8
7.2.3 Reserved Words 	 7-8
7.2.4 Symbols 	 7-9
7.2.5 Constants 	 7-9
7.2.6 Variables 	 7-10
7.2.7 Expressions 	 7-11

7.3 Review 	 7-12
8. Program Structure 	 8-1

8.1 The Declaration Section 	 8-2
8.1.1 The PROGRAM Statement 	 8-2
8.1.2 Declaration Statements 	 8-2

8.2 The Program Body 	 8-4
8.3 Comments 	 8-8

vii

8.4 Advanced Program Structure 	 8-12
8.4.1 Typed Constants 	 8-14
8.4.2 Subprograms 	 8-15
8.4.3 Block Statements 	 8-17

9. Predefined Data Types 	 9-1
9.1 Variables 	 9-1
9.2 Integer 	 9-3

9.1.2 Integers as Unsigned Values 	 9-7
9.3 Byte 	 9-9
9.4 Real 	 9-10
9.5 Char 	 9-15
9.6 Boolean 	 9-17

10. Control Structures 	 10-1
10.1 Statements 	 10-1
10.2 Boolean Expressions 	 10-3
10.3 Conditional Execution 	 10-4
10.4 Iteration 	 10-6

10.4.1 The FOR ... DO Loop 	 10-7
10.4.2 The WHILE ... DO Loop 	 10-9
10.4.3 The REPEAT . .. UNTIL Loop 	 10-10

10.5 The Case Statement 	 10-11
10.6 Sample Program 	 10-14
10.7 Conclusion 	 10-14

11. Procedures and Functions 	 11-1
11.1 Subprograms 	 11-1
11.2 Scope 	 11-3
11.3 Parameters 	 11-6
11.4 Functions 	 11-8
11.5 Recursive Subprograms 	 11-11
11.6 Forward Declarations 	 11-12
11.7 External Subprograms 	 11-13

12. Declared Scalar Types 	 12-1
12.1 Subranges 	 12-12
12.2 Direct Declarations 	 12-13

13. Arrays 	 13-1
13.1 Packed Arrays 	 13-5
13.2 Array Initialization 13-5
13.3 Order of Elements 	 13-6

14. Strings 	 14-1
14.1 String Comparisons 	 14-5
14.2 String Functions and Procedures 	 14-7
14.3 Numeric Conversions 	 14-13
14.4 Strings as Parameters 	 14-14
14.5 Strings, Characters, and Arrays 	 14-16

15. Records 	 15-1
15.1 The "WITH" Statement 	 15-4
15.2 Variant Records 	 15-8

16. Sets 	 16-1
16.1 Set Comparisons 	 16-3
16.2 Set Operations 	 16-4

17. Pointers and Dynamic Allocation 	 17-1
17.1 Pointers 	 17-3
17.2 The Heap 	 17-4
17.3 Linked Lists 	 17-6
17.4 Deallocation and

Memory Management 	 17-9
18. Files 	 18-1

18.1 Random Access of Files 	 18-5
18.2 Text Files 	 18-7
18.3 The EOLN Function 	 18-9
18.4 Formatted Output 	 18-10
18.5 Filenames 	 18-13
18.6 Untyped Files 	 18-14
18.7 Device I/O 	 18-16
18.8 "Real-Time" Keyboard Input 	 18-19
18.9 I/O Error Handling 	 18-20

PART III ADVANCED TOPICS IN TURBO PASCAL

19. Useful TURBO Pascal Routines 	 19-1
19.1 Function Key Detection

(FUNCKEYS.PAS) 	 19-1
19.2 Buffered Input (TYPEHED.PAS) 	 19-2
19.3 I/O Error Checking (IOERROR.PAS) 	 19-3

ix

20. MS-DOS Routines 	 20-1
20.1 Randomize (RANDOM.PAS) 	 20-2
20.2 Read Directory (DIRECTRY:PAS) 	 20-4
20.3 Read Directory ll (QDL.PAS) 	 20-6
20.4 Disk Status (DISKSTUS.PAS) 	 20-11
20.5 DOS Version Number

(VERSION.PAS) 	 20-13
20.6 Direct Video Output

(IBMINTIO.PAS) 	 20-13
20.7 Direct Memory Output

(MEMSCREN.PAS) 	 20-15
20.8 Reading the Command Line

(CMDLINE.PAS) 	 20-17
20.9 Seial Port Library

(COMLIB.PAS) 	 20-18
20.10 Microsoft Mouse Interface

(TBQMOUSE.PAS) 	 20-23
20.11 FillChar Demo (FILLCHAR.PAS) 	 20-25

21. CP/M Routines 	 21-1
21.1 Read Directory 	 21-1
21.2 System Status 	 21-2

22. Assembly Language Routines 	 22-1
22.1 	In-Line Code (INLINE.PAS) 	 22-2
22.2 Assembly Language Routines

(PASS FUNC.PAS, PASS.ASM) 	 22-3
22.3 Conclusion 	 22-6

23. Subject - Index
23.1 23-1

PART I
TURBO PASCAL FOR

THE ABSOLUTE NOVICE

Part 1 	 Chapter 1 Introduction

1. INTRODUCTION

I'd like to begin by thanking you for buying TURBO Pascal. Like
me, you must be fed up with the high price of computer software,
and are ready to get good value for (very little of) your money.
Don't be fooled—my software is as good as, if not better than, the
high-priced programs on the market, many of which cost 10
times more than mine. As you can imagine, I am quite proud of
my programs, especially TURBO Pascal.

But before I forget my manners, let me introduce myself. My
name is Frank Borland, and the company which puts out TURBO
Pascal was named after me.

I wrote this book so that you could learn to program in TURBO
Pascal. You and I will look at the Pascal language (that is to say,
standard Pascal), and then I will teach you how to write good
programs in TURBO Pascal.

I live up in the mountains with my family, my dogs, and my burro,
Lotus. It is peaceful here. Just the kind of place where a person
can sit around and think and put things into proper perspective.
Once in a while, when I really want to think through a problem, I
take Lotus and hike a few miles from home. There I will camp out
for a few days until the quiet and isolation have allowed me to
solve my problem. Then I return home to my computer and easily
bang out the code that was such a problem only a few days
before.

Some people think I am an elusive person, with an aura of
mistique surrounding me. Actually, I am just a simple man with
simple needs. I keep to myself for the most part, not because I am
a loner, but because I got tired of city life, and besides, this is the
only way I can write enough good programs to keep the folks at
my company happy.

It was while camping under the stars that I got the idea to write
TURBO Pascal. The thought occurred to me that people like you
wanted to write computer programs with a good programming

1-1

Chapter 1 Introduction 	 Part 1

language, but probably didn't want to pay the high prices
companies are charging for their languages. I couldn't think of a
single reason that you could not have a complete, high-quality,
honest-to-goodness programming language for the price of a
pair of shoes or a decent meal. So, I set out to write TURBO
Pascal. I think it turned out very well, and I use it myself for most
of my daily programming chores.

I don't know how much you know about computers, so I'll just
assume that you are like I was when I got my first computer. I
couldn't make it do anything. (Of course, computers have
become easier to use over the years.) I had to rely on terrible
manuals with missing information, a bunch of individual pieces
that were not designed to work together, and my own patience.
Fortunately, I had a few friends who had already been through
the initial frustrations, and who were willing to help get me going.
It wasn't long before I could do many things with my computer,
and was actually looking for more things to do.

Now that I have been through all of that, I am ready to help other
people like you to get going with such things as TURBO Pascal.
Sometimes all it takes is a certain bit of information presented in
the right way to make you see the light. Other times it takes pages
of explanation and examples. This book is an attempt to bridge
the gap between your knowledge of computers and whatever you
need to know to write good programs.

This book starts out slowly, and then builds upon what you have
learned as you progress. Before I teach you how to program in
Pascal, I am first going to give you a little background on
computers and computer programming. I'll also teach you some
habits which I have found keep things simple and unconfused.

Next we will look at each of the parts of Pascal and why they are
there. We will look at different kinds of numbers and what they do.
We will even learn about a logical algebra called Boolean.

From time to time we will be looking at the TURBO Pascal
Reference Manual which came with your TURBO Pascal. While it
may be a little confusing for you at this time, it will prove to be a

1-2

Part 1 	 Chapter 1 Introduction

real treasure chest of information when you know more about
Pascal. It will also serve you well, because you will outgrow this
tutorial pretty quickly.

Besides the Reference Manual, there are a few other things you
will need. First, is your computer—of course!

Since TURBO Pascal is available for so many different types of
computers, I will have to keep this tutorial as general as possible.
In other words, I will not be able to give you a lot of specific
pointers about your particular computer.

For that reason, you should take a little time to get familiar with
how your computer works, if you haven't already. In particular,
you should know how to start a program going (we call this
running a program), save a file, and 'make backup disks. You
should also know where your CONTROL, ESCAPE, and
Programmable Function keys are (if you have any).

It will also help you in your learning to have a quiet and
comfortable spot to place your computer. There should be room
around it for you to place this book and your Reference Manual,
and enough light for you to read them easily, as well. Learning
anything new is hard enough; you should stack as many things in
your favor as possible.

Something else you will find very handy is a printer. It is almost
impossible to program effectively without one. The reason is this:

Although TURBO Pascal will find most of your syntactical errors
for you—mistakes where you leave out a punctuation mark, or
call a variable by a different name—it won't find another kind of
error. Every now and then, you will find yourself stumped with a
logical bug—something in your program which won't let it work
the way you think it should. Well, a printed copy of what you have
just done can be compared to a printed copy of your earlier work,
or traced by hand to see just what you have told the computer to
do. Sometimes your mistake will just jump out at you, if you can
see your program on a printed page.

1-3

Chapter 1 Introduction 	 Part 1

Another handy thing about printers and Pascal has to do with the
very structure of Pascal. You will find that big programs written in
Pascal are made up of little programs written in Pascal. We call
these little programs procedures, and we'll discuss them a little
later on in this book. The result is that these little Pascal programs
(procedures) can be stored on your floppy disk for later use, and
they can be printed out and stored as printed programs which
you could then enter when needed.

Then, when you are working on the solution to a problem that
your computer can help you with, you won't have to reinvent the
wheel. It very often is the case that you have already written
something for another program that will be of use in the program
you are working on now. A quick look through your printout file
will be more reliable than an anxious scramble trying to remember
where you last saw the code that you need.So that's about it for
introductions. Let's get on to something I have always found to be
important to my understanding of a new matter—a bit of history.

1-4

.1i......,.. 	

mo iiiiiiiIiiiIIIII

ipi 1 lio Hitt l'IIIIII

Part 1 	 Chapter 2 Short History

2. A SHORT HISTORY OF PASCAL

I can still remember back in the early days of computers (it wasn't
that long ago) when programs were hand-entered by flipping
switches to toggle the state of the computer's electronics. In fact,
before my time, the first computers were mechanical. To program
by flipping switches, you had to know your particular computer's
machine language and you had to convert everything to binary
(base 2 numbering system) or some other number representation.
And, if that wasn't bad enough, you had to check your completed
program by stepping through it and looking at a series of lights.

—An Early Programming Attempt-

2-1

Chapter 2 Short History 	 Part 1

You see, computers (that is, digital computers) are devices which
only understand different patters of two different states. One
state is the presence of voltage (often called a "1"); the other state
is the absence of voltage (often called a "0"). Telling the
computer to do one simple thing like "add 2 + 2" involved
entering a series of patterns of ones and zeros by flipping a whole
bunch of switches. If the answer came up "5," the poor
programmer would have to look at his mess and try to decide
where the mistake was. The situation tended to make some early
programmers crazy. Boy, those were the days. I am glad they're
behind us.

Later, paper tape came along to ease the frustration. The switches
remained on the computer, but paper tape readers were added as
input devices and paper tape punches were added as output
devices. Little holes were punched in the tape which represented
the ones and zeros (ons and offs) previously entered by switches.
Punched cards, which were originally designed to automate the
weaving industry, and later used to compile the United States
census, also were used in a similar manner to paper tape.

Entering machine-oriented digits to represent computer instruc-
tions was tedious, time consuming, and error prone. As program-
mers become more frustrated, they began using a shorthand,
English-like method of representing these instructions. They
then converted them to machine "code" by associating computer
instruction values with their shorthand notation.

Finally, someone, had the idea to write a program which would
make the computer do the "dirty work" of converting the
programmer's shorthand into machine codes. The result was the
first assembler. This was a huge improvement, and assemblers
are still in wide use today; however, the problem is that both the
assembler and its assembly-language programs must be specific
to a particular computer architecture. You could spend months
writing a program for a particular computer, but to use it on
another type of computer you would have to learn another
assembler language and then spend a lot of time converting your
original program to a new one for the other machine. This
problem was the reason programming languages were invented.

2-2

Part 1 	 Chapter 2 Short History

A programming language is nothing more than a program
which converts a (supposedly) standard series of instructions
into machine-specific code. Therefore, in theory, if you had two
computers and had the same language for each (the languages
are machine specific), you could write a program in the language
and it would run on both computers. This is called portability, and
is a very important consideration these days.

The United States government Department of Defense (DOD)
decided that it needed a portable programming language. This
language would be common to all the people (and their com-
puters) writing programs for DOD.

The language they chose was the "COmmon Business Oriented
Language", or COBOL for short. They chose COBOL because
someone demonstrated to them that the same program could be
run on two different computers without modifications. Because
the government backed it, COBOL has been, and is still, popular
in certain circles.

Notice, however, I hinted that the ability to run the same program
on two computers was not completely accurate. Most languages
have a standard set of instructions which will run on any
computer. In addition, they have extensions or enhancements
which let you easily take advantage of special features of a
particular computer. For example, you may have a computer that
has color, graphics, and sound capabilities and another computer
that has none of these. Usually, you must stay away from these
enhancements if you want to write a portable program.

When scientists learned that computers could be helpful in their
calculations, they invented a language which would translate
formulas. They called it "FORmula TRANslator", or FORTRAN,
for short. It is still in wide use today.

This language works pretty well when you have a scientific
problem to solve; one which usually involves a small amount of
data, but lots of calculations. FORTRAN became such a big deal
because International Business Machines (IBM), a manufacturer
of computers with world-wide clout, adopted it as their "official"
language for their big mainframe computers.

2-3

Chapter 2 Short History 	 Part 1

Both these languages, COBOL and FORTRAN, did what they
were supposed to do pretty well. They were quite big, however.
By this I mean that they needed a lot of room in a computer's
memory —the part of the computer which remembers programs
and data while the computer is on. There were other languages,
of course, but these were the two most well known to Americans.

When microcomputers came along in the early 1970's, they had
too small a memory capacity to allow these compilers to function.
They were also quite involved to learn.

One of the first "simple" languages was the "Beginner's All-
purpose Symbolic Instruction Code", or BASIC for short. This is
a language that anyone can learn in a hurry, if they don't have a
very complicated problem to solve. You may already know and
use BASIC. Your version may be an interpreter-type language,
which means that instructions can be executed immediately or
interactively. Another attribute of interpreters is that they are
small and efficient in their use of memory, and are easy to move
from one computer to another. Because the interpreter is
essentially a program which emulates a complier and a computer
while the program is running, its programs tend to run much
slower than equivalent complied code.

Also, a person has to be very good at remembering what is going
on in all parts of his program. BASIC is a hard language with
which to trace what is happening in a program. It is also hard to
trace exactly where it is happening. You can imagine the
implications of this, if you put yourself in the place of a person
having to fix another's program.

To sum it all up, BASIC is a simple, easy-to-use language that
provides a simple solution to simple problems, but which
provides complex solutions to complex problems, due to its lack
of structure.

The other languages we have discussed are compiler-type
languages, which means you can only run your program after
you have completed writing it and have compiled it into machine
language code. TURBO Pascal is a compiler-type language. One

2-4

Part 1 	 Chapter 2 Short History

of TURBO Pascal's unique characteristics is that it is very small,
fast, and easy-to-use. Effectively, it has the speed advantages of
an interpreter during program development as well as the
execution efficiency of a compiled program.

Pascal was written by a computer genius named Niklaus Wirth in
Zurich, Switzerland, in 1970-1971. He had already written several
other computer languages such as PL/1 and ALGOL. Dr. Wirth
based some of Pascal's concepts upon the work he had done
before.

The reason he wrote it in the first place was to teach his students
how to program a computer effectively. You see, programming
starts with a definition of a problem, then breaking the problem
down into its smallest parts. The last step is to actually write
commands which the computer will understand, and which will
make the computer work until the problem is solved.

Professor Wirth was concerned because he knew that a student's
first programming language teaches him habits in the same way
that his first love teaches him about life. It colors his views on a lot
of things. Wirth figured it would be better to start a student out
with good programming habits.

Pascal is a structured language, which means that it is easier to
write your progarm in modules by following certain, predefined
steps. Certain parts of your program must be placed in certain
locations within the program, and must follow certain conven-
tions. I will teach you more about structured programming as we
journey through the following chapters.

Structured languages are becoming more and more human
oriented and problem oriented. They have the ability to have a very
English-like content. At first it won't be apparent, but as you learn
to read Pascal programs, you will find that the statements read
very much like English sentences. The result is that the problem
and its solution is very easy to see, and is machine independent.

We'll talk more about the technique of programming in the
chapter after next. For now, let's look a little more closely at
Pascal, and especially TURBO Pascal.

2-5

Part 1 	 Chapter 3 Simple Program

3. WRITING A SIMPLE PROGRAM

Did you know that computers can show up a basic difference
between people's learning habits? Many people who sit down at a
computer which they have never see before will start right in
pressing keys. On the other hand, some people will wait for
instructions before touching anything. Even with instructions, it
will take these people quite a while before they are comfortable
with a computer, while the first type of people were never really
uncomfortable in the first place.

Now, the reason I am bringing this matter up here is not to scare
you, or make you feel as though "my goodness, this is too
difficult." It is because I want to encourage you to sit down and
press computer keys, especially if you are the type who is over
cautious about such things. This is the way you will learn about
your computer most quickly. By the way, today's computers are
designed so that with appropriate precautions (such as making
backup copies of all your diskettes), it is highly unlikely that you
will cause any permanent damage by typing on the keyboard.

You see, a computer, unlike your mind, does not think in any real
sense. At its most fundamental level it thinks in terms of "on/off",
or "yes/no", but never "semi-on" or "maybe". It will only follow its
instructions (whether they make sense, or not) until its electrical
power goes off.

3-1

Chapter 3 Simple Program
	

Part 1

Also you should remember that as a human being you have
ultimate control over your computer: you tell it what to do and
when to do it. You do this by pressing keys and giving it
immediate instructions, or by pressing keys for instructions
which the machine will remember and then execute later on. (By
the way, the second example is what we mean when we talk
about writing a computer program).

When we work with computers we have to get into two habits.
One: we always (not sometimes) must be consistent in how we
tell the computer to do something. (In other words, the computer
is very inflexible.) Two: If we give the computer the wrong
information to work with, it won't know the difference, and will try
to proceed as usual, causing erroneous and sometimes interest-
ing results. This is what we will call "Garbage in, Garbage out."

3-2

Part 1 	 Chapter 3 Simple Program

In other words, with computers, as with no other part of life, it will
always benefit you to take the time to first: "Think It Through"
—to pretty well know what you are going to do before you start,
and second: "Do It Right The First Time"—so you won't have to
do it again.

Well, what do you say we just try a program? Our first program
doesn't do much, and you may not understand everything about
it right away —but then even driving a car is not second nature at
first. If you need to, read the chapter on "Getting Started" in your
Reference Manual to show you how to write and run a TURBO
Pascal program.

By the way, I have written all the special words TURBO Pascal
recognizes as instructions in bold letters. This makes it particu-
larly easy to read a program and make sense out of it. By the way,
these special words are called reserved words.

To get started right away, do the following steps:

1. Start your TURBO Pascal program by following the instruc-
tions in your Reference Manual. Press Y when you are asked
whether you would like messages included.

2. Press W and answer MYNAME when asked for the name of
your workfile. (Don't forget to press RETURN after you have
typed in the program's name.)

3. Press E to get your TURBO Pascal editor going.

4. Type in the following program, just as it is written here. Don't
forget to put in everything, including all punctuation marks
and spaces. If you make a mistake, you can use your
key (or whatever key you have defined during TURBO Pascal
terminal installation) to backspace and erase the characters
you've typed.

3-3

Chapter 3 Simple Program 	 Part 1

program
	

MyName;

const
TotalTimes = 20;

var
Name 	 : String[25];
NumberOfTimes 	: Integer;

begin
Write('What is your name, please: ');
Readln(Name);
ClrScr;
for NumberOfTimes := 1 to TotalTimes do

begin
Writeln('Your name is ',Name);

end;
end.

5. When you have finished typing in the program, press your
CONTROL key and hold it down while you press K, then let
both keys up and press D.

6. Press S to save the program you just typed in. This way you
will have it later, if you want it..

7. Press R to compile the program (don't worry what that means
for now) and to run it. You will see a message at the bottom of
your screen which you can also ignore for now.

In a moment, the program will run itself.So, just what did this
program do?

If you typed it in correctly, and then typed your name correctly
when it asked you for it, the program told you your name 20 times.
If you did not type it in correctly, or if you did not type your name
correctly, all the program gave you was garbage (if anything at
all). Remember what I said about "Garbage In/Garbage Out?" (If
you did get garbage, you may want to go back and compare what
you typed into your computer with the program here in the book,
and then try again. If you made a mistake and haven't yet learned
the editing commands, it might be easier to retype the entire
program at this time, using a new file name.)

3-4

Part 1 	 Chapter 3 Simple Program

Now let's look at the different parts of the program and talk for a
moment about each. We will go into more detail about each in a
few pages. For now, just try to get a sense of what is going on.

The program, called "MyName", has three main parts:

First: the place where you tell the compiler the name of the
program.

programMyName;

The compiler uses this information to know where all the
information it needs begins. It is the same as when you want to
give a friend some instructions and you say, "This is where you
start." We call this the Program Header.

Second: the definition statements:

const
TotalTimes = 20;

var
Name 	 : string[25];

NumberOfTimes 	: Integer;

The compiler uses the definition statements as tools when it
begins to do what you want it to.

const is short for constant, the name of a number which will not
change while the program is running. Since the number stays
constant, we call it a constant—get it?

var is short for variable. Like its name, a variable can contain just
about anything, for instance a name, a number, or something you
make up.

3-5

Chapter 3 Simple Program 	 Part 1

Third: the program statements themselves:

begin
Write('What is your name, please: ');
Readln(Name);
ClrScr;
for Number0frimes := 1 to TotalTimes do

begin
Writeln('Your name is ',Name);

end;
end.

The program statements tell the compiler specific steps the
computer must take to accomplish its assigned tasks.

An English narrative of this program would go something like
this:

1. Start here

2. Ask "What is your name, please?"

3. Read the answer.

4. Erase the computer's screen.

5. Start a process where you write "Your name is" and the
answer you read before (in step 3) twenty times, then stop the
process.

6. Finish, end, quit, stop, fini.

By the way did you notice that every specific idea, or statement,
ends with a semicolon (;)?This is similar to the way we speak with
each other, in sentences, I mean. We express our ideas, each in
turn, in sentences; Pascal does the same in "statements". We end
our sentences with periods; we end our Pascal statements with
semicolons.

And yes, I see that begin, and const, and var don't have
semicolons. This is an idiosyncrasy of how the compiler operates.

Now let's look at the process of programming, itself, a little more
closely in the next chapter.

3-6

Part 1 	 Chapter 4 Programming Discussion

4. PROGRAMMING IS MORE THAN
WRITING A PROGRAM

The process of programming a computer is not really about
writing a series of instructions for a machine to follow. Rather, it is
about solving a problem, making life easier, or doing something
you want to do. You accomplish these things through the use of a
tool called a computer—and another tool called your common
sense.

No tutorial would be complete without my giving you some basic
(as in fundamental—not as in BASIC) pointers on how to go
about programming. That's what I will start to do in this chapter.

By the way, when you read this section and then continue to
other sections, I want you to get a sense of what is going on. Don't
try to memorize facts and figures. Once you get a feel for the
basic concepts, you will be able to handle any programming
problem.

—Just Sitting Back Thinking-

4-1

Chapter 4 Programming Discussion 	 Part 1

Computers are pretty consistent machines. If they do what you
want them to, they are consistently good. If they don't, they are
consistently bad. The problem arises when we don't realize that
they do exactly what we tell them to—whether or not what we tell
them is what we really want them to do.

Now is that confusing enough for you? Don't worry, it will all be
clear in a little while. What we need to do now is to get
comfortable with some concepts which have to do with computers
and programming.

4.1 DATA

Sometimes it seems that no matter where we go, we are
bombarded with something called data. Data this and data that,
but never anything really specific. People seem to forget that
what we need to get something done, or to make a decision, is to
reduce the data into more manageable pieces. We are going to
define this reduced, meaningful data as processed information.

When we get right down to it, data is the basis from which we
derive information. In other words, we take raw data, and then
manipulate it until we can use it to inform us. Finally, we use this
processed information to make a decision.

If we have done the right things—obtained the appropriate data
and then interpreted it correctly—our decision will work out for
the better. By the way, interpreting data correctly means doing it
with a good deal of horse sense; not with blind trust in the data.

Let's say you want to buy a car and then sell it. Raw data, in this
case, would be the price you could buy it for, and the price you
could get for it. Processed information, however, is the result of
comparing the two. You base your final decision to buy and/or
sell on that information.

Now, the color of the car and its make and model may also be
items of data which need to be considered. The thing is that they
may not really be important (necessary to your decision) in this
case, unless you are interested in such things.

4-2

Part 1 	 Chapter 4 Programming Discussion

If it is a simple decision as to whether or not to have a car, your
data can be restricted to simple price considerations. You may,
however, also want to consider make, model, color, gas mileage,
and so forth, depending upon your needs and desires, and the
perceived needs and desires of the buyer.

The bottom line is this: use common sense to decide what data to
bother to collect, what data to use, and what data to trust. Let's go
back to our prices, for a moment. Let's also say that they are all
you choose to consider.

Your two items of raw data (the purchase and selling price) are
nothing more than numbers until you put a $ in front of them. The
$ is what we would call a data label. It, paradoxically, turns the raw
data into processed information—sort of.

A data label helps us use the data in a meaningful way. It does so,
because it takes a number, or bunch of letters, without apparent
intrinsic significance, and jogs our memory.

The data we choose to consider, and which can be manipulated
by a computer, comes in two forms: numbers and letters. A
computer scientist would call the two numeric and character.

Imagine, for a moment, that you see a big plant with green leaves
and shade in front of you. You store this information in your mind
as a picture of what you saw. Later, when someone asks you what
it was that you saw, you would say "a tree." In this way, you would
convey to them the idea of a big plant with green leaves and shade.

This is very similar to how a computer works, inside its "mind."
The difference between you and a computer, is that while you
would never confuse a tree with a cat (because each means
something different to you), numbers and letters mean absolutely
nothing, in themselves, to a computer. It doesn't matter in what
combination the letters or numbers may be.

In other words, since the computer does not care what it takes in,
we can put in almost anything. All we need to do is make the data
going in mean something to us. This way it will also mean
something to us when we get it back out.

4-3

Chapter 4 Programming Discussion 	 Part 1

As a practical matter, we divide the data to be stored in a
computer under two rules:

1. Each character on your keyboard produces a representative
code when pressed. If a character (numbers included) is
simply to be stored as its representative code, we call it
character data. This would include things like names, ad-
dresses, phone numbers, and so forth. (Since we often string
a bunch of characters together into a word, we will refer to a
bunch of characters with a particular meaning, when they are
together, as being a string. If the character makes sense by
itself, we will simply call it a character. Simple, isn't it?)

2. If the data consists of numbers which are to be manipulated,
as in a calculation, and then returned to you, the computer
(complier) coverts the representative codes for the numbers
into their actual values, in whichever number base you select
(decimal, hexadecimal, binary). We call data in this form
numeric data. These are things like dollar amounts, inventory
counts, and so forth. (A date could fall into either category,
depending upon whether or not it is data which requires
manipulation.)

One convenient thing about computers is that because the two
kinds of data fall into clearly defined categories, they can not be
substituted for one another.

Another convenient thing, at least in Pascal, is that sometimes we
have to use data in more than strictly numeric or character form.
For instance, our data could be more than simply a list of days
(Mon, Tue, Wed, Thu, Fri, Sat), or the alphabet (A through Z).
Pascal allows us to define our data as being almost anything we
want. We will learn more about this later.

4.2 VARIABLES

In order to store data items in a computer, we need places—similar
to pigeon holes—to put them. We call these places variables, and
this is how they work:

4-4

Part 1 	 Chapter 4 Programming Discussion

Let's say we have to store a list of names. The first actual name
(Joe Blow) would be stored in a variable—the pigeon hole—
called NAME[1].The second name (Dudley Doright) could go
into a variable named NAME[2], and so on. If we had no data to go
into a variable, it would remain empty.

Variable 	Contains Character Data

NAME[1] 	Joe Blow
NAME[2] 	Dudley Doright
NAME[3]
NAME[4]

You will notice that NAME[1] and NAME[2] aren't worth a thing,
by themselves. All they are good for is holding something else.
(NAME[1] is not Joe Blow, it only holds a string of characters
which means "Joe Blow"). To make things easier for us, however,
in Pascal we call our variables by some name which will give us an
idea of what data they are likely to contain.

4.3 STATEMENTS

When we want to convey to one another one thought, or a
discrete part of one thought, we use a sentence. The same kind of
thing in Pascal is called a statement. English sentences end in
periods; Pascal statements end in semicolons.

For now, it is only important that you understand that when I refer
to a Pascal program statement, I am speaking about one clearly
stated instruction (thought) to the computer.

I will give you more definitions later, as we go along in this
tutorial. No need to burden you with more than is necessary, right
now.

Next we will take a look at the first step in developing a program.
So, if you are ready...

4-5

Part 1 	 Chapter 5 Developing a Program

5. DEVELOPING A PROGRAM

By this time, I hope you are getting the impression that a
computer is no more than a tool. It is a singularly impressive and
useful tool, but it is nonetheless a tool in the same way a hammer
or saw is a tool. The only reason to use a tool—or a computer—is
to solve a problem; to make our life easier.

A hammer and saw solve problems for carpenters. After all, it is
easier to saw a board into pieces than it is to rip it apart with your
hands and teeth.

The analogy can be carried further:A carpenter doesn't simply
start in sawing and banging. The first thing he does is to plan and
measure. He knows what he is going to do before he does it. HE
also knows which tools are appropriate to his plan.

—Planning, the First Step-

5-1

Chapter 5 Developing a Program 	 Part 1

The best way to go about developing a program is to do so
systematically. Leave the computer alone for awhile, and get out
a pencil and a pad of paper. You need to make a list of things to
do, and then follow that list as you do the actual program entry,
like a pilot following a checklist, or someone walking up a flight of
stairs—one step at a time. It is important to write your plan down
to make it easy to keep track of.

And, perhaps most importantly, you will want to keep in mind
common sense. In other words, if you have to go back down a few
stairs to pick up something you missed: do it, before you get too
far away.

Here are the steps that folks who program computers recommend
following:

First Step: Identify the Problem to be Solved

In order to solve a problem, you must first have a very good idea
about what the problem is. If your car has a flat tire, the problem is
obvious. So is the solution. But then, a computer isn't much help
in fixing a flat.

On the other hand, if you suddenly are asked to keep track of all
the names and addresses of the families attending your church, a
computer would be ideal. The problem is also reasonably
obvious.

You will have to store data regarding the church members. This
data will involve such things as each member's name, address,
phone number, and maybe birthday.

Part of your identification of the problem should include a
description of why you have to solve it. It should also include an
indication of what results you expect to achieve from your
solution.

You should also take your problem apart, breaking it into its
smallest parts. Then you can attack each part of the problem in its
turn. When each small part of the problem is solved, and you

5-2

Part 1 	 Chapter 5 Developing a Program

put all of them together, the large problem will be solved. In
computer jargon this is called Top-Down Design and Stepwise
Refinement.

By the way, this method of program design is ideally suited to
TURBO Pascal programming. You will see how when we get into
procedures, a little farther in this book.

One general note:While you are thinking about the problem to be
solved, try to think of a similar problem you have solved before.
This may give you insight into your current problem and suggest
some possible solutions.

Second Step: Decide What You Need to Get Out of Your System

The only reason to store data in your computer is to get it back
out again in the form of information. The only way to know what
data to store is to know what information you will need later.

The best way to go about it is to fully describe each piece of data.
You will want to include the data's source, its form (numeric or
character), and a name for a variable to hold the data. Finally, you
should determine whether or not it makes sense to actually
include each particular data item you have planned for.

Third Step: Decide What Data You Need to Put Into Your System

Sometimes people put deciding what data to put into their system
in front of the second step. When they do, they soon find
themselves "backing down the stairs" to get things right. This is
because getting the information out is basic to knowing what is to
be put in.

As you are deciding what data to put into your system, make sure
that each item is, in fact, available. Then look at it with an idea as
to what mistakes people could make as they enter this data.

For instance, a date entered by an American would normally have
the form: month, day, and then year (MM/DD/YYYY). A European
would more likely put the day before the month as in (DD/MM/
YYYY). Part of good programming is to identify possible errors
before they are made, and to somehow plan around them.

5-3

Chapter 5 Developing a Program 	 Part 1

As another example, let's say that your program is going to ask
the user to answer a question with either a "yes" or "no." Will you
have the user enter "Y" or "N"? What if he instead enters "y" or
"n" or "Yes" or "NO" or "no"? Will your program still work
correctly. Or, what if the user enters "R"? Will you provide an
error message and ask them to enter the answer again?

These are the sorts of things you must think about when
designing a program. Fortunately, TURBO Pascal provides easy
ways to handle these situations, which we will cover when the
time comes.

Fourth Step: Miscellaneous Stuff

This is where you put down reminders to yourself about things
which don't fall neatly into the other three steps. Things like how
many times to do something, how the screen should look, or
anything else. I view this step as making notes on a piece of
scratch paper.

5.1 PSEUDOCODE

As you are writing your plan on paper, you should state each step
in complete sentences. Then, as you write the solution to each
step, each should also be a complete sentence.This collection of
sentences which describe the solution to a problem (in easy-to-
read steps) is called Pseudocode. The term is derived from jargon
for writing a program, which most programmers call coding a
program, or writing code.

This brings up two more computer terms with which you should
be familiar:SOURCE CODE and OBJECT CODE. Source code
refers to the words you write in the Pascal programming
language using your TURBO Pascal editor. This is the information
the compiler translates into object code. Object code, in turn, is
the information your computer uses to solve your problem. You
see, you can read source code, while your computer cannot. On
the other hand, your computer can read object code, while you
can't. It is your compiler (the "heart" of TURBO Pascal system)
which does the translation from source code to object code.

5-4

Part 1 	 Chapter 5 Developing a Program

Do you remember the program we ran back in Chapter 3? Let's
take another quick look at it.

The problem we wanted to solve—one of the world's least
significant—was to see our name a number of times on a
computer screen. Using the method outlined above, we went
about it in the following way:

Problem to be solved: an unreasoning desire to see my name in
lights. Since computer letters are in "lights" and are cheaper than
a marquee, they will have to do.

Information to get out of the computer: my name, a string of no
more than 25 characters, in a variable called "name".

Data to go into the computer: my name, to go into a string
variable called Name. I get it from my memory, and it is usually
readily available.

Miscellaneous Stuff: I want my name to appear 20 times; I'll use a
constant variable called TotalTimes to hold that number. This
way, if I have to change the number of times sometime later, and
my program grows bigger with TotalTimes appearing in more
than one place, I will only have to change one thing to change
them all.

I will need one more variable called NumberOfTimes to keep
track of the question, "Has the computer written my name 20
times yet?"

I will also want to start with a clean screen, but TURBO Pascal has
already taken care of that for me with a function (about which
we'll talk more later) called CIrScr.

Pseudocode:

1. Start the program

2. Ask "What is your name, please?"

3. Read the answer into a variable called Name and don't let the
answer be longer than 25 characters.

5-5

Chapter 5 Developing a Program 	 Part 1

4. Erase the computer's screen.

5. a. Add 1 to whatever number the integer (which means a
single whole number) variable NumberOfTimes holds.

b. Compare the number now held by NumberOfTimes with
the number held by the constant Total Times.

c. If NumberOfTimes is less than or equal to TotalTimes
then write "Your name is" and the string variable Name
and go down to the next line on the screen.

d. If NumberOfTimes is more than TotalTimes, then stop.

To save your having to turn back to where this program first
appeared in this book, here it is again. Compare it with the
pseudocode, and see how close they are:..

program MyName;
comet

TotalTimes = 20;
var

Name 	 : string[25];
NumberOfTimes 	: Integer;

begin
Write('What is your name, please: ');
Readln(Name);
ClrBcr;
for NumberOfTimes := 1 to TotalTimes do

begin
Writeln('Your name is ',Name);

end;
end.

The only real difference between the two is that the program
source code is written in a way that the compiler will be able to
read it and then translate it. Other than for that accommodation to
the compiler's requirements, it is very close to English.

5-6

Part 1 	 Chapter 5 Developing a Program

When you get more familiar with TURBO Pascal, and with good
programming habits, you will be thankful for Pascal's similarity to
English. You will be able to take almost any Pascal program,
written by almost anyone, and figure out what they are trying to
do.

Well, that's enough about getting ready to write a program. I
could have continued longer, but we have many more issues to
discuss. Let's get into the next chapter now and get down to the
nitty-gritty . .

5-7

Part 1 	 Chapter 6 Getting Started

6. GETTING STARTED
WITH TURBO PASCAL

Sometimes it seems that the hardest part of doing anything is
simply getting started. Then sometimes it seems impossible to
get something finished once you have gotten started.

Now we have come to the time when we are ready to really get
into TURBO Pascal.

The first thing you want to do with TURBO Pascal is to make a
backup copy of diskette you bought. (You did buy it, didn't you?)
Then you will put your store bought, or master, diskette in a safe
place away from kids, stray cats, magnets, and wires with
electricity running through them. Keep in mind that, for now, we
are talking about the TURBO Pascal diskette; not the diskette that
came with this book.

I've made some assumptions here, and I hope that they are
correct. First, I've assumed that you have learned how to do some
of the basic functions with your computer, such as turn it on and
off, bring up its operating system (DOS), use the keyboard, make
copies of diskettes, and display a directory of files on a diskette. If
my assumption is wrong, then get some help or do some reading
and learn how to do these things before continuing.

When you ask your computer for a directory of programs on the
TURBO Pascal disk, you will notice one named TINST. This is
what we call a general installation program. It is a program which
allows us to use TURBO Pascal on a number of different brands
of computers, and yet have it run in the same way on each.

You can skip TINST and go right into writing a TURBO Pascal
program, if you want to. But if you are not using an IBM-PC or
compatible machine and want to use the built-in program text
editor, you will have to run it anyway.

6-1

Chapter 6 Getting Started 	 Part 1

6.1 TURBO PASCAL

To start your adventure in good programming (did he really say
that?) you will want to do the following:

1. Insert a backup copy of your TURBO Pascal program disk in
drive A:. If you want to keep files of programs you write on
another disk, put another blank, formatted diskette in Drive
B:.

2. Type the following (note that the word <Enter> enclosed in
"angle brackets" means press the Enter or Return key on your
keyboard; do not type the word Enter or the brackets themselves):

TURBO <Enter>

3. When the computer asks whether you want the messages included
press:

This has to do with mistakes you make when you write your
program and then try to compile it.

By pressing Y you are telling the computer to tell you what the mistake
was, in English. Pressing N, for "NO", tells the computer that you would
rather look up your mistake in the Reference Manual from the mistake's
number (we call this an error code). You can do this because the
computer will tell you the error code number to look up. All in all, it is
simpler, right now, to have the computer tell you.

If you have done the foregoing correctly, you will shortly see what we
call the Main Menu.

6-2

Part 1 	 Chapter 6 Getting Started

6.2 THE MAIN MENU

When we say menu we usually mean a list of items from which we
can pick one and do something with it. In a restaurant we eat what
we pick. With a computer, we either do something with our
choice, like run a part of a program, or give the computer some
information. With the Main Menu we do the latter. Here is what it
looks like:

Logged drive:

Work file: 	Main file:

Edit Compile Run 	Save
execute Dir 	Quit 	compiler Options

Text 	0 bytes
Free: nnrinn bytes

Let's take each part of the menu and see what it does. We will do
so in a more or less logical order, but first... do you notice that
some letters are brighter than others? With computers, this
usually means that pressing a key with this letter will have some
effect different from pressing another key. (Notice that there are
no two bright letters the same). That is the case here. When I
mention any option from this menu, it will mean that you should
press a key which corresponds to a bright letter to indicate that
option.

Logged drive:

The logged drive is the disk drive (or hard disk directory) with
which you wish to work. For instance, if you have your TURBO
Pascal master disk in drive A:, and the programs you are writing
stored on a disk in drive B:, then the logged drive should be drive
B:. To make it so, do the following:

6-3

Chapter 6 Getting Started 	 Part 1

1. Press

L

to choose the Logged drive option on the menu.

2. Press

B

to indicate your choice of drive B:.

3. Press

<Enter>

to tell the computer to accept your instruction.

But how about with a hard disk, or even a floppy disk with
subdirectories? Well, if you're using PC-DOS or MS-DOS,
version 2.0 (or later), you would see the following:

Logged drive:

Active directory

This shows the path name of the current default directory. To
change this, you would:

1. Press

A

to indicate the Active Directory option.

2. Type in the name of your disk subdirectory. For instance,
\PASCAL\PROGRAMS, if you have one directory for TURBO
Pascal and another for the files of programs you write.

6-4

Part 1 	 Chapter 6 Getting Started

3. Press

<Enter>

to tell the computer to accept your instruction.

Work File:
Main file:

Since these two are so closely related, let's look at them together.

Work file: is the name of the file which is also the program you are
now writing. If you just enter the name of a file, TURBO Pascal
will add the file extension .PAS for you. If you have an extension
in mind which you would rather have than .PAS, just put it in
(TURBO Pascal won't mind).

Main file: has to do with a more advanced programming concept
of INCLUDED FILES. This is farther along in programming than
we will go in this tutorial. Suffice it to say, when you get better
(more knowledgeable) at computer programming, the INCLUDE
FILES facility will be available to you.

If you ever choose to edit, run, or compile a program without
having first indicated a work file, you will be prompted for a work
file name.

Edit

There has to be a way for you to actually write your program in a
form the computer can use. More importantly, there must be a
way for you fix the mistakes you make as you are writing the
program as well as after you have written it and tried it out. A
correct term for this process is "Editing". To accomplish this
process we use an Editor, which is called for our use by pressing
<E>.

6-5

Chapter 6 Getting Started
	

Part 1

—TURBO Pascal Editor—

Note

TURBO Pascal is a compiler-type language in which you
write your programs using an editor, then compile them so
that the computer can understand them. In contrast, most
BASIC programming languages are interpreter-type lan-
guages in which you write your program using the interpreter
and the computer translates it as you go. If you have been
using BASIC, try to forget everything you know about it, it
really won't help you very much with TURBO Pascal.

Writing your program using the TURBO Pascal editor is a lot like
writing a note with a word processing computer program called
WordStar. If you use that program already, then you are familiar
with the various commands which help you accomplish what you
would like to do, and you are all set to go. On the other hand, if
you don't—you're not; but you are still not out of luck.

6-6

Part 1 	 Chapter 6 Getting Started

In the latter case, you have two choices: either you get familiar
with the commands as they are listed in the TURBO Pascal
Reference Manual, or you "customize" the commands to suit
yourself.

The latter is not a hard thing to do. Just follow the directions in the
Reference Manual Section 1.6.3 Installation of Editing Commands.

By the way, I would make my notes in the Reference Manual in
pencil. Believe me, you will want to keep track of what pressing a
particular key, or key combination, does. Sooner or later you will
change your mind about some command or other. A pencil will
make changing your mind a lot less messy.

When you start to edit a program (by pressing E), the screen will
go blank for a moment while TURBO Pascal is taking care of
some housekeeping. Like anything with TURBO Pascal, the
moment will be a short one because TURBO Pascal does things
so quickly.

What is happening is this: If you have specified the name of a
work file which is already on your disk, TURBO Pascal goes to
the disk and retrieves your file. Then it turns on the editor and lists
out your program. Very shortly, it is ready for you to work with
your file. Then you may add stuff, change things around, or do
whatever you need to do. (Note that if you had already edited
another file, you would have been warned that you should save it
before editing another.)

If you have specified the name of a file which is not on your disk,
TURBO Pascal will take just a moment to check, and then will
send you into the editor so you can start your programming.
Once you are done editing, you can save your work to disk. (See
Save, below.)

To write a program, once you are "in the editor", is simply a
matter of typing away! Oh yes—to get out of the editor and back
to the Main Menu, press

<Control> KD

6-7

Chapter 6 Getting Started 	 Part 1

This means, press and hold down the key marked "Control" or
"Ctrl", then press "K", then "D". That's all there is to it.

Compile

The whole object of programming in TURBO Pascal is this:to
write code and compile it. Compiling is the step where you find
out how well you did. This is where you find out if you wrote the
program correctly, and if your program's logic is correct.

—The TURBO Pascal Compiler—

When you press C, TURBO Pascal takes your edited (source
code) program and changes it into a form the computer can use.
This form is called object code or compiled code. (You will
remember we spoke about compiled programs in the section on
programming in general).

To go over some jargon again: the compiler takes your source
code, the program you wrote in TURBO Pascal using an editor,
and changes it into object code, the form the computer can use.

6-8

Part 1 	 Chapter 6 Getting Started

The TURBO Pascal compiler compiles programs, and then puts
them into one of three places: into memory, into a .COM file (or a
.CMD file for CP/M-86), or into a .CHN file. Which of the these
three to use is up to you and can be changed at any time. You can
see how to implement your decision in the section on "compiler
Options", below. Either way, you compile your program by
pressing C.

Usually you will first do what we call compile into memory. You
do this when you write a program using the editor and then want
to try it out real quick. With the program in memory, you will be
able to run it, find a mistake, and then go back to editing it, if you
want.

If you have made a mistake which is bad enough that TURBO
Pascal can't get around it, the compilation process will stop. Then
TURBO Pascal will switch you back into the Editor, tell you what
it thinks you did wrong (or what you forgot), and show you where
it thinks the problem is.

—Error Handling—

The thing to do now is to fix your mistake and try again. Believe
me—the first time you write a complete Pascal program, on your
own and then run it will be a high point in your life indeed.

Remember, however, that the compiler will only find a syntax
error. Logical errors should already have been eliminated in your
planning (it says here). Believe me, it is better that they be found

6-9

	

Chapter 6 Getting Started 	 Part 1

by you in planning, than by your friends when you show your
program to them. This method also takes a shorter amount of
time, in the long run.

You can compile your program directly into memory by pressing
C as many times as you want (we'll talk about what that means in
just a moment). One thing: if all you do is press C, then all you will
be able to check is if the program compiles correctly all the way
through. This is a good idea, as long as there is the possibility of
syntax errors. (Syntax errors are errors such as where you have
left out some necessary punctuation, or made a mistake with the
spelling of a variable name.)

Run

Once your program has compiled all the way through -or if you
are impatient like me, as soon as you are done editing—you will
want to press R which means "Run the program". With this
command, TURBO will see if your program has already been
compiled, or even if you have edited it since you last compiled. If
so, then it will first compile your source code into memory.
Having done that, it will then immediately execute your program's
instructions.

compiler Option

Now seems like a good time to clarify the difference between
compiling to memory and compiling to a .COM file.

Once you are satisfied with the program, you will want to save it in
a form where you can use it without first having to call up TURBO
Pascal. This is done by compiling your program into a .COM file;
a program file you can run by simply typing its name.

You choose this option by pressing 0 at the Main Menu. With
that, you are presented with another menu which looks like this:

compile - > Memory
Corn-file
cHn-file

	

Find run-time error 	Quit

6-10

Part 1 	 Chapter 6 Getting Started

Note that if you are using a CPM-86 version of TURBO Pascal,
the C option on the screen will be to compile a .CMD file. Now,
let's look at each of these options.

Memory

The normal, or default, value is the first one: Memory. In other
words, without any change on your part, TURBO Pascal will
always compile your program into your computer's memory.
Once you have made your choice, pressing Q will send you back
to the Main Menu.

Com-file (or Cmd-file)

If you are at this menu, and you press C, for Com-file (or Cmd-
file), your program will be compiled and placed in a .COM file on
your logged disk drive. If your work file is called "MYNAME", and
you have chosen to compile the program into a .COM file, then
MYNAME will be saved to disk under the name MYNAME.COM.

From then on, you will be able to treat MYNAME.COM (or
MYNAME.CMD) like any other program file. You will be able to
copy it to another disk, rename it, delete it, or run it, all
independently of TURBO Pascal.

The reason you are able to do this is because your MYNAME
program is not the only thing which went into the MYNAME.COM
file. A part of the TURBO Pascal language, called the library, was
also saved.

A library is a collection of programming routines which are used
by any Pascal program to work with your computer. They are
always there, even if you haven't written them, or ever knew they
were there. The programming routines take care of things like
putting letters on your screen, calling the Disk Operating System
to save information, and so forth. The library will increase the size
of your file by about 10 thousand bytes (10 Kbytes) or so.

When you press C, you will also be prompted for some additional
information. The prompt will look like this:

6-11

Chapter 6 Getting Started 	 Part 1

minimum cOde segment size: 	XX:XX paragraphs (max. YYYY)
minimum Data segment size: 	30CXX paragraphs (max. YYYY)
minimum free dynamic memory: =CC paragraphs
mAximum free dynamic memory X:XMC paragraphs

This is an introductory tutorial, and what is going on here is a bit
beyond our current efforts. This information is discussed in the
Reference Manual, if you are interested in finding out more. For
now, you can ignore this stuff.

cHn-file

The Chain File option is selected by pressing H at this menu. A
chain file is similar to a .COM (or .CMD) file, except that it does
not contain any of the TURBO Pascal library routines. You would
use a chain file when you want to write a Pascal program which
will be called to be run from within another Pascal program.

Can you see how the concept of "chaining" came about? One file
pulls another, just as one person could pull another by using a
real chain.

In order for a .CHN file to work, there must have been first a
regular .COM (OR .CMD) file loaded in memory.

The idea that you will have either a .COM file or a .CMD file
(depending upon your operating system) should be obvious by
now, so I am not going to keep mentioning both. From now on, I
will simply use the term .COM file and assume that you know
what I mean.

Find run-time error

Do you remember about how TURBO Pascal will find an error in
a program in memory when you try to compile it and then run it?
Do you remember how it will send you right back into the editor,
and show you where it thinks your mistake occurred?

6-12

Part 1 	 Chapter 6 Getting Started

8YB

Run Time Error

Well, one of the library routines included in any TURBO Pascal-
generated .COM file is similar to this. When you run a .COM file
and a mistake occurs, the program's execution will stop, and you
will be presented with a message like this:

Run-time error 01, PC=1B56
Program aborted

This is telling you that a Run-time error occurred, and that the
computer has stopped executing your program. A run-time error
is one which happens while a program is being executed—or
running. The number (01, or whatever) refers to what TURBO
Pascal thinks the mistake was. You can look up the error, by its
number, in the back of your Reference Manual (if it is of interest to
you).

6-13

Chapter 6 Getting Started 	 Part 1

PC has to do with what is called the Program Counter; a thing in
the computer which keeps track of just where the computer is in
the computer program at any time. Its function is similar to your
following the street names on a map with your thumb, as you go
down an avenue. It is written in hexadecimal (base 16) math. (You
could translate it into decimal (base 10) math by using SideKick,
another one of my programs available from Borland International.)

When a PC number appears, you should make a quick note of it.
Later, when you have TURBO Pascal going, and the program in
question loaded, you can find the line where the error occurred.
You do so by getting into the compiler Options menu, pressing F
(for Find run-time error), and then answering with the PC number
you made a note of when you are prompted for it. The compiler
will point out where in the source program the error occurred.

Quit (the compiler Options menu)

Anytime you start something, you will eventually want to quit. It's
the same with this menu. The only difference is: when you press
Q to leave this menu, you will only go back to TURBO Pascal's
Main Menu.

Save

One of the smarter things you will do in programming, is to SAVE
ALL YOU DO!!!! Is that clear?

SAVE early and often. The reason for this is that sometime,
somewhere, when you least expect it, the power to your
computer will be interrupted. When that happens, all the work
you have done since your last save will go into never-never land.
Like the Good Book says, "A word to the wise, ..."

Dir

Every now and then, you will want to be reminded of the name of
the file you were working on the last time. If it is on the current
logged drive, pressing D will allow you to find out. Or you may
simply want to have a list of the files you have stored on disk.
Pressing D will show you those files as well.

6-14

Part 1 	 Chapter 6 Getting Started

What happens when you press D is that you are prompted for a
mask. If you wanted to see only the files ending in .PAS, for
instance, type in an asterisk (*) and a "dot-pas" like this:

*.pas <Enter>

All the files on the currently logged drive ending in .PAS will be listed for
you. If you want all the files to be listed, simply press:

<Return>

Remember, only the files on the logged drive (and the active directory)
will be listed. You will have to change the logged drive (see pressing L,
above) before pressing D to get a listing of the directory, if it is different
from the one you are currently working with.

A hint: I usually press D to get a listing of the .PAS files on my drive.
Then, while they are still on the screen before me, I press W for work file
and enter the name of the file I want while I can see its name before me.
(If you know what wildcards are, you can use * to match any group of
characters or ? to match any single character in the mask.)

eXecute

On some implementations of TURBO Pascal—that is "on some
kinds of computers running TURBO Pascal"—you are able to
run another (non-TURBO Pascal) program from within TURBO
Pascal. You do so by pressing X and then entering the name of
the program you want to run. When it is over (finished running)
you are automatically brought back into TURBO Pascal.

Quit

All good things have to come to an end, every now and then. To
leave TURBO Pascal to get back into your computer's disk
operating system (DOS), press Q. If you haven't saved your work
file, you'll be asked:

Workfile MYNAME.PAS not saved. Save (YIN)?

6-15

Chapter 6 Getting Started 	 Part 1

to which you should almost always reply Y.

Memory Space

The message at the bottom of the menu:

Text 	0 bytes
Free: nrumn bytes

These are two more pieces of information available to you, and
which are best discussed together.

You are allowed from about 32 thousand characters (letters,
numbers, and symbols) less than your computer's memory
capacity in your program files. That means that if you have a 64K
computer, your program can be up to 32 thousand characters
long. If you have more memory, your programs can be substan-
tially larger. If that makes you nervous, this chapter has about
20,000 characters in it, so far. If your program gets so big that it
won't fit in the allowed space, you can break it into smaller, more
manageable, pieces which can then be cHained together. This
part of the menu, then, lets you know how long your source file is,
and how much room you have left to work with.

6.3 CONCLUSION

Well, that ends TURBO Pascal for the Absolute Novice. You're
now ready to start learning how to program in Pascal, which, of
course, is the point of the next part of the book, A Programmer's
Guide to TURBO Pascal. I'm happy to have been your guide; I
hope that you've enjoyed it as much as I have. You've done fine
up until now, and I'm sure you'll zip right through the rest of the
book. Me? Well, the dogs are chasing the burro (or is it the other
way around?), the chickens are out of their yard, and I've got a
few programming projects of my own that need to be finished, so
I'll see you around . . .

6-16

PART II
A PROGRAMMER'S GUIDE

TO TURBO PASCAL

Part 2 	 Chapter 7 The Basics of Pascal

7. THE BASICS OF PASCAL

"Things are always at their best in their beginning."

—Blaise Pascal, Lettres Provinciales, no. 4

Okay. Either you skipped Part I, or you're a fast reader.
Whichever it is, you're about to get a quick introduction to Pascal.
First, you're going to learn how to write a simple Pascal program
by converting a simple BASIC program. After that, you'll learn
some Pascal terms which you'll be using throughout the rest of
the book. You'll undoubtedly have lots of questions as you go
along; rest assured that most (if not all) will have been answered
in great detail by the time you finish Part II.

7.1 A QUICK EXAMPLE

If you've gotten this far (and you obviously have, or else you
wouldn't be reading this), then you should know the fundamentals
of how to use TURBO Pascal. (That is, you should know how to
use the parts of the Main Menu; I don't yet expect that you can
write a program.) If my assumption is not correct, go back
through Part I again. Of course, you won't really need that for the
following example, since it's just a penciland-paper exercise
anyway, but you will need it before you go too much farther into
Part II.

Having gotten that out of the way, let's take a simple BASIC
program and convert it into a simple Pascal program. Suppose
our BASIC program looks like this:

100 REM SIMPLE BASIC PROGRAM
110 INPUT A
120 INPUT B
130 C = A + B
140 PRINT C
150 STOP
160 REM END OF SIMPLE BASIC PROGRAM

7-1

Chapter 7 The Basics of Pascal 	 Part 2

This program allows you to enter two numbers, which are stored
in variables A and B. These two values are then added together
and stored in C. The contents of C are then printed out so that you
can see the sum of the two numbers that you entered. So far, so
good. Now comes the fun part: converting this innocuous little
piece of code into a real, live Pascal program. You're going to do
it a step at a time, so that you can understand what you're doing
and why. As usual, the explanation is more complicated than the
actual process.

The first step is to remove all the line numbers, since you don't
need them. Even if you wanted them, you would still remove
them, since Pascal uses other means of getting around than
jumping to a given line. Your program now looks like this:

REM SIMPLE BASIC PROGRAM
INPUT A
INPUT B
C = A + B
PRINT C
STOP
REM END OF SIMPLE BASIC PROGRAM

Next, you must change the names of the input/output (I/O)
commands. Instead of INPUT, you will use the Pascal procedure
ReadLn, and you will replace PRINT with the procedure WriteLn.
Now you have:

REM SIMPLE BASIC PROGRAM
ReadLn(A)
ReadLn(B)
C = A + B
WriteLn(C)
STOP
REM END OF SIMPLE BASIC PROGRAM

Next, three more changes. First, you will replace the equals sign
(=) in the fourth line with a colon followed by an equal sign (:=).
Pascal uses := for assigning values and reserves the plain = for
comparing values.

7-2

Part 2 	 Chapter 7 The Basics of Pascal

Your second change is to put a semicolon (;) between all
executable statements. Since a Pascal statement can (and often
does) occupy several lines, the semicolon marks where one
statement stops and the next one begins. For neatness' sake,
you'll place the semicolon at the end of the preceding statement.

Lastly, you will eliminate the command STOP, which is not
needed or used in Pascal (and isn't really needed in your BASIC
version here).

Your program has changed a little more:

REM SIMPLE BASIC PROGRAM
ReadLn(A);
ReadLn(B);
C:=A+ B;
WriteLn(C)
REM END OF SIMPLE BASIC PROGRAM

Now for a major change. In BASIC, you can start execution on
any line, selectively execute groups of lines currently in memory,
and so on. In contrast, a PASCAL program is a well-defined
group of instructions, with what is known as the main body.
Execution always begins at the start of the main body and
proceeds through to the end. So you need to tell Pascal that your
program is a program and then place your instructions in the
main body. After you do this, it will look like this:

program Simple;
begin

REM SIMPLE BASIC PROGRAM
Readln(A);
ReadLn(B);
C:=A + B;
WriteLn(C)
REM end OF SIMPLE BASIC PROGRAM

end.

On to the next item. First some background: Pascal was designed
as a teaching language and, like most teachers, will pick nits (but
only for your own good, mind you). Case in point: BASIC allows
you to create variables as you go along, while Pascal demands

7-3

Chapter 7 The Basics of Pascal 	 Part 2

that all (and I do mean ALL) variables be declared before they can
be used. So let's declare our variables:

program simple;
var

A,B,C 	: Integer;
begin

REM SIMPLE BASIC PROGRAM
ReadLn(A);
ReadLn(B);
C := A + B;
WriteLn(C)
REM end OF SIMPLE BASIC PROGRAM

end.

Only one thing remains to make your simple BASIC program into
a simple Pascal program: change the comment statements. In
BASIC, each comment line starts with REM (for REMINDER). In
Pascal, a comment starts with the character { and ends with the
character }, and you can have as many lines of comments
between those two characters as you want. If your terminal
doesn't have and }, or if you just don't like curly braces, then you
can use the sequences (* and *) instead. You will now add a few
comments to ensure that your program is well documented. And
here's your final program:

program Simple;

A simple Pascal program converted from BASIC.
DATE: 	17 June 1985
AUTHOR: Put your name here

var
A,B 	: Integer; input variables }
C 	: Integer,' output variable }

begin 	main body of program Simple
ReadLn(A);
ReadLn(B);
C:=A+B;
WriteLn(C)

end { of program Simple }

7-4

Part 2 	 Chapter 7 The Basics of Pascal

Here it is, an honest-to-goodness Pascal program, guaranteed to
compile and run under TURBO Pascal! It really doesn't look all
that different from your original BASIC program. And you
thought Pascal was hard!

Here's a review of the steps you used to translate your BASIC
program into Pascal:

1. Delete all the line numbers

2. Replace I/O statements

3. Replace assignment = with :=

4. Add semicolons at the end of statements

5. Drop STOP at the end of the program

6. Add program Name / begin...end.

7. Declare all variables in the var section

8. Convert REM statements

It would be convenient if this set of rules was enough for all such
translations. Unfortunately, this isfar from true. In fact, these rules
will only translate a small subset of all BASIC programs.
Moreover, most BASIC programs over a certain size cannot be
translated at all, only rewritten. However, your purpose here is
not to show you how to convert BASIC programs into Pascal; it is
to show you that you can learn how to write simple Pascal
programs in just a few minutes.

7.2 SOME PASCAL TERMS

You're going to learn about some terms that will be used
throughout the book. Some of them (such as identifier) can be
fully explained before you leave this chapter. Others (such as
statement) will have their definitions expanded as you go through
the book, so don't get upset if our first discussion doesn't seem to
be all-encompassing.

7-5

Chapter 7 The Basics of Pascal 	 Part 2

7.2.1 Characters

Let's start at bedrock. Your program will be composed of letters,
digits, spaces, and other printing characters. These are known as
ASCII characters (ASCII stands for American Standard Code for
Information Interchange, if you care. It is a computer-industry
standard way of representing all of the possible characters on
your keyboard).

There are 128 standard ASCII characters (numbered 0 though
127), and the table at the end of this chapter shows you all of
them. Notice that the first 32 have strange 2-and 3-letter abbrevia-
tions. These are known as control characters, because they're
used to control certain computer operations. For example, if your
program tried to write ASCII character 7 (BEL) on the screen, you
would hear a beep instead (on an old teletypewriter, you would
hear an actual bell ring, hence the name BEL, get it?).

Other commonly used control characters are BS (backspace),
CR (carriage return), and ESC (escape). You can type most of
these characters from your keyboard by typing the corresponding
character in the third column of the table (starting with character
64, "@" and going through character" _ ") while holding down
the Ctrl (or Control) key. What the computer (or, more accurately,
the program currently running in the computer) will do with them
is another question entirely.

Control characters are usually written with Ctrl- or with an up-
arrow front. For example, character 7 (BEL) would be written:

Ctrl-G or

^G

By the way, there's another non-printing character in the ASCII
set, that is, one with a value greater than 31. See if you can find it.
(Hint: it's not number 32—that's really a space; that is, the
character you get if you hit the space bar, which is actually a
printing character to a computer.)

7-6

Part 2 	 Chapter 7 The Basics of Pascal

Now on to the printing characters. As you can see from the table,
the ASCII character set contains all the letters of the alphabet, in
both upper and lower case. The upper case letters start at code 65
and go to 90, while the lower case ones start at 97 and go to 122. A
little math shows that the ASCII value of any lower case letter is
exactly 32 greater than its upper case equivalent. Remember
that—it can come in handy. The ASCII set also has all the decimal
digits (0 through 9), starting at code 48. Letters and digits
together are collectively known as alphanumeric characters.

Of course, there are plenty of visible characters besides just the
alphanumerics. Starting at 32 (which, as I said, is a space:" "), you
have several punctuation and other special characters in addition
to the letters and digits. These are usually called special
characters. The alphanumerics and the special characters togeth-
er are known as the printing characters, and they plus the control
characters form the entire ASCII character set.

To summarize: characters 0 through 31 are the control characters;
along with character 127 (did you find it?), they form the non-
printing characters. Characters 65 through 90 ('A'...'Z') and 97
through 122 ('a'...'z') are the letters, while characters 48 through
57 ('0'...'9') are digits. Letters and digits together are known as
alphanumeric characters. All other characters not already men-
tioned make up the special characters.The alphanumeric and the
special characters together make up the printing characters. And
the printing and non-printing characters form the entire ASCII
character set.

Well, almost the entire set. Many computers recognize characters
128 through 255 as special printing or non-printing, characters.
For example, the IBM PC uses those codes to represent foreign
characters, graphics characters, and special symbols. However,
since those are not standard for all makes of computers, they
really can't be listed here. Just be aware that you can have
characters with values greater that 127.

7-7

Chapter 7 The Basics of Pascal 	 Part 2

7.2.2 Identifiers

Okay, now that you completely understand ASCII characters,
you can learn about identifiers. In Pascal, many things have
names: programs, constants, data types, variables, procedures,
functions, you name it (if you'll pardon the expression). According
to Standard Pascal, an identifier must start with a letter and is
then followed by zero or more letters and/or digits. TURBO
Pascal also allows you to use the underline character "_" (ASCII
95) anywhere you can use a letter, which means anywhere.

The case (capitalization) of letters is irrelevant, so that the
identifiers HOTSTUFF, HotStuff, and hotstuff are all the same.
Note, though that the underline character does make a difference;
hotstuff and hot stuff are two different identifiers. As for length,
well, you can also make identifiers as long as you like (just about).
The actual limit is 127 characters (letters, numbers, and under-
scores), which should be long enough to please anyone.

7.2.3 Reserved Words

Pascal uses some special identifiers for putting programs togeth-
er. You used four of them in your quick example above: program,
var, begin, and end.These identifiers (and the others listed below)
are called reserved words. That means you can't use them to
name programs, constants, data types, and so forth. For example,
you couldn't declare a variable named Program or call a program
Begin. You can only use them in the way Pascal (and Niklaus
Wirth) decrees. Here's a list of all the reserved words (sometimes
called keywords) in Standard Pascal:

and array begin case coast div
do downto else end file for
function goto if in label mod
nil not of or packed procedure
program record repeat set then to
type until var while with

7-8

Part 2 	 Chapter 7 The Basics of Pascal

And here are some reserved words that TURBO Pascal uses as
well:

absolute external inline shi 	shr 	string
xor

If they all look strange now, don't worry; you'll know them well by
the time you finish this book.

7.2.4 Symbols

Many special characters are used by Pascal for various purposes.
You've already seen how the semicolon (;) separates statements,
the sequence colon-equals (:=) assigns values to variables, curly
braces ({ and }) delimit comments, and the period (.) signals the
end of the program. Other commonly used symbols are

* 	-

= > < >. <= <>

()

arithmetic and set operations
comparison operations
array and set delimiters
function and procedure parameter lists
pointer and file operations
record field delimiter

Certain reserved words also function as symbols:

not and or xor shl shr 	 logical operations
div mod 	 integer arithmetic operations
in 	 set inclusion

7.2.5 Constants

You often need to use a specific, fixed value of some sort when
writing a program. For example, if you were solving some

7-9

Chapter 7 The Basics of Pascal 	 Part 2

geometrical problems, you might want to use the value of Pi
(3.1415926...). Such a value is called a constant, since it can only
have one value. (The opposite of a constant is a variable, which is
an identifier that can have more than one value. More about those
later.) A constant can be one of (at least) seven types:

TYPE EXAMPLES

Integer 3 0 -17382
Byte 3 0 255
Real 2.71828 0.00 -6.67E-22
Char 'A' '0'
Boolean true false
set [0..9] ['a','r','u']
string 'STARS.TXT' 'Amt in $'

Also, the reserved word NIL is the constant value of an unassigned
pointer. This probably means nothing to you now, and you can
safely forget it until Chapter 17, which talks all about such things.

Incidentally, the first five types shown are the standard predefined
data types of TURBO Pascal (more on those in Chapter 9). Sets
are a type of data structure; we'll cover these in Chapter 16.
Strings will be discussed in Chapter 13.

7.2.6 Variables

Sometimes you need to work with values that are unknown or
that might change while the program is executing. To do this, you
make up a name (identifier) and declare it to be of some data type.
For example, in the sample program above, you declared the
identifiers A, B, and C to be of type Integer. These identifiers are
known as variables (since their values can vary—get it?). Here
are some more examples of variables:

7-10

Part 2 	 Chapter 7 The Basics of Pascal

program SampleVariables; {
purpose 	show different types

of variables

var
Valuel,Value2,Sum 	: Integer;
Radius,Circumference : Real;
Selectal,Done 	 : Boolean;
Answer,Initial 	: Char;

begin
Valuel := 53; Value2 := 228;
Sum := Va1uel + Value2;
Radius := 40.25;
Circumference := 2.0 * Radius * Pi; {Pi is predefined as 3.1415926536}
Selected := True;Done 	:= not Selected;
Answer := 'Y';Initial 	:= 'd'

end. f of program SampleVariables

You can, of course, type in, compile, and run this program. Be
warned though: since there's no input or output (I/O, for short),
you won't see anything happen. A safe program, but dull.

7.2.7 Expressions

Just like constants and variables, expressions of different types
can be created. An expression of a given type contains constants
and/or variables of that same or compatible types, along with
appropriate symbols (if needed). When the program encounters
an expression, it evaluates it, that is, it combines all the constants
and/or variables and comes up with a single value of the
appropriate type.

In your first sample program, you have the integer expression A +
B. When the program evaluates this expression, it gets the value
of A and adds to it the value of B. The result is some integer value,
which is then stored in C. Likewise, in your second sample
program, you had the integer expression Valuel x Value2, and
the real expression 2.0 * Radius *

7-11

Chapter 7 The Basics of Pascal 	 Part 2

See, it's not as bad as you thought. Really, you've probably seen
many expressions before; in your science and math classes, they
were called formulas (or, if you want to be classical, formulae).
Things like the circumference of a circle or the velocity of a falling
object with respect to time are just expressions (of the type Real,
usually). In fact, FORTRAN (one of the earliest programming
languages) stands for FORmula TRANslator. So, if it helps you,
just think formula every time you use the term expression.

7.3 REVIEW

Each of these topics deserves (and will get) more discussion. I
wanted to define enough basic terms to let you start talking about
Pascal itself... priming the pump, so to speak. You should now
have some grasp of what ASCII characters, identifiers, symbols,
constants, variables, and expressions are. If you do, you're ready
to go on to Chapter 8 and learn about program structure and
statements. If you don't, reread this chapter and go on to Chapter
8 anyway. It'll come with time.

One more item before we leave Chapter 7 is the ASCII table I
promised you several pages back.

7-12

Part 2 	 Chapter 7 The Basics of Pascal

ASCII Character Set Table

0 NTJL 32 (space) 64 @ 96
1 SOH 33 ! 65 A 97
2 STX 34 II 66 B 98
3 35 # 67 C 99 FIX
4 EOT 36 $ 	68 D 100
5 ENQ 37 % 69 E 101
6 ACK 38 & 70 F 102
7 BEL 39 ' 71 G 103
8 BS 40 (72 H 104
9 HT 41) 73 I 105

10 LF 42 74 J 106
11 VT 43 + 75 K 107
12 FF 44 , 76 L 108
13 CR 45 _ 77 M 109
14 SO 46 . 78 N 110
15 SI 47 / 79 0 111
16 DLE 48 0 80 P 112
17 DC1 49 1 81 Q 113
18 DC2 50 2 82 R 114
19 DC3 51 3 83 S 	115
20 DC4 52 4 84 T 116
21 NAK 53 5 85 U 117
22 SYN 54 6 86 V 118
23 En3 55 7 87 W 119
24 CAN 56 8 88 X 120
25 EM 57 9 89 Y 121
26 buti 58 : 90 Z 122
27 ESC 59 ; 91 [123
28 FS 60 < 92 \ 124
29 GS 61 = 93] 125
30 RS 62 > 94 ^ 126
31 US 63 ? 95 _ 127

a
b
c
d
e
f
g
h
I
j
k
I
m
n
0
p
q
r
s
t
u
v
w
x
y
z
1
I
}

DEL

7-13

Part 2 	 Chapter 8 Program Structure

8. PROGRAM STRUCTURE

Pascal programs are composed of statements. That sounds
simple enough, and it is, but it's a little like saying the English
language is composed of the 26 letters of the alphabet. This
statement is also true, but it's also a trifle simplistic. Statements
describe the actions to be performed by the computer. They can
be as simple—or as complex—as your knowledge, your needs,
and your creativity. You have to start somewhere, and it's best to
start simple and with the two sections essential to all Pascal
programs. They are:

1 	The declaration section
2 The program body

To show the basic structure of Pascal, you need to set up a simple
program:

program Simple;
var

A,B,C 	: Integer;
begin

Write('Enter two numbers: ');
ReadLn(A); ReadLn(B);
C := A + B;
WriteLn('The sum is ',C)

end. I of program Simple }

This program writes the prompt:

Enter two numbers:

on the screen. The program waits for two numbers to be entered,
then computes and prints to the screen

The sum is <sum>

This sequence of events will occur only once for each execution
of the program.

8-1

Chapter 8 Program Structure 	 Part 2

8.1 THE DECLARATION SECTION

The declaration section consists of a series of statements.

8.1.1 The PROGRAM Statement

The first line of your program is the program statement with the
identifier Simple. TURBO Pascal programs can (but do not need
to) begin with a program statement. This statement contains the
reserved word program followed by the name of your program.
(A reserved word is one that only Pascal can use; that is, you
couldn't name some variable program).

Standard Pascal requires a list of file parameters (input, output),
but TURBO Pascal just ignores such a list (as, indeed, it ignores
the whole statement), so we'll also ignore it from now on. A
semicolon separates the program statement from the rest of the
program. Here are more examples:

program BudgetAnalysis;

program K;

program WithAVeryLongNamaindeed;

8.1.2 Declaration Statements

In your sample program, you used three variables: A, B, and C.
Variables are named locations in memory containing a value that
can be changed during program execution. You'll learn more
about them in Chapter 9, but for now just think of them as
shoeboxes or pigeonholes that hold numbers or other infor-
mation.

Pascal demands that all (and that means all) variables must be
declared before they can be used. Declared means that each
variable must have its name (A,B,C, for example) and type
(Integer, for example) defined before it is used. In fact, this is such

8-2

	

Part 2 	 Chapter 8 Program Structure

a key element of Pascal that you need to call special attention to
it. So memorize the following rule:

THE GREAT UNDERLYING RULE OF PASCAL:

All identifiers must be declared before they are used.

This rule (which I'll call The GURP, for short), applies to all
identifiers: constants, data types, variables, subprograms, and
any other use of an identifier. Right now, though, you're only
concerned with variables.

Variable declaration is done between the program statement
(program Simple;) and the main body statement (begin...end.).
To signal the start of the variable declaration statements, you use
the reserved word var, then name your variables and give their
type(s). Each statement in this section contains a list of one or
more variable names, followed by a colon, then the variable type,
and ending with a semicolon. Given these requirements, Pascal
allows you flexibility in formatting these sections. It would be
equally correct to declare your variables this way:

var
A,B,C : Integer;

or

var

	

A 	: Integer;

	

B 	: Integer;

	

C 	: Integer;

As mentioned back in Chapter 7, there are five predefined data
types in Pascal:lnteger, Byte, Real, Char, and Boolean. The first
four are just what they sound like:integer numbers (0, 5, -18232);
byte values (0 through 255); real or floating point numbers (0.0,
3.14159, -35.232e-5); and ASCII characters ('A','-','3'). Boolean
variables have either of two values— True or False—and are used
to store the truth value of some proposition so that it can be tested
later .Here are some variable declarations for these different data
types:

8-3

Chapter 8 Program Structure 	 Part 2

var
Alive,Breathing,Conscious : Boolean;
Age,Height,Weight 	: Integer;
Score,Tries 	 Byte;
Ratio,Percentage 	: Real;
First,Middle,Last 	: Char;

Note that a declaration statement (or any other kind of statement)
doesn't have to fit on just one line. If you wanted to be expansive,
you could rewrite this as:

var
Alive,
Breathing,
Conscious
: Boolean;
Age,
Height,
Weight
: Integer,
Score,
Tries
: Byte;
Ratio,
Percentage

Real;
First,
Middle,
Last
: Char;

You would have lots of room to put a comment after each variable
name. You would also have very long programs. Here's yet
another variation:

var Alive : Boolean; Breathing : Boolean; Conscious : Boolean;
Age : Integer; Height : Integer; Weight : Integer,
Ratio : Real; Percentage : Real; First : Char;
Middle : Char; Last : Char;

8.2 THE PROGRAM BODY

The main body of a Pascal program consists of the statement
begin...end, with any number of executable statements between
these words. Execution always starts with the first statement after

8-4

Part 2 	 Chapter 8 Program Structure

begin and proceeds to the last statement before end (or, at least,
tries to). Notice that there may be several such begin...end pairs,
and that only the final end is followed by a period (.). This is the
only place where a period should follow end.

Between the reserved words begin and end in our sample
program are five executable statements:

Write('Enter two numbers: ');
ReadLn(A);
ReadLn(B);
C:=A+B;
WriteLn('The sum is ',C)

Note that a semicolon appears at the end of the first four
statements. Pascal doesn't use lines to distinguish between
statements—just semicolons. More precisely, Pascal uses semi-
colons to separate statements.You could have written your
program this way:

program Simple ; var A,B,C : Integer
; begin Write('Enter two numbers ') ; ReadLn(A)
; ReadLn(B) ; C:=A+B ; WriteLn('The sum is ',C) end.

or this way:

program SIMPLE

var
A,B,C : Integer

begin
Write('Enter two numbers: ')

ReadLn(A)

ReadLn(B)

C:=A+B

WriteLn('The sum is ',C)
end.

8-5

Chapter 8 Program Structure 	 Part 2

As you can see, semicolons are only used when it's necessary to
show where one statement ends and the next begins. You can
also see that Pascal also doesn't care about line indentation,
upper and lower case, and (sometimes) spaces. You have the
freedom to format your programs in a variety of ways. The best
policy is to pick a consistent, readable, and easy-to-use format,
then stick with it. The two alternate styles shown are neither
readable nor desirable to use, so we'll stick with the regular
TURBO format.

Now let's look at the five executable statements, one at a time.

Write('Enter two numbers: ');

The command Write is really a predefined procedure telling your
program to write whatever is enclosed in the parentheses out to
the screen. It's one of a set of standard procedures and functions
that Pascal defines for you. Two tables at the end of this chapter
list the predefined procedures and functions that TURBO Pascal
provides. You'll meet most of these as you tackle the appropriate
topics in this book.

As mentioned, Write will print its contents on the screen. (It will
do much more that that, as you will see in Chapter 18.) In this
example, you have text -a string constant. Upon execution of this
statement, the message:

Enter two numbers:

will appear on the screen. The program will then wait with the
cursor two spaces away from the colon. It's waiting because the
next statement is

ReadLn(A);

As you can guess, ReadLn is another standard procedure that
causes the program to wait for input from the keyboard (and
more; again, see Chapter 18). Here, since A is an /nteger variable,
it's waiting for you to enter an Integer number. When you type in a
number, then press the Enter key, the program assigns that
number to the variable A in the parentheses. After you do this, the
program will wait again, because the next statement is

8-6

Part 2 	 Chapter 8 Program Structure

ReadLn(B);

It's waiting for another number, followed by Enter. Since the
program is waiting for Enter, you can correct any mistakes you
might have made in typing the number when you do so before
pressing Enter. Your program won't accept (read) data until
Enter is pressed.

Your program executes the next two statements on its own. With
the statement

C:=A+B;

the program evaluates the expression A +B. In other words, it
adds the contents (value) of A with that of B. It then gives that
value to the variable C. This is known as an assignment
statement, since it assigns some value to a variable. Let's suppose
that, when prompted by the program, you had entered the values
21 (for A) and 35 (for B).

After execution of this statement, the variable C would contain
the value 56. Note that Pascal uses := to assign the value on the
right to the variable on the left. By contrast, Pascal uses = to
compare two values (IF A = B THEN...). Be careful not to confuse
these two types of statements. You'll learn more about cornpari-
sons in Chapter 10.

After the assignment statement, we come to our last standard
procedure call:

WriteLn('The sum is ',C);

This prints on the screen the message

The sum is

followed by the value of C. For example, if you had indeed
entered 21 and 35 for A and B, then the message would be

The sum is 56

8-7

Chapter 8 Program Structure 	 Part 2

Since you used WriteLn, the cursor will be moved down to the
start of the next line after the message has been written.

The procedures Write and WriteLn will print out any number or
combination of messages and values enclosed in the parentheses.
Expressions (formulas) can be included as well. You could
eliminate the assignment statement and get the same message
by changing the last statement to be

WriteLn('The sum is ',A + B);

All separate messages and values within the parentheses must be
separated by commas.

8.3 COMMENTS

At this stage, you need to add one more element to your
program: comment statements, to ensure that your program is
well documented. A comment statement starts with a left curly
bracket ({) or the sequence (*. It then continues for as many lines
as you wish. It ends a right curly bracket (}) or the sequence *),
depending upon how you started it. Everything within the
comment statement is ignored. (Well, almost everything. See the
discussion of compiler options in the TURBO Pascal Reference
Manual.) Here's our simple, yet well-documented program:

program Simple;

purpose 	adds two user-entered values and
prints out the sum

last update 	21 April 1985

var 	variable declaration statements }
A,B 	 : Integer, 	{ input variables }

: Integer; 	{ output variable }
{ 	main body of program Simple }
begin

Write('Enter two numbers: ');
ReadLn(A);
ReadLn(B);
C:=A+B;
WriteLn('The sum is ',C);

end. { of program Simple }

8-8

Part 2 	 Chapter 8 Program Structure

Notice that you didn't have to put a comment symbol on each line
of the program description between the program statement and
the variable declarations. Instead, you just put the start comment
symbol (0, went on for as long as you wanted, then finished with
the end comment symbol 0).

One thing you have to really watch for is nested comments. Let's
say that you've written the following section of code:

for Indx := 1 to SysMax do
with Starmap^ [Indx] do begin

Write('SYSTEM: ',Name); 	 { write system name }
Write(' Population: ',Pop); 	{ show population }
if Indx = CurStat.Loc.System 	{ check location }
then Write(' <current location> ');

WriteLn
end;

Don't worry if you don't understand the code; just notice the
comments to the right of three statements. They're a little
redundant, but they'll help illustrate the problem. Now, suppose
that you wanted to temporarily remove the Write statement
showing the population as well as the if...then statement; that is,
you didn't want to delete them from the program, but you didn't
want them to execute, either. You could simply put comment
symbols before and after the statements:

for Indx := 1 to SysMax do
with Starmap" [Incix] do begin

Write('SYSTEM: ',Name);

I 	temporarily cut from program

Write(' Population ',Pop);
if Indx = CurStat.Loc.System
then Write(' <current location> ');

write system name

{ show population
check location

WriteLn
end;

Your problem is solved, right? Wrong. The comment will start
o.k., but it will end when it finds the } after the words show

8-9

Chapter 8 Program Structure 	 Part 2

population. The if...then statement will be as "visible" as it was
before, and the following }, trying to end a comment that's already
done, becomes an illegal symbol. And, if you simply deleted the
comment { show population }, the same problem would crop
up with the comment check location }.

There are two ways of handling this problem. The messy way is to
do something about any comments inside the one you're
creating (known as nested comments). You could delete them,
but that means you would have to re-enter them when you
"uncommented" those statements. That would be easy in this
case, but what if you needed to "comment out" a large section of
the program? Deleting and then re-entering all those comments
(assuming, of course, there are any) could be tedious. Another,
similar solution would be to change the end comment symbol (})
in each of those comments to something else. For example, you
could replace them with - (tilde):

{ 	temporarily cut from program
Write(' Population: ',Pop);

	
I show population -

if Infix = CurStat.Loc.System
	

{ check location -
then Write(' <current location> ');

This works fine, but you must be sure to change each and every
one back when the code is "un-commented." Why? Because if
you miss one, the comment will merrily continue throughout
your program until it finds an }.

An error like this can cause real headaches. If you're lucky, it will
mess up your program enough so that it won't compile, and you'll
be forced to find the error immediately. If you're not, the program
will compile just fine, and you won't see any problem until you
execute it. If you're really unlucky, the program will appear to
work just fine, and you won't discover that there's a problem until
after the first 5000 copies have been shipped.

There is a cleaner way of handling this problem, however.
Remember, you can use two different sets of delimiters for
comments: {,} and (*,*). What's more, TURBO Pascal allows you
to nest one kind of comment within the other. Allow isn't quite the

8-10

Part 2 	 Chapter 8 Program Structure

right word; it's a natural result of the comment definition. If you
start a comment with {, it will ignore everything it comes across,
including (* and *), until it finds }. The reverse is true with (*; that
is, it will ignore { and }.

The solution, then, is to consistently use one type of comment
—say, {,} — for all program comments and use the other type — in
this case, (*,*) — for blocking out sections of code. Your example
would now look like this:

for Indx := 1 to SysMax do
with Starmap^ [Indic] do begin

Write('SYSTEM: ',Name);
(*temporarily cut from program

Write(' Population: ',Pop);
if Infix = CurStat.Loc.System

then Write(' <current location> ');
*)

WriteLn
end;

{ write system name

{ show population
{ check location }

A few more words about comments. Not only can they extend
across many lines, they can be stuck in anywhere. As a
demonstration of this, we present your example program with
comments stuck in everywhere. I'm not sure why you would want
to do this to a program, but it's good to have the freedom if you
ever need it.

program Simple{ file parms: 1(input,output);
var{iables}

A{input},C{input},C{output} 	: Integer;
begin { main body of program }

Write{ to screen }('Enter two numbers: ');
ReadLn(A); ReadLn(B);
C {sum} := A {1st value} + B {2nd value};
WriteLn{to screen}('The sum is ',C)

end. of pro(* bye! *)gram Simple }

Well, almost anywhere. Had you inserted comments in the strings
'Enter two numbers:' and 'The sum is ',they wouldn't have been
comments. Instead, they would have been printed to the screen
along with the other text within the single quote marks.

8-11

Chapter 8 Program Structure 	 Part 2

You now know enough to start creating your own Pascal
programs. A quick reading of the next two chapters, especially
the first section of each, will give you even more information to
play around with. Feel free to do so; you can always come back to
this section later.

8.4 ADVANCED PROGRAM STRUCTURE

Program structure in Standard Pascal follows a definite format.
Some sections can be omitted, but no rearranging is allowed.
However, rearranging is allowed by TURBO Pascal. Here is the
complete format of a Standard Pascal program:

program Name(file parameters);

label
< label declarations >

coast
< const declarations >

type
< type declarations >

var
< variable declarations >

< subprograms >

begin
< main body of program >

end.

TURBO Pascal is more flexible than Standard Pascal in its
program structure. The label, const, type, and var sections can
be placed in any order and can occur more than once. They also
can be mixed with subprograms. This allows logical grouping of
definitions, such as:

8-12

Part 2 	 Chapter 8 Program Structure

coast
XMax 	= 8;
YMax 	= 10;
ShipMax = 15;

type
XRange = 1.X1Aax;
YRange 	= 1..YMax;

var
Sector 	: array[XRange,YRange] of 0..ShipMax;

const

A second advantage of this freedom is the ability to define typed
constants, which will be discussed below.

As you've seen, a program starts with the program statement.
The program statement is followed by the declaration section.
Here you define any labels, constants, data types, and/or
variables which will be used throughout the program. Each
section begins with the appropriate reserved word (label,and so
forth), followed by one or more corresponding declarations.
Here's a brief description of each kind:

label
	

one or more unsigned integers (0..9999) or
identifiers, separated by commas, with the whole
list ended with a semicolon:

const

label
10,ProcExit,4213,Error,

an identifier and a constant value, separated by
an equals sign (.) and ended with a semicolon;
also, a typed constant (see below):

const
XMax 	= 8;
Yes 	 = True;
Answer
Cl 	 = 6.673E-08;

8-13

Chapter 8 Program Structure 	 Part 2

type 	an identifier and a type definition, separated by
an equals sign (=) and ended with a semicolon:

type
/Mange 	= 1.XMax;
language 	= (BASIC,FORTRAN,Ada,Pascal,

FORTH,C,COBOL,ALGOL);

var
	

one or more identifiers separated by commas,
followed by a colon and a type identifier or type
definition, and ended with (you guessed it!) a
semicolon:

var
A,B,C 	: Integer,
Flag 	: Boolean;
Choice 	: language;
X 	 : XRange;

The const-type-var sequence allows definitions to cascade
down, so that you can change an entire program by merely
changing a few constants and recompiling. Combined with the
ability to repeat that sequence, this gives you great power and
flexibility in defining your data structures.

8.4.1 Typed Constants

TURBO Pascal lets you declare what it calls typed constants.
These aren't really constants, though they are declared in the
const section. Instead, they are pre-initialized variables. Suppose
you had two flags, Flagl and Flag2, that you were going to use
throughout your program. Flagl needed an initial value of True,
while Flag2 needed one of False. You might do the following:

8-14

Part 2 	 Chapter 8 Program Structure

program Whatever;
var

Flag' ,Flag2 : Boolean;
begin

Flagl := True;
Flag2 := False;

end.

This is fine, but if you have many such variables, it can consume
space and time to do all of the initialization. With TURBO Pascal,
you could instead do this:

program Whatever;
coast

Flagl 	: Boolean = True;
Flag2 	: Boolean = False;

begin

end..

Flagl and Flag2 can still be used as variables; that is, you can still
assign values to them through the course of your program.
However, they will now start out with the desired values and will
not have to be explicitly initialized.

Forthose of you who know something about Pascal, yes, you can
have typed constants for data structures such as arrays, strings,
sets, and records. All the details can be found in the TURBO
Pascal Reference Manual, Chapter 13.

8.4.2 Subprograms

Between the definitions and the main body of the program you
place any subprograms (procedures and functions) that you
might define. I'll talk more about these in Chapter 11, but a brief
explanation isn't out of place. A subprogram has exactly the
same structure as a program, except that it starts with a

8-15

Chapter 8 Program Structure 	 Part 2

procedure or function statement and ends with a semicolon
(instead of a period). A subprogram is executed just by men-
tioning its name along with any parameters it might take. Pascal
includes a set of predefined subprograms; that is, procedures
and functions that already exist without you having to define
them. You saw some in the example earlier in the chapter:Write,
WriteLn, and ReadLn. The two tables at the end of this chapter list
the standard subprograms of TURBO Pascal. As a quick example,
here's our sample program with the main body converted into a
procedure named CalculateSum:

program Sample;

purpose 	to demonstrate a subprogram
last update 28 August 1985

procedure CalculateSum;

purpose 	read in two values and print the sum
last update 28 August 1985

1
var

A,B,C 	 : Integer,
begin { main body of procedure CalculateSum. }

Write('Enter two numbers: ');
ReadLn(A); ReadLn(B);
C:= A+ B;
WriteLn('The sum is ',C)

end; { of proc CalculateSum }

begin { main body of program Sample }
CalculateSum

end. I of program Sample

When the program runs, it only has one statement to execute:
CalculateSum. That tells it to execute the statements in the main
body of the procedure CalculateSum. When it's all done, it goes
back to the main body and, having no more statements, stops.
You can do an awful lot with subprograms, but I won't tell you
what until Chapter 11.

8-16

Part 2 	 Chapter 8 Program Structure

8.4.3 Block Statements

Following all the subprograms is the main body of the program
itself, consisting of the reserved words begin and end, with some
number of statements between them. This is just a special case of
what is known as a block statement. A block statement has the
sequence begin...end, with zero or more statements (separated
by semicolons!) in between. A block statement can be used
anywhere a regular statement can be used, and several places
where a regular statement can't. For example, the main body of a
program is just a block statement followed by a period, while the
main body of a subprogram is a block statement followed by a
semicolon. The real advantage of block statements shows up in
control structures (see Chapter 10). For example, the if...then
statement is defined as

if <Boolean expression>
then <statement>

But you often wish to execute more than one statement when a
given condition is true. Solution:use a block statement, like this:

if Max < Min then begin force Min. <= max
temp 	:= max;
max 	:= min;
min 	:= temp

end;

You also used a block statement back in the section on
comments. You were using a with statement, which allows you to
easily see the fields of a record data type. It has the format:

with <identifier(s)> do <statement>

The statement here was the block statement:

begin
Write('SYSTEM: ',Name);
Write(' Population: ',Pop);
if Inclx = CurStat.Loc.System
then Write(' <current location> ');

WriteLn
end;

8-17

Chapter 8 Program Structure 	 Part 2

You can nest block statements; that is, have block statements
within block statements. For example, you could have a block
statement in the if...then statement, yielding:

with Starmap^ [Indx] do begin
Write('SYSTEM: ',Name);
Write(' Population: ',Pop);
if Indx = CurStat.Loc.System then begin

Write(' <current location> ');
LocationFound := True

end;
WriteLn

end;

Simple, huh? You'll use block statements a lot throughout the
book, especially after Chapter 10.

That's all for advanced program structures for now. Before
continuing to the next chapter, here are the two tables I promised
you back in the early parts of this chapter. First is a table of
predefined procedures, followed by a table of predefined
functions.

PREDEFINED PROCEDURES

Assign(F,N)
BDos(R)
BDos(F,P)
Bios(F,P)
BlockRead(F,D,N)
BlockWrite(F,D,N)
Chain(F)
Close(F)
ClrEol
ClrScr
CrtExit
Crtlnit
Delay(M)
Delete(S,P,L)
DelLine
Dispose(P)
Erase(F)

Assign file F to file name N
make BDOS call with regs R (CP/M-86)
make BDOS call to F with P (CP/M)
make BIOS call to F with P (CP/M)
read N blocks from D to file F
write N blocks from D to file F
chain to file F
close file F
clear to end of current screen line
clear entire screen
send terminal reset string
send terminal init string
delay M milliseconds
delete section of string S
delete current screen line
recover memory used by 13̂
delete file F

8-18

Part 2 	 Chapter 8 Program Structure

Execute(F)
FillChar(V,L,D)
GetMem(P,I)
GotoXY(X,Y)
Halt
HighVideo
Insert(S,D,P)
I nsLine
LongSeek(F,P)
LowVideo
Mark(P)
Move(S,D,L)
MSDos(R)

New(P)
NormVideo
Randomize
Read(P1,...)
Read(F,P1...)
ReadLn(P1,...)
ReadLn(F,P1...)
Release(P)
Rename(F)
Reset(F)
Rewrite(F)
Seek(F,P)
Str(N,S)
Val(S,N,P)
Write(P1,...)
Write(F,P1...)
WriteLn(P1,..)
WriteLn(F,P1...)

Abs(A)
Addr(V)
Addr(SubP)
ArcTan(X)
BDos(F,P)
BDosHL(F,P)

execute file F
fill V with data D for L bytes
allocate I bytes of RAM for 13"
move cursor to X,Y (1,1=upper left)
stop program execution
sets high intensity display mode
insert string D into S
insert line on screen
special Seek routine (MS-DOS)
switch to "dim" video output
mark heap pointer at P^
move L bytes from S to D
make call to MS-DOS with regs R
(MS-DOS)
create memory for P"
switch to normal video output from dim
init random seed (see Chapter 20)
read items in from keyboard
read items from file F
as "read", but moves to new line at end
ditto, but from file F (textfile only)
reset heap pointer to P"
rename file F
open file for input
open file for output
move to record P in file F
convert number N to string S
convert string S to number N (error at P)
write items out to screen
write items out to file F
as "write", but starts new line at end
ditto, but to file F (textfile only)

PREDEFINED FUNCTIONS

absolute value of A (Real, Integer)
address of variable V (Pointer)
address of subprogram SubP (Pointer)
arctangent of X (Real)
does BDOS call; returns reg A (CP/M)
ditto; returns HL pair (CP/M)

8-19

Chapter 8 Program Structure 	 Part 2

Bios(F,P) 	does BIOS call; returns reg A (CP/M)
BiosHL(F,P) 	ditto; returns HL pair (CP/M)
Chr(I) 	 character with ASCII value I (Char)
Concat(S,..,S) 	concatenation of strings (String)
Copy(S,P,L) 	substring at P length L (String)
Cos(X) 	 cosine of X (Real)
EOF(F) 	 end-of-file test on file F (Boolean)
EOLn(F) 	 end-of-line test on file F (Boolean)
Exp(X) 	 exponential of X (Real)
FilePos(F) 	current record in file F (Integer)
FileSize(F) 	total records in file F (Integer)
Frac(X) 	 fractional portion of X (Real)
Hi(I) 	 upper byte of I (Integer)
Int(X) 	 integer portion of X (Real)
KeyPressed 	keyboard status flag (Boolean)
Length(S) 	length of string S (Integer)
Ln(X) 	 natural logarithm of X (Real)
Lo(I) 	 lower byte of I (Integer)
MemAvail 	bytes/paragraphs available (Integer)
Pos(P,S) 	 position of str P in str S (Integer)
Ptr(I) 	 pointer to address I (Pointer)
Odd(I) 	 odd/even test of I (Boolean)
Ord(Sc) 	 ordinal value of scalar variable (Integer)
Pred(Sc) 	 predecessor of scalar value (same type)
Random 	 random value from 0.0 to 0.999... (Real)
Random(I) 	random value from 0 to 1-1 (Integer)
Round(X) 	rounded-off value of Real (Integer)
ShL(I) 	 Shift left (Integer)
ShR(I) 	 Shift right (Integer)
Sin(X) 	 sine of X (Real)
SizeOf(V) 	size in bytes of variable V (Integer)
SizeOf(T) 	size in bytes of data type T (Integer)
Sqr(A) 	 A * A (Real, Integer)
Sqrt(A) 	 square root of A (Real)
Succ(Sc) 	successor of scalar value (same type)
Swap(I) 	 I with upper, lower bytes swapped

(Integer)
Trunc(X) 	 truncated value of X (Integer)
UpCase(C) 	C converted to uppercase (char)

8-20

Part 2 	 Chapter 9 Predefined Data Types

9. PREDEFINED DATA TYPES

In the first two chapters of this part of the book, we've referred to
constants, variables, expressions, and data types. Well, now I am
going to teach you more about them. Let's start with variables.

9.1 VARIABLES

Think of Tupperware®. Think of pages and pages of different
plastic containers, designed to hold a variety of items. Some are
designed for liquids, others for dry goods, yet others for lunch
meats. Similar or identical containers can hold similar or
identical items. Items can be transferred from one container to
another.

In much the same way, you can use variables in your programs.
You can declare lots and lots of variables, designed to hold
different kinds of information. Some are designed for numbers,
others for characters, yet others for logical values. Similar or
identical types of variables can hold similar or identical values.
One variable can receive the value of another.

Actually, the Tupperware® analogy is weak in a few spots, but it
should convey the basic idea:variables hold stuff for later use.
And, instead of buying them at a home party, you get create
variables by declaring them. Remember our sample program?

program Sample;
var

A,B,C, 	: Integer;
begin

Write(Enter two numbers: ');
ReadLn(A); ReadLn(B);
C:=A+B;
Write('The sum is ',C)

end. { of program Sample }

9-1

Chapter 9 Predefined Data Types 	 Part 2

For your program, you needed three variables: two to hold the
values you typed in, and one to hold the sum of the other two. So
you created them by declaring them. You declared them by (1)
listing their names (identifiers), and (2) saying what type of
variables they were (in this case, Integer). You did all this in the
variable declaration section, which started with the reserved
word var and ended when you reached the main body of the
program. Here you get back to the Great Underlying Rule of
Pascal (or, GURP): All identifiers must be declared before they
are used. In your case, it means that A, B, and C must all be
declared before you can use them in your program. Suppose you
added a variable to your program:

program Sample;
var

A,B,C 	: Integer;
begin

Write('Enter two numbers: ');
ReadLn(A);
ReadLn(B);
C := A + B;
D := A -B;
WriteLn('The sum is ',C);
WriteLn('The difference is ',D)

end. of program Sample

Question: is this an acceptable Pascal program? Answer: no!
Why not? Because you're using an identifier, D, which you
haven't defined. If you were to compile this program, you'd get an
error stating "Unknown identifier" when the compiler reached
the statement D := A -B. How do you fix it? Like this:

program Sample;
var

A,B,C,D 	: Integer;
begin

Write('Enter two numbers: ');
ReadLn(A);
ReadLn(B);
C := A + B;
D := A -B; WriteLn('The sum is ',C);
WriteLn('The difference is ',D)

end. { of program Sample }

9-2

Part 2 	 Chapter 9 Predefined Data Types

Now D has been properly defined as an integer variable, the same
as the others used. But why did you decide to make them all of
type Integer? And just what does that mean, anyway? Let's look at
the four basic data types of Pascal so see if you can get an answer.

9.2 INTEGER

You know what integers are: they're counting numbers (0, 1, 2,
3, ...) with negative numbers (-1, -2, -3, ...) thrown in. The largest
integer you can work with depends upon the amount of space
used for integer variables. TURBO Pascal allocates two bytes,
giving a maximum positive value of 32767 (known as MaxInt).
The maximum negative value is -(MaxInt+1). So, TURBO Pascal
allows the following range of values for integers:

-32768 -32767 -32766 . . . 0 . . . 32765 32766 32767

Remember your discussion of constants and expressions? An
integer constant is simply a string of digits (no commas, please)
with an optional - (minus sign) in front. An integer expression
(formula) contains integer constants and/or integer variables
and/or integer operators. The result of an integer expression is
some integer value. Your sample program has two such
expressions:

a + b 	add the values of a and b
a - b 	subtract the value of b from that of a

You usually find expressions on the right side of assignment
statements (as in your sample program). The program evaluates
the expression using the current contents of any variables
involved and then stores the resulting value in the variable on the
left side of the :=. The integer operators that can appear in an
expression are:

addition
subtraction (and unary minus)
multiplication

div 	division
mod 	remainder

9-3

	

Chapter 9 Predefined Data Types 	 Part 2

Addition, subtraction, and multiplication all work just like you'd
expect them to. The rest may need a little explaining, though.
Let's start with div and mod. Remember when you first learned
division? When you divided 4 into 11, you didn't get 2.75. You got
2 (the quotient) with a remainder of 3. Why? You were doing
integer division, which required that the results also be integers.
Well, that's what div and mod do:A div B returns the quotient,
while A mod B returns the. remainder. Maybe the following
examples will help:

	

8 div 4 = 2 	8 mod4 = 0

	

9 div 4 = 2 	9 mod 4 = 1

	

10 div 4 = 2 	10 mod 4 = 2

	

11 div 4 = 2 	11 mod 4 = 3

	

12 div 4 = 3 	12 raod 4 = 0

Two other things to keep in mind about div and mod. First, if A is
less than B, then A div B will equal 0. In other words, while 200 div
200 equals 1, 199 div 200 equals 0. Second, if B equals 0, then
both A div B and A mod B will result in some sort of error when
they are executed. Make sure that you keep both situations in
mind when working with these integer operations.

O.K., you've got integer constants, integer variables, and integer
operators, and you can combine these into integer expressions.
You're all done, right? Well, consider the following program:

program Sample;
var

A,B,C 	: Integer;
begin

A:= 10;
B:=5;
C:=5*A+2*B;
WriteCC = ',C)

end. { of program Sample

Question: what value will this program print out? Well, that
depends upon how you evaluate the integer expression 5 *A x 2 *
B. Here are four different ways you could evaluate it (remember,
A = 10 and B = 5):

9-4

Part 2 	 Chapter 9 Predefined Data Types

((5 * 10) + 2) * 5 = 260
(5 * 10) + (2 * 5) =60
5 * (10 + 2) * 5 = 300
5 * (10 + (2 * 5)) =100

As you can see, the order of evaluation can make a big difference.
Which brings you back to your question:What will Pascal do with
this expression? Answer: it will use operator precedence. Pascal
will carry out all multiply, divide, and remainder operations before
any addition or subtraction. A complete list of operator prec-
edence is given in the first of two tables at the end of this chapter.
So the correct (according to Pascal) evaluation is:

(5 * 10) + (2 * 5) 	= 50 + 10 = 60

Having solved that problem, let's tackle the next one. How would
you evaluate the expression A div 2 * B? You have two choices
(again, A = 10 and B = 5):

(10 div 2) * 5 	=25
10 div (2 * 5) 	= 1

You would probably choose the first one, and you'd be right.
When operators of equal precedence show up, you take them in
the order they come: left to right.

Next question: what if you don't like the order of evaluation?
What if you wanted 5 * A + 2 * B to equal 260 instead of 60?
Answer:do just what you did above, namely, use parentheses.
Any part of an expression within parentheses is evaluated before
it's combined with anything outside of the parentheses. This
applies to nested parentheses, as well. Our examples above, well
worth repeating, show how this works:

((5*10)+2)*5 = (50+2)*5 =52*5 = 260
5*(10+2)*5 = 5*12*5 =60*5 = 300
(5*10)+(2*5) = 50+10 = 60
5*(10+(2*5)) = 5*(10+10) =5*20 = 100

9-5

Chapter 9 Predefined Data Types 	 Part 2

So, assuming that you do want an answer of 260, you have to
modify your program like this:

program Sample;
var

A,B,C 	: Integer;
begin

A:= 10;
B :=5;
C := ((5 * A) + 2) * B;
Write('C = ',C)

end. { of program Sample }

Actually, since multiplication has precedence over addition, you
could drop the innermost set of parentheses and write:

C := (5 * A + 2) * B;

What started out as a short discussion of integer expressions has
gotten rather long. And you're not done yet. Let's modify your
program a little more:

program Sample;
var

A,B,C 	: Integer;
begin

A := 100;
B := 200;
C := ((5 * A) + 2) * B;
Write('C = ',C)

end. { of program Sample)

What value will you get when this program runs? Well, let's look at
it:

((5*100)+2)*200 = (500+2)*200 = 502*200 = 100400

The variable C, being an integer, can only hold values up to
MaxInt, which equals 32767. You've caused a value range error.
This simply means that you've tried to give a variable some value
outside of its allowable range. What will happen? The variable C
will end up with the lower 16 bits of the result, which in this case
will come out as -30672. So, you need to BE CAREFUL. The

9-6

Part 2 	 Chapter 9 Predefined Data Types

worst kind of program bugs are those that allow your program to
keep running with values that no longer have any relation to your
original data. A few simple steps can check the result to see if it is
within the realm of realism.

In addition to the operators described above, Pascal offers a few
predefined functions that work on integers. They're listed below,
with the data type of the result given in parentheses:

Abs(I) 	 returns absolute value of I (integer)
Odd(I) 	returns true if I is odd (boolean)
Pred(1) 	returns 1-1 (integer)
Random(I) 	returns random integer from 0 to 1-1
Sqr(1) 	 returns 1*1 (integer)
Sqrt(1) 	returns square root of I (real)
Succ(I) 	returns 1+1 (integer)

9.2.1 Integers as Unsigned Values

Sometimes you need to use integers as unsigned 16-bit values.
The most common reason is to represent some address in
memory (RAM). There is, however, a problem you run into: once
you get above 32K, you have to use a negative number. The
sequence goes like this:

0, 1, 2, ..., 32766, 32767, -32768, -32767, ..., -2, -1

Hardly convenient or intuitive. TURBO Pascal, however, gives
you a way around this:hexadecimal (base 16) constants. A hex
value can have up to four digits, where each digit can be 0
through 9 orA (=10) through F (=15). All you have to do is start the
constant with a dollar sign ($). Here, for example, is the same
sequence expressed as hex constants:

$0, $1, $2, ..., $714YE, $7Fivio, $8000, $8001, ..., With, &mill

Since memory addresses are often expressed in hexadecimal
anyway, this makes for easy, convenient manipulation of address
values.

9-7

	

Chapter 9 Predefined Data Types 	 Part 2

TURBO Pascal provides other ways of treating integers as
unsigned values. In addition to the operators and functions
described above, TURBO provide six operators, two functions,
and a procedure that let you do bit and byte manipulation on
integer values. First, the operators:

not 	logical negation
and logical AND
or 	logical OR
xor 	logical exclusive OR
shl 	shift left
shr 	shift right

The first operator, not, is a unary operator; that means that it only
affects the integer value it precedes. It differs from unary minus
(-) in that it flips each bit within the value from 0 to 1 or 1 to 0, while
a - does an arithmetic negation. An example using hex constants
may make things clear:

- $0001 = 	(-1)
not $0001 = $11'EFE (-2)

The unary minus changed 1 to -1, which has a hex value of
$FFFF. The NOT operator flipped each bit in $0001, which means
that it changed all bits from 0's to 1's except for the very last,
which changed from a 1 to a 0. The result—$FFFE—happens to
be equivalent to a signed value of -2.

The next three operators perform the standard logical functions
defined in the second of two tables at the end of this chapter.
They can be used to combine or mask values. For example, if you
want to see if a particular bit is set (=1), you could do something
like this:

var
BitSet 	: Boolean;
Val,Mask 	: Integer,

begin

itSet := (Val and Mask)<> 0;

9-8

Part 2 	 Chapter 9 Predefined Data Types

The Boolean variable BitSet will be set to True if any of the bits in
Val match any of the bits in Mask. By the same token, the
statement:

Val := Val or Mask;

will cause each bit in Val to be set to 1 if the corresponding bit in
Mask is also 1.

The last two operators, shl and shr, allow you to shift all the bits
within an integer to the left or right, respectively. The first
operand is the value to be shifted; the second, how many places
to shift. Suppose that we set Val := $0810, which has a bit pattern
of (0000,1000,0001,0000). Here are some expressions with their
resulting values:

Val shl 1 $1020 (0001,0000,0010,0000)
Val shr 1 $0408 (0000,0100,0000,1000)
Val shl 5 $0200 (0000,0010,0000,0000)
Val shr 4 $0081 (0000,0000,1000,0001)

As you can see, shl and shr shift in O's and throw away whatever
gets shifted out.

As mentioned, TURBO Pascal also provides two functions and a
procedure for byte manipulation:

Lo(I) 	Returns lower byte of I
Hi(I) 	Returns upper byte of I
Swap(I) 	Swaps upper and lower bytes of I

These do just what you think they would do. For example,
assuming that Val = $0810, then

Lo(Val) 	returns $0010
Hi(Val) 	returns $0008
Swap(Val) returns $1008

Note that both Lo and Hi set the upper byte to $00.

9.3 BYTE

The data type Byte is simply a subrange of Integer, consisting of

9-9

Chapter 9 Predefined Data Types 	 Part 2

the values 0 through 255. Byte and Integer expressions and
variables can be freely mixed. In fact, Byte variables act like
Integer variables in all respects but this:any value outside of the
range 0..255 which is assigned to a Byte variable is pared down to
the 0..255 range. For example, if Small is declared to be of type
Byte, then the following assignments result in the corresponding
values for Small:

Small := -1; 	 255
Small := -2; 	 254
Small := 256; 	 0
Small := Round(1040.0); 	 16
Small := Round(104000.0) 	*error*

In short, assigning a value to a Byte variable is equivalent to
assigning that value to an integer variable, then assigning the
lower byte of that integer to the Byte variable. Confused? Well, if
Large is of type Integer, then Small := -1 is equivalent to:

Large := -1;
Small := Lo(Large); 	or Small := Large and SooFF;

There is one other difference:Byte variables take up only one byte
of memory, while Integer variables take up two. Therefore, if you
want to be economical with your computer's memory and only
need to store small values, you should use Byte variables.

9.4 REAL

Suppose that you want 11/4 to equal 2.75 instead of 2. Suppose
that you want199/200 to equal 0.995 instead of 0. Suppose that
you want to find the answer to 502 *200. What do you do? You use
real numbers, instead of integers.

Reals differ from integers in two important respects. First, they
have a decimal point with additional digits following it. In other
words, they have values such as 2.75, 0.995, -421.0, and so on.
Second, they can (but do not have to) have exponents. The
exponent represents some power of 10 by which the rest of the
real number is multiplied. For example, the value 100400 can be
written as:

9-10

Part 2 	 Chapter 9 Predefined Data Types

100400.0 or 100400.0E+0
10040.0E+1
1004.0E+2
100.4E+3
10.04E+4
1.004E+5
0.1004E+6

(100400.0 * 1)
(10040.00 * 10)
(1004.000 * 100)
(100.4000 * 1000)
(10.04000 * 10000)
(1.004000 * 100000)
(0.100400 * 1000000)

Note the format:mantissa E exponent. The mantissa is simply a
real number, say, 100.4. The exponent is some integer value with
an explicit sign (+ or -), say, +3. And the resulting value is:

<mantissa> * 10 <exponent>

such as 100.4 * 1000, or 100400.0. Of course, you don't always
have to use the exponent format—just if you're working with very
large or very small numbers. (A negative exponent gives you a
very small number, moving the decimal point to the left according
to the value of the exponent.)

If you choose to not use exponents, you can just write real
numbers as you normally would:

3.1415926
-3546.3
0.0034
56793834.21

The same rules of operator precedence mentioned above apply
to real numbers. In addition, TURBO Pascal offers some pre-
'defined functions for use with reals. Note that the trigonometric
functions (arctan, cos, sin) assume that the angle involved is in
radians (360 degrees = 2*pi radians):

Abs(x)
ArcTan(x)
Cos(x)
Exp(x)
Frac(x)
Int(x)
Ln(x)

returns absolute value of x (real)
returns arctangent of x (real)
returns cosine of x (real)
returns e to the x power (real)
returns fractional portion of x (real)
returns integer portion of x (real)
returns natural log of x (real)

9-11

Chapter 9 Predefined Data Types 	 Part 2

Random 	returns random number from 0.0 to 0.99... (real)
Round(x) returns integer nearest to x (integer)
Sin(x) 	returns sine of x (real)
Sqr(x) 	returns x*x (real)
Sqrt(x) 	returns square root of x (real)
Trunc(x) 	returns integer portion of x (integer)

You need to be careful mixing reals with integer values. TURBO
Pascal will automatically convert integer numbers to reals, but
not vice versa. Let's suppose that you wanted to find the area of a
circle of some radius. You might write this program:

program FindRadius;

I 	note: Pi is a predefined Real constant = 3.1415926536

var
Radius,Area 	: Integer;

begin
Write('Enter radius"); ReadLn(Radius);
Area := Pi * Radius*Radius;
WriteLn('The area is ',Area)

end; { of program FindRadius }

TURBO Pascal will not compile this program; instead, you'll get a
"Type mismatch" error. Why? Well, the expression Pi *
Radius*Radius is, by default, a real expression, and you can't
assign a real value to an integer variable. However, you can use
Trunc or Round to make the conversion. Trunc(X) returns the
integer portion of X; in other words, it drops the fractional portion
of X. Here are some sample results:

Trunc(3.1415926) 	= 	 3
Trunc(-32.3) 	 -32
Trunc(421.7) 	= 	421
Trunc(0.5) 	 = 	 0
Trunc(543832.32) 	**error** (too large for integer)

Round(X), on the other hand, returns the integer nearest to X. A
special case occurs when X is exactly between two integers, i.e.,
the fractional portion is 0.5. TURBO Pascal will round away from

9-12

Part 2 	 Chapter 9 Predefined Data Types

zero, which means Round(22.5) = 23 and Round(-22.5) = -23.
Here are some other results:

Round(3.1415926) 	= 	 3
Round(-32.3) 	= 	-32
Round(421.7) 	= 	422
Round(0.5) 	 = 	 1
Round (542832.32) 	= **error**(too large for integer)

Note that if you use Round or Trunc on a real value that's too
large, you will get a run-time error.

You can now rewrite your program like this:

program FindRadius;

note: Pi is a predefined Real constant = 3.1415926536

VIM
Radius,Area 	: Integer,

begin
Write('Enter radius: 0; ReadLn(Radius);
Area := Round(Pi*Radius*Radius);
WriteLn('The area is ',Area)

end; { of program FindRadius }

Two issues come up with reals or, rather, two aspects of the same
issue. The issue is this:how many bytes are used to represent a
real? With TURBO Pascal, the answer is:6 bytes. The first aspect
deals with the allowable range for the exponent. Unless you're
dealing with really large numbers, you won't have worry too
much about this—TURBO has a range of -38 to +38, and 10
raised to the power of 38 is a very large number. This, of course,
doesn't mean that the issue will never come up. It's just very
unlikely.

More critical is the issue of precision in the mantissa. In plain
English, how long can the real number be? With TURBO Pascal,
about 11 digits. This provides enough precision to be able to do
financial and other calculations without too much worry. Even so,
you may end up with some slightly (or not-so-slightly) wrong

9-13

Chapter 9 Predefined Data Types 	 Part 2

values should you push too close to the limit or should you have
to do a long series of calculations. This is due to cumulative
round-off error, or CROE. CROE is a fancy way of saying that bad
values tend to propagate themselves. Too many bad values can
work together to produce results that have no relation to your
initial values.

What causes these mysterious errors? Here are four major
factors behind CROE. First, decimal numbers are represented in
binary form. Did you know that the number 0.1 is impossible to
express exactly in binary form? It's an infinite fraction, much like
1/3 in decimal form (0.333333...). Several of these errors can
cause values to shift slightly.

Second, values with different exponents are normalized before
addition. (This means that their exponents are made equal and
their mantissas adjusted accordingly. If you add 1.0E+04 (10,000)
and 1.5E+00 (1.5), then the latter is normalized to 0.00015E+04
before the two are added together. With limited precision, you
might lose some digits off during normalization.

Third, when nearly identical values are subtracted, the least
significant (and least accurate) digits become the most significant
digits. If you subtract 1.4356876523E+05 from 1.4356876527E+05,
you should end up with 4.0E-05. But if you have 11 significant
digits, then the last digit in each number (3 or 7) is the one most
likely to be wrong due to the other errors mentioned here. The
result: your answer may be totally wrong. Furthermore, that
answer is then used to "fill" 11 digits. Combine that with the
binary/decimal problem, and you get an actual answer of
3.9815902710E-05...not quite what you'd expect.

Finally, when two numbers of some precision are multiplied
together, the result has twice as many digits, half of which are
then thrown away. For example, if you multiply the two numbers
above, you get 2.06111990355E+10. The "5" at the end represents
the lower 12 digits of the answer (11 digits plus itself). Again, due
to round off and internal representation, errors can creep in,
though this is usually less serious than the pitfalls mentioned
above.

9-14

Part 2 	 Chapter 9 Predefined Data Types

An error always starts out at the lower end of a number and
moves up towards the front. The more calculations you have, the
farther it can move. The fewer digits of precision you have, the
faster it can move. The moral: if you're using real numbers, be
aware of your limits. If you're going to do a lot of number
crunching, you might want consider using the TURBO-87 option
(assuming that you're running on an 8086-based computer with
an 8087 math co-processor). This will not only extend your
precision to 16 digits (8 bytes), but it also gives you a much wider
exponent range (-307 to +308) and, of course, tremendously
speeds up all your real number calculations.

9.5 CHAR

The data type Char is simply the set of ASCII characters. More
accurately, a variable of type Char can have 256 values, including
the 128 characters in the standard ASCII set. You may remember
from Chapter 7 the discussion on printing and non-printing
characters. Printing characters can be represented as the char-
acter itself within two single quote marks:

Remember the control characters? Those are the characters with
ASCII values 0 through 31, and they are usually expressed in
terms of the printing characters ranging from 64 to 95. For
example, the character with the ASCII value of 7 is commonly
called "control-G"; 'G' has an ASCII value of 71 (=7+64). But
since these characters have no printable equivalent, there's no
way to represent them within quotes. However, TURBO Pascal
lets you represent them with the notation:

"char,

where char is the corresponding printable character. You can use:

"G for "control-G"
^[for ESC (ASCII code 27)

and so forth.

9-15

Chapter 9 Predefined Data Types 	 Part 2

That takes care of codes 0 through 31, but what about characters
with ASCII codes 127 (DEL) through 255? TURBO again comes
to the rescue, with the notation #val, where val is a byte constant
(0...255). For example, you could represent DEL as #127 or #$7F
(yes, you can use hex constants). Here, then, are some different
ways of representing the same characters:

NUL
ctrl-G (BEL)
ESC
blank (space)
the digit 0
the letter A
DEL
ASCII 237

Suppose, now, you wanted to put a control-G (which causes a
beep on printing) within a string. If you wrote:

ErrorMsg := 'ERROR: "G You entered the wrong value';

then it would print:

ERROR: "G You entered the wrong value

and there would be no beep. Not to worry:TURBO Pascal makes
insertion of special characters simple. All you have to do is to
break the string up into two parts and put the control-G between
them:

ErrorMsg := 'ERROR: '^G' You entered the wrong value';

This automatically inserts the control-G character into the string
contained in Error. You can do the same thing with the #val
characters. In fact, you can build a string consisting of only
special characters:

FiveBeeps := "G-^G^G^G"G#13#10;

FiveBeeps now has a length of 7 and contains 5 control-G's
(BEL), a carriage return (CR), and a line feed (LF). Writing this to
the screen would cause 5 beeps and would then move the cursor
to the start of the next line.

9-16

#0 #$00 ^@
#7 #$07 ^G
#27 #$16 "[

, #32 #$20
#48 #$30 '0'
#65 #$41 'A'
#127 #$7F
#237 #$ED

Part 2 	 Chapter 9 Predefined Data Types

TURBO Pascal has a few functions that deal with characters:

Chr(I)
Ord(C)
Pred(C)
Succ(C)
UpCase(C)

returns the character corresponding to I (char)
returns the integer corresponding to C (integer)
returns the character preceding C (char)
returns the character following C (char)
returns the upper-case value of C (char a...z)

You'll find additional discussions of characters in Chapter 14,
which talks about strings.

9.6 BOOLEAN

George Boole, a 19th-century mathematician, developed a whole
set of rules for numbers that could have only two values:0 and 1. It
was called Boolean algebra. When computers appeared a
century later, most were based on components that could
represent one of two values: 0 and 1. All of Boole's work, and the
work of those who followed him, found immediate application.

Pascal allows you to declare variables of type Boolean. However,
instead of using 0 and 1, Pascal uses False and True to represent
boolean values. Boolean variables and expressions aren't terribly
useful all by themselves; however, they are critical for control
structures, which is the topic of Chapter 10. Boolean expressions
will be covered in more depth there.

Pascal provides the logical operators not, and, or, and xor for use
with boolean values. The first of the two tables at the end of this
chapter shows the precedence for these operators, and the
second table shows what results you get (substituting False for 0
and True for 1).

Boolean values can also be returned by using the comparison
operators to compare other values:

9-17

Chapter 9 Predefined Data Types 	 Part 2

<>

<=
>=
IN

For example

3 > 5

will return False, while

7 <= 10

will return True. Again, more about this will be discussed in
following chapters.

OPERATOR PRECEDENCE

Unary minus (arithmetic negation)
not 	 Logical negation
*, /, div, mod, and, shl, shr Multiplying operators
*, -, or, xor 	 Adding operators
=, < >, <, >, <= , >=, in Relational operators

LOGICAL OPERATOR TRUTH TABLES

0 = False 	1 = True

exp1 exp2 (exp1 and exp2) (exp1 or exp2) (exp1 xor exp2)

0 0 0 0 0
0 1 0 1 1
1 0 0 1 1
1 1 1 1 0

9-18

Part 2 	 Chapter 10 Control Structures

10. CONTROL STRUCTURES

One of the great buzz words (buzz phrases?) of computer
science is flow of control. This term refers to the order in which
the statements in your program are executed. Up until now,
you've only looked at sequential flow of control. Simply put,
sequential flow of control means that each statement is executed
exactly once, starting with the first statement and ending with the
last. Nice, but it won't get you far.

To provide a little variety, Pascal has a number of control
structures, special constructs that allow you to have nonsequen-
tial execution of statements. There are three types of control
structures in Pascal: conditional, iterative, and case.

The goal of this section is to explain what these constructs are
and how you use them. First, though, you need to look at a few
basics: statements and boolean expressions.

10.1 STATEMENTS

The primary unit of execution in a Pascal program is the
statement. At the simplest level, there are two kinds of statements:
procedure calls and assignments. You've looked at built-in
procedures, such as WriteLn; a procedure call is the act of using
such a procedure:

WriteLn('The sum is ',C);

Assignment statements assign some value to a variable. They
take the form:

<variable> := <expression>;

where expression is, well, an expression that resolves to a value
appropriate to the data type of variable. For example, if the
variables Score and Maximum are of type Integer, then the
following statements are valid:

10-1

Chapter 10 Control Structures 	 Part 2

Score := 10;
Maximum := 32*Score div 17;
Score := Score + 10;
Maximum := Succ(Maximum);

All but one of the control structures we'll be looking at will
execute only one statement. This doesn't sound very impressive
or convenient, and, in fact, it would make for a very serious
limitation if you could only use procedure calls and assignment
statements. Such is not the case. Pascal considers the following
structure to be a single statement:

begin
<statement 1>;
<statement 2>;

<statement n>
end;

This structure is known as a block or compound statement. It can
be used anywhere that a simple statement can; you can even use
one block statement within another. Compound statements are
most often used in conjunction with control structures, as you'll
soon see.

,
-±44 • -

,

-

—Blocks (compound structures)-

10-2

Part 2 	 Chapter 10 Control Structures

10.2 BOOLEAN EXPRESSIONS

A moment ago, you were looking at expressions—integer
expressions, in particular. Those shown were integer expressions
because they returned integer values. A boolean expression,
then, returns a boolean value—in other words, either True or
False. For example, suppose that the integer variables Score and
Maximum have each been set to some value, say, Score = 10 and
Maximum = 0. You can now create the following boolean
expressions, with the corresponding results:

Score >Maximum
Score =Maximum
Score <Maximum
Score >= Maximum
Score <= Maximum
Score <> Maximum

True
False
False
True
False
True

(is greater than)
(is equal to)
(is less than)
(is greater than or equal to)
(is less than or equal to)
(is not equal to)

In a Pascal program, such expressions would actually return
True or False, the two possible values of the predefined data type
Boolean. We could define a boolean variable, NewMax, and then
have the following assignment statement:

NewMax := (Score > Maximum);

Depending upon the current values of Score and Maximum, this
would set NewMax to either True or False. For example, given the
values defined above, NewMax would receive a value of True.

You can create more complex expressions by using the Boolean
operators and, XOR, or, and not. not flips the value, changing
True to False and vice versa. and, xor and or combine two
expressions to create a new one. The table at the end of this
chapter is a truth table showing how these operators work.

Using these operators, you can create such expressions as

(Score > Maximum) or (Score > 30000)
(Score > 10000) and (Score <= 20000)
not (NewMax or (Maximum = 0))

10-3

Chapter 10 Control Structures 	 Part 2

If we assume that Score, Maximum, and NewMax have the values
given above (10, 0, and True), then the first expression resolves to
True, while the other two resolve to False. Having discussed all
this, you're now ready to go on to control structures.(Decisions
Illustration goes here)

—Decisions, Decisions, Decisions-

10.3 CONDITIONAL EXECUTION

In writing programs, you usually have groups of statements that
you want to be executed only if some condition has been met.
Not surprisingly, this is known as conditional execution. In
Pascal, conditional execution takes the form:

if <boolean expression>
then <statement>;

10-4

Part 2 	 Chapter 10 Control Structures

The if...then structure works quite simply. If boolean expression
returns a value of True, then statement is executed; otherwise, it
is ignored. For example,

if Score > Maximum
then Maximum := Score;

will set Maximum to Score if and only if Score is greater than
Maximum.You could also do the following:

NewMax := (Score > Maximum);
if NewMax

then Maximum := Score;

If you really want to get fancy, you can do this:

if Score > Maximum then begin
Maximum := Score;
WriteLn('Congratulations!');
WriteLn('Your new high score is ',Maximum)

end;

Tied closely to the idea of conditional execution is that of
alternation. Alternation means that one set of statements is
executed if a condition is True, and another set if that condition is
False. You could do it this way:

if <condition>
then < statement' >;

if not <condition>
then <statements>;

Pascal, however, provides a simpler way:

if <condition>
then < statement' >
else <statement2>;

By using the if...then...else construct, you can amplify your
example as follows:

10-5

Chapter 10 Control Structures 	 Part 2

if Score > Maximum then begin
Maximum := Score;
WriteLn('Congratulations!');
WriteLn(`You have set a new high score of ',Maximum)

end
else begin

WriteLn('Your score was ',Score);
WriteLn('Nice try, but you can do better')

end;

10.4 ITERATION

Conditional execution adds a lot to your programming capabili-
ties, but you still have a major handicap: You can execute each
statement only once. You need the ability to repeat a section of
code some number of times or until some condition is met. This
looping process is known as iteration. Niklaus Wirth must have
really liked loops, because Pascal has not one, not two, but three
forms of iteration: for...do, while...do, and repeat...until. Let's look
at each.

—Looping-

10-6

Part 2 	 Chapter 10 Control Structures

10.4.1 The FOR...DO Loop

There are situations where you want to have a statement
executed some number of times. Often, you want or need to
know how many times you've gone through the loop so far. Or,
you might want a variable to step through a range of values,
executing a statement (or group of statements) once for each
value.

The for...do loop allows you to do this. It uses the format:

for <var> := <expl> to <exp2> do
<statement>;

When the loop is encountered, var is assigned the value of expl. If
var is less than or equal to exp2, then statement is executed. var is
then increased by one, and the test is repeated. This goes on until
var is greater than exp2. If expl is greater than exp2, then
statement is never executed. For example, you could write:

for Indx := 1 to 10 do
WriteLn('n = ',Inclx,' n*n = ',Indx*Indx);

This will display the integers from 1 to 10, along with their
squares. If you want to decrement (decrease) var instead of
incrementing it, you can use the format:

for <var> := <expl> downto <exp2> do
<statement>;

Now, var decreases each time until it is less than exp2, and
statement is never executed if expl is less than exp2.

The for...do loop in Pascal sacrifices convenience for a gain in
power. You cannot specify a step value by which to change var,
as you can in most other languages. To do that, you have to
create your own loop using one of the other loop constructs
(described below). Also, var cannot be of type Real; again, you
have to use another type of loop.

So much for the inconvenience; where's the power? Well, var
doesn't have to be of type Integer; it can be of any scalar data

10-7

Chapter 10 Control Structures 	 Part 2

type: Char, Byte, Boolean, or any declared scalar type (DST) you
care to define. Given appropriate definitions, the following loops
are all valid:

for Infix := 30 downto 20 do
<statement>;

for Ch := 'A' to 'Z' do
<statement>;

for Flag := True downto False do
<statement>;

for Day := Mon to Fri do
<statement>;

Now you can see why there is no step capability. Mixing numeric
and non-numeric values could be very confusing, especially for
those programmers who write compilers. Besides, there is
something clumsy about a statement like

for Month := January to December step 2 do
<statement>;

while the statement

for Month := January to December step February do
<statement>;

doesn't make any sense at all. So there is no step capability in for
loops.

As with if...then...else, you can use a compound statement in
place of statement, to wit:

for Infix := 20 to 30 do begin
<statement 1>;

<statement n>
end;

10-8

Part 2 	 Chapter 10 Control Structures

10.4.2 The WHILE...DO Loop

Since the for...do loop can't easily meet all your iterative needs,
Pascal give you two others, both controlled by boolean expres-
sions. The first is the while...do loop:

while <boolean expression> do
<statement>;

This loop will cause statement to be executed as long as boolean
expression resolves to a value of True. It will never be executed at
all if boolean expression is initially False.

If you wish, you can replace for...do loops as follows:

<var> := <expl>;
while <var> <= <exp2> do begin

<statement 1>;

<var> := Succ(<var>)
end;

If you want to use a step value, then you need to change the last
statement to reflect that. For example, to have a step value of 3,
you could change the last statement in the loop to read

<var> := <var> + 3

Of course, you can do other things than imitate for loops. For
example, here's a binary search program. It searches a sorted list
fora given value until it either finds it or determines that it is not in
the list. The advantage of a binary search is that it only takes a
maximum of (n log 2) tries to search a list of n objects. This means
that a list of 1024 elements will take at most 10 tries through the
loop.

procedure BinarySearch(DKey : ListVa1;
var Index : Integer, var Found : Boolean);

This procedure does a binary search for DKey in List,
where List = ARBAY[IMin..IMax] OF ListVa1
List is sorted such that List[I] <= List[I+1]
It searches for Index such that DKey = List[Index]
If found, then Found = True else Found = False

1

10-9

Chapter 10 Control Structures 	 Part 2

var
Upper,Lower 	:Integer;

begin
Upper := IMax;Lower := IMin; Found := False;
while not Found and (Lower <= Upper) do begin

Index := (Upper + Lower) DIV 2;
if DKey < List[Index]

then Upper := Pred(Index)
else if DKey > List[Index]

then Lower := Succ(Index)
else Found := True

end
end; f of pros BinarySearch }

10.4.3 The REPEAT... UNTIL Loop

The third loop is repeat...until. It takes the format:

repeat
<statement 1>;
<statement 2>;

<statement n>
until <boolean condition;

This differs from while...do in three important ways. First, the
statements within the loop are always executed at least once. In
other words, all the statements in the loop are executed before
boolean condition is resolved. Second, the statements continue
to execute as long as boolean condition is false; the while loop
executes while boolean expression is true. Third, the repeat loop
can directly execute more than one statement and, therefore,
doesn't need a compound statement (begin...end) to handle
multiple statements.

One common use of repeat loops is to condition input, that is, to
prompt the user for some value and to continue to prompt until
the value entered is one of those that you decide to allow. For
example, the following routine prompts the user to enter an

10-10

Part 2 	 Chapter 10 Control Structures

integer within the range [low...high]. It repeats the prompt if (1)
there is an I/O error (due to bad numeric format), or (2) the value
is not within the proper range:

program TestGetlnteger;
type

Prompt 	= string[80];

procedure GetInteger(var Val : Integer; Msg : Prompt;
Low,High : Integer);

begin
{$I-,R-} { turn off I/O, range checking }
repeat

Write(Msg);
ReadLn(Val)

until (I0result=0) and (Low<=1Tal) and (Val<=High)
{$I+,R+} { turn everything back on }

end; of proc Getlnteger I

This provides "bulletproof" integer input. No matter what the
user tries to do, this routine will continue to ask fora proper value
until the one entered has the proper format and is within the
proper range.

10.5 THE CASE STATEMENT

When writing programs, you sometimes want to perform one of a
number of actions depending upon the current value of a
variable. For example, you might want to print out a menu, accept
the user's choice, and then act accordingly. One way you can
handle this is to use repeated if...then...else statements:

10-11

Chapter 10 Control Structures 	 Part 2

repeat
Write('Enter direction: U)p,D)own,L)eft,R)ight:');
ReadLn(Ch) 	f Ch is of type Char }

until (Ch IN [IT);
if (Ch = 'U') or (Ch = '11')

then Y := Y - 1
else if (Ch ='D') or (Ch ='d')

then Y := Y + 1
else if (Ch = 'L') or (Ch = '1')

then X := X -1
else if (Ch = 'R') or (Ch = 'r')

then X := X + 1;

GotoXY(X,Y)

However, the if...then...else chain can get a little tiresome (and
difficult to follow) if there are a lot of different conditions to check.
So Pascal includes an additional flow-of-control structure called
the case statement.

The case statement requires a scalar variable which has been set
to some value. Scalar variables include those of type Integer,
Byte, Char, Boolean, and any declared scalar type (DST).
(Variables of type Real are not considered scalar.)The case
statement has this format:

case <variable> of
<constant list 1> : <statement 1>;
<constant list 2> : <statement 2>;

<constant list n> : <statement n>
end;

where a constant list is a list, separated by commas, of constants
of the same data type as the variable. When the case statement is
encountered, the program compares the current value of the
variable against each of the constant lists. When a match is found,
the corresponding statement is executed and the rest of the case
statement is skipped. You could now rewrite your first example as
follows:

10-12

Part 2 	 Chapter 10 Control Structures

repeat
Write('Enter direction: U)p,D)own,L)eft,R)ight:');
ReadLn(Ch) 	Ch is of type Char }

until (Ch IN [TI',/u','D',/d;,'L',/r,'R',/r']);

case Ch of

	

'111;u1 : 	Y := Y - 1;

	

'D','d' : 	Y := Y + 1;

	

: 	X := X - 1;

	

'R','r': 	X := X + 1
end;

The above example ensures that Ch would only have one of the
specified values in the case statement. This is done by checking
Ch against a set of allowable values (you'll learn about sets in a
later chapter). What if you removed that restriction? What if Ch
had a value other than those listed in the case statement? Under
the original Pascal definition (by Wirth and Jensen), the result
was undefined; that is, the outcome was uncertain.

TURBO Pascal, however, takes the commonsense approach
that, in such a case, all of the statements are skipped and
execution resumes right after the end of the entire case statement.
In fact, TURBO Pascal goes one step farther and allow an else
section at the end of the list of choices. This section is executed
only if the variable does not match any of the constant lists. With
such an extension, you might rewrite your example as follows:

Write('Enter direction: U)p,D)awn,.L)eft,R)ight: ');
ReadLn(Ch);
case Ch of

	

: 	Y := Y + 1;

	

'D','d' : 	Y := Y -1;
: 	X := X -1;

	

'R','r': 	X := X + 1;
else

WriteLn('Illegal entry');
WriteLn('Please use U,D,L or R')

end;

10-13

Chapter 10 Control Structures 	 Part 2

10.6 SAMPLE PROGRAM

Now that you've looked at all of the different flow-of-control
structures, let's put them all together in a program. The listing at
the end of this chapter shows a simple (very simple!) Pascal
program that uses all of the constructs you've learned about.

The first construct you encounter is a while loop. It tests the
boolean variable Done and will loop as long as Done has a value
of False.

The next construct is a repeat loop. The statements in this loop
prompt the user for a character. The program will not leave the
loop until the user enters one of the valid command characters.

Within the repeat loop is your third construct, an if...then...else
statement that tells the user whether or not one of the command
characters has been entered.

Following the repeat loop is your fourth construct, a case
statement. It performs one of six actions depending upon the
character value the user has entered. Four of the commands
change the values of X or, Y. One command sets Done equal to
True and so allows the program to exit the while loop.

The remaining command ('F' or 'f') executes a block statement
which contains your last construct, a for loop. This loop executes
the statement Write(Dot, Bell) five times (the value of the constant
FireMax).

10.7 CONCLUSION

These control structures greatly add to your programming
capabilities. They help you to escape from the "every statement
exactly once" approach of your earlier programs while main-
taining a clearly-defined path of execution through the code. By
combining the various structures together, you can create
exactly the path you need.

10-14

Part 2 	 Chapter 10 Control Structures

Even with these aids, you still are limited to writing one big
program and having to duplicate code if you need it in more than
one place. In the next chapter, you will learn about the solution:
procedures and functions. You've already seen some standard
Pascal procedures and functions, such as WriteLn and ReadLn;
in the next chapter, you'll learn how to write your own.

Before we go on to the next chapter, here are the table and the
sample program I promised you a while ago:

BOOLEAN TRUTH TABLES

Expl Exp2 (Expl and Exp2) (Expl xor Exp2) (Expl or Exp2)
False False False False False
True False False True True
False True False True True
True True True False True

CONTROL STRUCTURES PROGRAM EXAMPLE

program Example;

Example 	 Sample Pascal program
demonstrates control structures
note the use of typed constants

const
Bell 	 = "G;
FireMax 	 = 5;
Dot
Done 	 : Boolean = False;
X 	 : Integer = 0;
Y 	 : Integer = 0;
CmdSet 	 : set of Char =

var
Ch 	 : Char;
Count 	 : Integer;

10-15

Chapter 10 Control Structures 	 Part 2

begin
while not Done do begin

WriteLn('X,Y =
repeat

Write('CMD: L)eft, Right, U)p, D)own, Fire, Q)uit);
Read(libd,Ch); WriteLn;
if Ch >= 'a' 	convert to upper case I

then Ch := Chr(Ord(Ch)-32);
if not (Ch IN CmdSet)

then WriteLn('Illega1 entry—try again')
else WriteLn('Command accepted')

until Ch in CmdSet;
case Ch of
'U' : Y:=Y+1;
'D' 	: Y := Y -1;
'R' 	: X := X + 1;
'L' 	: X := X-1;
'F' : begin

Write('Firing');
for Count := 1 to FireMax do

Write(Dot,Bell);
WriteLn

end
'Q' 	: Done := True

end { of case
end { of while }

end. { of program Example }

10-16

Part 2 	 Chapter 11 Procedures and Functions

11. PROCEDURES AND FUNCTIONS

In previous chapters, you learned how to write simple Pascal
programs. Period. True, you've learned all about boolean ex-
ressions, flow-of-control structures, and other such esoterica.
But the fact remains that all you can do is write one big program
that starts at begin and finishes at end. If you have a set of
commands that you want to use in five different places, then you
would have to write that code in all five places. (Of course, if you
merely want to execute the same code five times, you could put in
a for loop, but we covered that in the previous chapter.)

That limitation ends now. This chapter will discuss the use of
procedures and functions, which together are known as sub-
programs. You'll first hear about the general concept of a
subprogram. You'll then see how (and where) to place sub-
programs in your main program. Then you'll touch on the idea of
scope, which governs where a subprogram may be called from.
You'll end with a discussion on parameters for subprograms and
I'll give you a taste of some of the different things you can do with
them.

11.1 SUBPROGRAMS

As you've learned in previous chapters, a Pascal program has the
following structure:

program Whatever,
<declaration section>

begin
<program statements>

end. { of program whatever }

As mentioned above, you can get by with just this for small
programs, but you'll find this structure very limiting with big
programs, especially if you have sections of code that are
repeated throughout the program. The solution? Pascal allows
you to create subprograms. A subprogram is indeed like a

Chapter 11 Procedures and Functions 	 Part 2

miniature program contained within a larger one. Here, for
example, is the structure for defining a procedure (one of two
types of subprograms):

procedure Whichever;
<declaration section>

begin
<procedure statements>

end; { of procedure Whichever }

Look familiar? The only visible differences between this format
and the format for a program are (1) the word procedure is used,
and (2) the end is followed by a semicolon instead of a period. (A
few more differences will crop up later.) As with a program,
execution starts right after the begin statement and finishes at the
end statement.

The next question is: where do you put subprograms in your
program? Answer: after the declaration section and before the
opening begin of your program. Indeed, you can think of your
subprograms as being the last part of your declaration section
(after all of your label, const, type, and var statements). Some of
you may then wonder if you can declare a subprogram within a
subprogram. Yes, you can, just like you would in a regular
program. And you could declare subprograms within that
subprogram, and so on ad infinitum (well, not quite; the TURBO
Pascal compiler does have its limits).

Now that you've got,the subprogram in place, the next question
is, how do you use it? Answer: simply by stating its name. Let's
put our procedure within our program and call it a few times:

program whatever,
const

Maximum 	 = 10;
type

CRange 	 = 0..Maximum;
var

Indx 	 : CRange;

11-2

Part 2 	 Chapter 11 Procedures and Functions

procedure Whichever,
coast

Star 	 =

type
Days 	 = (Mon,Tues,Wed,Thur,Fri,Sat,Sun);

var
Day 	 : Days;

begin { main body of proc Whichever }
for Day := Mon to Fri do

Write(Star)
end; { of proc Whichever }

begin { main body of program Whatever }
for Indx := 0 to Maximum do begin

Whichever;
WriteLn

end
end. { of program Whatever }

In this example, const, type, and var statements have been
deliberately included in both the main program and the sub-
program so that (1) you won't be confused about where
subprograms go, and (2) you can see how similar the two
structures are. Look over the example carefully and see if you can
figure out just what it will do. In case you're not sure, remember
that Write and WriteLn are built-in procedures (i.e., they're always
there—you don't have to define them). Write(Star) will print an 11,1
on the screen, while WriteLn will start a new line.

Finished? If you guessed that this program would print out eleven
lines, each consisting of five asterisks ('*****'), you're right. The
procedure Whichever prints out five asterisks each time it is
called. The program Whatever calls Whichever eleven times,
starting a new line after each call.

11.2 SCOPE

Before you can go any farther into the intricacies of sub-
programs, you must first deal with the concept of scope. In a
BASIC program, all identifiers (variables, functions, line numbers)
are global in scope. In other words, any identifier can be

11-3

Chapter 11 Procedures and Functions 	 Part 2

referenced from anywhere in the program. Indeed, any identifier
can be declared anywhere in the program, and variables are
declared merely by referring to them.

In Pascal, things are quite different. The Great Underlying Rule of
Pascal is that a given identifier must be declared before it is used.
Again: any constant, data type, variable, or subprogram you care
to use has to be explicitly defined first.One last time:each and
every identifier appearing in any program (or subprogram)
statements needs to have been previously described in a declar-
ation section.

Having made that pronouncement, you must now understand
what is meant by "previously declared." In the simplest sense, it
means that if you start at the program statement and move down,
you must run across the declaration of each identifier before you
find any other use of it. You can easily check that in a program
containing no subprograms, since you need only to verify that
each identifier used in the program statements is found in the
declaration section (and that, of course, you are following the
same rule within the declaration section itself). But consider this
example:

program Scopel;
var

A

procedure SetB;
var

B
begin proc SetB}

B := 2*A
end; of proc SetB

: Integer,

: Integer,

begin { main body of prog scopel }
A:= 2;
SetB;
WriteLn(A+B)

end. { of program Scopel }

11-4

Part 2 	 Chapter 11 Procedures and Functions

Here, your simple rule has been met—both A and B have been
defined as being variables of type Integer before being used—
and yet this program will not compile. Why? Because B, having
been declared in the procedure SetB, is only recognized within
that procedure. In other words, the variable B is local to the
procedure SetB. By contrast, the variable A is recognized both
within SetB and in the main program itself.

So you now must modify your simple rule to this:each identifier
must have been previously declared in an enclosing program or
subprogram before being used. By enclosing, I mean that the
definition of the identifier must come after its declaration and
before the begin statement of the program or subprogram in
which is was defined. In the example above, you can see that the
statement WriteLn(A+B) comes after the begin statement of the
procedure SetB.

Here's another case to consider:

program Scope2;
var

A 	 : Integer;

procedure SetA.;
var

A 	 : Integer,
begin

A := 4
end{ of proc SetA. }

begin { main body of program Scope2 }
A:= 3;
SetA;
WriteLn(A)

end. { of prog Scope2 }

Two questions: (1) will this program compile, and (2) if it does,
what value will it print out? Two answers: (1) yes, and (2) 3. This
brings up a corollary to our rule:the most recent declaration of a
given identifier will always be used. The procedure SetA assigned
its own local variable A to 4 and left the global variable A
untouched.

11-5

Chapter 11 Procedures and Functions 	 Part 2

An editorial comment. Those of you used to BASIC or FORTRAN
may chaff at this discipline that Pascal requires of you. After all,
it's so nice to make up variables as you go along. However, an
excellent reason for these restrictions exists. There are two great
sources of program bugs in BASIC and FORTRAN: misspelled
variables and side effects. It is not uncommon to type "INDEX" in
one statement and mis-type "INDX" in another and have the
program (BASIC or FORTRAN) go merrily on its way. It is also
not unusual to (unknowingly) use the same variable in several
different parts of the program, often with bizarre results
(especially if those sections call one another). Pascal takes great
strides towards eliminating those bugs. You can still create them,
it is true, but you will really have to work at it.

11.3 PARAMETERS

Perhaps the most common use of subprograms is to perform the
same set of operations using different sets of values. For
example, you might want a procedure which would swap two
integer values. The question is, which two values should it swap?
One solution is this:

program TestSwap;
PELT

S 1 ,S2,Alpha,Bravo,Charlie,Delthjlagle,Foxtrot
: Integer;

procedure Swap;
var

Temp
begin

Temp := Si;
S1 := S2;
S2 := Temp

end; { of proc Swap }

: Integer;

begin { main body of program TestSwap }
Alpha := 1; Bravo := 2; Charlie := 3;
Delta := 4; Eagle := 5; Foxtrot := 6;

11-6

Part 2 	 Chapter 11 Procedures and Functions

S1 := Alpha; S2 := Eagle;
Swap;
Alpha := Si; Eagle := S2;

S1 := Bravo; S2 := Delta;
Swap;
Bravo := Sl; Delta := S2;

S1 := Charlie; S2 := Foxtrot;
Swap;
Charlie := Si; Foxtrot := S2

end. { of prog SwapTest }

Now, a little thought will show just what a lousy approach this is.
You are executing more statements before and after each call to
Swap then you would if you just did each swap directly. Luckily,
you don't really have to do this. Instead, you can define Swap as
having a list of parameters. For example:

program TestSwap;
var

Alpha,Bravo,Charlie,DeltAsPiagle,Foxtrot
: Integer,

procedure Swap(var 81,S2 : Integer);
var

Temp 	 : Integer;
begin proc Swap }

Temp := Si;
S1 := S2;
S2 := Temp

end; { of proc Swap }

begin { main body of program TestSwap }
Alpha := 1; Bravo := 2; Charlie := 3;
Delta := 4; Eagle := 5; Foxtrot := 6;

Swap(Alpha,Eagle);
Swap(Bravo,Delta);
Swap(Charlie,Foxtrot)

end.. { of prog TestSwap }

A lot better, no? The integer variables S1 and S2 are no longer
global variables but instead are parameters of the procedure

11-7

Chapter 11 Procedures and Functions 	 Part 2

Swap. Each time Swap is called, the actual variables in the call
(say, Alpha and Eagle) are used in place of S/ and S2. Because of
this, S1 and S2 are called formal or dummy parameters, while
Alpha and Eagle are known as actual parameters.

There is one other twist in parameter lists. The prefix var before
any formal parameter means that the corresponding actual
parameter is directly substituted for the formal parameter. In
other words, if the formal parameter has its value changed, the
actual parameter is also changed. If there is no var prefix, then the
actual parameter cannot be affected by anything that happens to
the formal parameter. For example, here's a procedure that
forces a variable to be within two values:

procedure Condition(Min : Integer; var Valu : Integer;
Max : Integer);

begin
if Min > Max
then Swap(Min,Max);

if Valu< Min
then Valu := Min

else if Valu > Max
then Valu := Max

end; f of proc Condition)

Why do you want to have formal parameters that do not return
values? Well, if you make the call Condition(20,Alpha,0), you
don't want the procedure to return a value to the constants "20"
and "0", and, indeed, Pascal would not let you. If you defined
Condition with the parameter list (var Min,Valu,Max : integer),
then you would get a compiler error with the above call. Why?
Because the compiler knows that it cannot return a value to a
constant or an expression, but only to a variable.

11.4 FUNCTIONS

As you've seen, a procedure can change the values of parameters
passed to it. The calling program (or subprogram) can then use
those modified parameters for whatever purpose it has. Suppose,
for example, that you wrote a procedure to find the integer square
root of a given value:

11-8

Part 2 	 Chapter 11 Procedures and Functions

procedure ISqrt(Valu : Integer; var Root : Integer);
var

OddSeq,Square 	: Integer;
begin

OddSeq := -1;
Square :=0;
repeat

OddSeq := OddSeq + 2;
Square := Square + OddSeq

until Valu < Square;
Root := Succ(OddSeq div 2);
if Valu<= Square - Root
then Root := Pred(Root)

end; f of proc ISqrt

This procedure would take Va/u, find its square root, and set Root
to that value. The calling program might use it as follows:

repeat
Write('Enter value: '); ReadLn(Able);
ISqrt(Able,Baker);
WriteLn('The square root is ',Baker)

until Able = 0;

There are many other cases where you might want to do
something similar, that is, return a value based on certain
variables or conditions. After a while, it can get a little clumsy
and/or tiring to always set aside one parameter for the returned
value. So, instead, you can use a function. A function acts just like
a procedure, but with one difference: it returns a Real or a scalar
value. (Brief review:scalar data types include Integer, Byte, Char,
Boolean, and any defined scalar type—DST.) For example, you
might rewrite ISqrt as follows:

function ISqrt(Valu : Integer) : Integer;
var

OddSeq,Square,Root 	: Integer;
begin

ISqrt := Root
end; { of func ISqrt }

You could now use it in your program like this:

11-9

Chapter 11 Procedures and Functions 	 Part 2

repeat
Write('Enter value: '); ReadLn(Able);
WriteLn('The square root is ',ISqrt(Able))

until Able = 0;

A function can be used anywhere that a constant or an
expression of the same data type could be used. Suppose you
wanted to find both the integer square- and fourth-roots of a
given value. You could rewrite the program this way:

repeat
Write('Enter value: '); ReadLn(Able);
WriteLn('The square root is ',ISqrt(Able));
WriteLn('The fourth root is ',ISqrt(ISqrt(Able)))

until Able = 0;

When using a function, care must be taken to ensure that you
have set it to some value before exiting. As shown above, you do
this by assigning some value to the function name. You must also
be careful about using the function name in any other way within
the function itself. For example, you couldn't rewrite ISqrt to look
like this:

procedure ISqrt(Valu : Integer; var Root : Integer);
var

OddSeq,Square 	: Integer;
begin

OddSeq := -1;
Square :=0;
repeat

OddSeq := OddSeq + 2;
Square := Square + OddSeq

until Valu < Square;
ISqrt := Succ(OddSeq div 2);
if Valu<= Square - ISqrt

then ISqrt := Pred(ISqrt)
end; { of proc ISqrt }

This would cause a compiler error. Why? Because Pascal
considers the other uses of ISqrt in this statement to be additional
calls to the function itself, and you don't have a parameter for
each one. "Can a function call itself?", you might ask. Yes, it can...

11-10

Part 2 	 Chapter 11 Procedures and Functions

11.5 RECURSIVE SUBPROGRAMS

As mentioned above, the Great Underlying Rule of Pascal is:no
identifier (constant, data type, variable, or subprogram) may be
used unless it has been previously declared in the main program
or in an enclosing subprogram. The corollary is that all such
identifiers may be used, which means that a subprogram can call
itself. For example, let's suppose you're writing a graphics
package and want a procedure which will fill a blank area on the
screen. Let's also suppose that you've already written two other
graphics subprograms: PlotXY(X,Y), which plots a point at X,Y;
and Plotted(X,Y), a boolean function which returns True if the
point X,Y has been plotted, and False otherwise. Here, then, is
your procedure:

procedure Fill(X,Y Integer);
begin

if not Plotted(X;Y) then begin
PlotXY(X;Y); 	{ plot this location
Fill(X+ 1 ,Y); 	{ check point to the right }
Fill(X-1 ,Y); 	 { check point to the left
Fill(X;Y+ 1); 	{ check point below }
Fill(X,Y-1) 	 { check point above

end
end; { of pros Fill }

Can you see how this works? Each time Fill is called, it checks to
see if the location (X,Y) has been plotted. If it has, then Fill doesn't
do anything. Otherwise, Fill plots a point at (X,Y) and then tries to
fill in each of the four adjacent points to (X,Y).

One cautionary note about recursive subprograms: they can
quickly use up a lot of memory, causing your program to behave
erratically or to blow up. You could easily come up with a
example where Fill would continue to call itself until you had over
100 levels of nested subroutine calls...and a lot of systems just
can't handle that many levels of nesting. So be careful.

Chapter 11 Procedures and Functions 	 Part 2

11.6 FORWARD DECLARATIONS

Are there any more situations where the Great Underlying Rule of
Pascal gets in the way? Well, occasionally, you may wish to call a
subprogram before it has been declared, out of convenience or
necessity. For example, you might have the following program:

program Example;
var

Alpha 	 : Integer;
procedure Testl (var A : Integer);
begin

A := A - 1;
if A > 0

then Test2(A)
end; { of proc Testi }

procedure Test2(var A : Integer);
begin

A:=ADIV2;
if A > 0

then Testi (A)
end; { of proc Test2

begin { main body of program example }
Alpha := 15;
Testl (Alpha)

end. { of proc Example

As you can see, Testi calls Test2, and Test2 calls Testi. As it
stands, this program won't compile; you'll get an "Unknown
identifier" error when it finds the reference to Test2 within Testi.
If you swapped Testi and Test2, then you'd get a similar error
within Test2. So which do you declare first? The answer:both.
How? By declaring Test2 with a forward declarations:

program Example;
var

Alpha 	 : Integer,

procedure Test2(var A : Integer); forward;

11-12

Part 2 	 Chapter 11 Procedures and Functions

procedure Testl(varA : Integer);
begin

end; { of proc Testi }

procedure Test2;
begin

end; { of proc Test2

begin { main body of program example
Alpha := 15;
Testl (Alpha)

end. { of proc Example

The forward declaration of Test2 contains only that information
necessary to resolve any references to it, namely its name and
parameter list. The actual body of Test2 (which, you will notice,
no longer has a parameter list) occurs after Testi. Now, Test1 can
call Test2 (because of the forward statement) and Test2 can call
Testi (since the latter precedes the former).

11.7 EXTERNAL SUBPROGRAMS

TURBO Pascal allows you to call assembly language procedures
and functions that you have assembled separately. These are
known as external subprograms; you can learn more about them
in Chapter 22.

11-13

Part 2 	 Chapter 12 Defined Scalar Types

12. DECLARED SCALAR TYPES

In Chapter 9, we talked about four scalar data types: Integer,
Byte, Boolean, and Char (Real isn't really a true scalar data type).
As you may recall, scalar simply means that each data type has a
fixed range of distinct values; for example, the data type Byte has
256 different values (0...255), while Boolean has exactly two
(False and True). These four data types are very useful, but
sometimes they aren't quite enough. Let's look at a brief example
to see why:

program Example;
var

Month,Day,Day0fWeek,Year 	: Integer;
begin

Year := 1989;
Month := 8;
Day := 24;
Day0fWeek := 3;

end. of program Example

These values together represent some date. The year is obviously
1989, and the day is the 24th of some month—but what is the
month, and what day of the week is it? You can assume (probably
correctly) that the programmer is using standard numbering for
the months (1=January, 2=February, etc.) and by some quick
counting come up with "August". But the "day of the week"
question is even harder to deal with. What day does the
programmer assume is the first? Is that day numbered "0" or
"1"? Unless you know the answer to those two questions, the
statement "DayOfWeek := 3" doesn't really tell you anything.

This is a common problem in programming. You use a range of
numbers—such as 1 through 12—to represent some corres-
ponding set of values—such as January through December. But
deep into the program, you lose track of what numbers represent
what values. For example, the value you assigned DayOfWeek

12-1

Chapter 12 Defined Scalar Types 	 Part 2

could easily represent Tuesday, Wednesday, or Thursday, de-
pending upon whether you started the week on Sunday or
Monday, and whether you used 0 or 1 to represent that first day.
As it turns out, August 24th, 1989, falls on a Thursday—so your
example assumes that Monday is the first day of the week and
equals 0.

Now consider the following variation of the example:

program Example;
type

Months 	= (January,February,March,April,May,Jun.e,July,
August,September,October,November,December);

Weekdays 	= (Monday,Tuesday,Wednesday,Thursday,Friday,
Saturday,Sunday);

var
Year,Day 	: Integer;
Month 	: Months;
DayOfWeek 	: Weekdays;

begin
Year := 1989;
Month := August;
Day := 24;
Day0fWeek := Thursday;

end. { of program Example }

Now the code is completely clear as to the date and day of the
week. All uncertainty and ambiguity is gone. Instead of having to
second-guess the programmer, you can easily see what each
statement means.

In defining Months and Weekdays, you have created two
declared scalar types (DSTs). To make a DST, you simply (1)
come up with a name for it, and (2) enter its list of values. The
name and the values both follow the rules for creating identifiers:
starts with a letter or underscore, followed by 0 or more letters,
digits, and underscores; up to 127 characters long; case (upper-
and lower-) doesn't matter; all characters (including under-
scores) are significant. The DST is defined in a type section; it has
the format

12-2

Part 2 	 Chapter 12 Defined Scalar Types

<name> = (<first 	 value>);

The DSTs defined in the example were nice but not completely
necessary. Since both months and days of the week are
sequential lists, translation is easy once you know where to start.
If you know that Monday is the first day of the week, and that its
corresponding value is 0, then it's simple to equate "3" with
"Thursday". But sometimes you work with arbitrary lists of
values, values which don't really fall into an apparent order. Let's
look at a second example:

program Example2;
var

ShipClass
begin

ShipClass := 7;

: Integer,

end.

Assuming that this is a portion of a "Trek" program, then
ShipClass probably tells you something about what type of
starship you are dealing with. The question is, what type are you
dealing with? Unlike months and days of the week, there is no
one way of ordering a list of different classes of starships. You
can't even make a guess; you just don't have enough information.
Now, let's look at the same example using a DST:

program Example2;
type

ShipType

var
ShipClass

begin
ShipClass

and.

= (NoShip,Constitution,Enterprise,Reliant,
Loknar,Larson,Chandley,Excelsior,Baker);

: ShipType;

:= Reliant;

12-3

Chapter 12 Defined Scalar Types 	 Part 2

Once again, you now have no question as to what type of ship
you're working with. Careful, clear definition of DSTs can greatly
improve the readability of the programs you write.

Declared scalar types (and, indeed, all scalar types) are inherently
ordered. In other words, there is a lowest value, a highest value,
and some number of distinct values in-between. In your data type
Months, January is the lowest value, December is the highest
value, and February through November are the values in-
between. Pascal will let you use these values just as you would
integers, with one major exception: you can't do arithmetic with
them. It's illegal (and meaningless) to , write a statement like
ShipClass:= Reliant + Enterprise;. It is, however, perfectly legal to
use DSTs in the following manner:

for ShipClass := Constitution to Baker do ...

if ShipClass >= Excelsior then ...

case ShipClass of
NoShip
Constitution,Enterpris :
Reliant
Loknar,Chandley
Larson,Baker
Excelsior

end;

In other words, DSTs can be treated almost like numeric values.
As a matter of fact, each element in a DST has an implied numeric
or ordinal value. The very first element has an ordinal value of 0;
each following element then has a value one greater than the
element before it. For example, here are all the elements of your
DST ShipType, along with their ordinal values:

12-4

Part 2 	 Chapter 12 Defined Scalar Types

Element 	 Ordinal Value

NoShip 	 0
Constitution 	 1
Enterprise 	 2
Reliant 	 3
Loknar 	 4
Larson 	 5
Chandley 	 6
Excelsior 	 7
Baker 	 8

Pascal provides some functions to help you use this ordered
relationship. Given a variable or constant value of some DST, you
can find (1) the element that comes before it (its predecessor), (2)
the element that comes after it (its successor), and (3) its numeric
(ordinal) value. The first function is called Pred; the second, Succ;
and the third, Ord. For example, let's say that you've set
ShipClass : = Reliant. These functions will now yield the following
results:

Pred(ShipClass) 	 Enterprise
Succ(ShipClass) 	 Loknar
Pred(Pred(ShipClass)) 	Constitution
Succ(Succ(ShipClass)) 	Larson
Pred(Succ(ShipClass)) 	Reliant
Succ(Pred(ShipClass)) 	Reliant

Ord(Pred(ShipClass)) 	2
Ord(ShipClass) 	 3
Ord(Succ(ShipClass)) 	4

Note that for all scalar types except Integer, Ord returns a value
greater than or equal to 0, since all scalar types except integer
start with an ordinal value of 0. For values of type Integer, Ord
returns the actual integer value, which can fall anywhere in the
range -32768 through 32767. Of course, using the Ord function
on any Integer (or Byte) expression is a waste of time anyway, so
the issue is not a critical one.

12-5

Chapter 12 Defined Scalar Types 	 Part 2

Here's another example. You've seen that you can use DSTs in
for statements, but, if you wanted to, you could build your own
loops:

ShipClass := NoShip;
repeat

ShipClass := Succ(ShipClass);

until ShipClass = Baker;

This loop would execute once for each element from Enterprise
to Baker. If you wanted to go in reverse order, you could write

ShipClass := Baker;
while ShipClass > NoShip do begin

ShipClass := Pred(ShipClass)
end;

which would start at Baker and go downwards to Enterprise. Of
course, you could achieve the same effect with

for ShipClass := Baker downto Enterprise do begin

end;

There is a subtle point to notice in your definition of the DST
ShipType. Even though you are dealing with eight types of ships,
you've defined nine elements; the extra one is your first element,
NoShip. When you define a DST, you should consider putting in
the local equivalent of 0; that is, some element that essentially
means "none of the above". There are two good reasons for this.
First, you will find yourself in situations where you really are
dealing with none of your regular values. For example, you might
have a list of ships with which you are attacking:

12-6

Part 2 	 Chapter 12 Defined Scalar Types

var
Ship 	: array [1..10] of ShipType;

(If you're not familiar with what an array is, don't worry—you'll
run into them later. Once you know what they are, come back and
look at this again, and it'll all make a lot more sense.)Suppose that
Ship[5] := Reliant, but that during the course of the game, that
ship gets destroyed. How do you keep track of that information
within the program? You have to come up with some means of
remembering that Ship[5] is gone. If you've included NoShip in
your definition of ShipType, then you can just set Ship[5] :=
NoShip, and presto! it disappears. This leads to the following
loop, which will ignore all destroyed ships (assume lndx is of type
Integer):

for Indx := 1 to 10 do
if Ship[Indx] <> NoShip then begin

end;

The code in the center of the loop will be executed for each
existing ship; all others will be ignored.

The second subtle reason of a "none of the above" element was
demonstrated earlier, when you created your own loops with
while and repeat statements. In both cases, you either started or
ended with ShipClass equal to NoShip; in other words, NoShip
acted as a "doorstop" of sorts. Without it, you would have had a
much harder time setting up the loops without going out of range,
either with Succ(ShipClass), where ShipClass = Baker, or Pred
(ShipClass), where ShipClass = Constitution. The result is either
a range error (if range checking is turned on) or an undefined
value for ShipClass (if range checking is turned off). Either case
can cause problems.

There are times when you don't need (or want) a "none of the
above" element. Take, for example, your DST Months. If you
confine your loops to for statements, then you don't need to
define a NoMonth element. On the other hand, it could still be

12-7

Chapter 12 Defined Scalar Types 	 Part 2

useful for two reasons. First, it would allow you to have a true
"undefined" date, rather than just some default date (1/Jan/00)
that was understood to be undefined. Second, it would force the
ordinal values of the elements to match the conventional values
used; Ord(April) would equal 4 instead of 3. The lesson, then, is
think carefully about how you define your DSTs.

TURBO Pascal gives you an additional feature for working with
declared scalar types, one not found in Standard Pascal. You can
convert any scalar type to any other scalar type with the same
numeric (ordinal) value. For example, you know that Ord(Reliant)
give you the Integer value 3; by the same token, ShipType(3)
returns the ShipType value Reliant. Likewise, Boolean(NoShip)
returns False, and ShipType(False) returns NoShip, since
Ord(NoShip) = Ord(False).

There are two things that you would probably like to do with
DSTs, but which you can't: directly read and write them. For
example, the statement

WriteLn('Ship Class: ',ShipClass);

will produce an error when you compile it. The same is true for a
statement such as

ReadLn(ShipOlass);

There are, however, some ways around this limitation. If you are
interested in writing out elements of a DST, you will need to
create an array (list) of strings (yes, we'll talk more about both
strings and arrays later). You could do the following:

program example3;
type

ShipType

	

	= (NaShip,Constitution,Enterprise,Reliant,
Lolmar,Larson,Chandley,Excelsior,Baker);

var
ShipClass 	: ShipType;
ShipName 	: array [ShipType] of string[12];

12-8

Part 2 	 Chapter 12 Defined Scalar Types

begin
ShipName[NoShip] 	:=
ShipName[Constitution] :=
ShipName[Enterprise] :=

(etc.)
ShipName[Baker] 	:=

'No ship';
'Constitution';
'Enterprise';

'Baker';

WriteLn('Ship Class: ',ShipName[ShipClass]);

end

Now you can write out the "value" of ShipClass by printing the
appropriate string in ShipName. Similar arrays can be set up for
each DST that you want to be able to write out. If you have several
lists like this, you may want to store the strings out in a text file
(and you'll read about those later on, as well) and then read them
in at the start of the program. In that case, your code might look
like this:

var
ShipClass :ShipType;
ShipName :array [ShipType] of string[12];
InFile 	:Text;

begin
Assign(InFile,'SHIPNAME.DAT');
Reset(InFile);
for ShipClass := NoShip to Baker do

ReadLn(InFile,ShipName[ShipClass]);
Close(InFile);

end.

This assumes that you have a text file SHI PNAME.DAT out on the
disk with the contents:

No ship
Constitution
Enterprise
(and so on...)

12-9

Chapter 12 Defined Scalar Types 	 Part 2

Using a separate data file has two advantages. First, it reduces the
size of the source and executable files, often by quite a bit if you
have long arrays to ilitialize. Second, it allows you to change the
string associated with each element without having to recompile
the program.

You have several options for reading in DST values. The first is to
make use of the array you've set up for writing the DST value out
(if, indeed, you have set up such an array). You prompt the user
for a string and search though the array until you've found it:

var
TempStr : string[12];
Found : Boolean;
{ and the rest of the declarations }

begin

Write('Enter Ship Class:'); ReadLn(TempStr);
Found := False; ShipClass := Baker;
while not found and (ShipClass > NoShip) do

if ShipName[ShipCla,ss] = TempStr
then Found := True
else ShipClass := Pred(ShipClass);

and.

Here, you start at the end of the array and work backward to (but
not including) NoShip. When you find the matching string,
Found gets set to True, and you fall out of the loop with ShipClass
set to the correct value. If ShipClass gets to NoShip, then you fall
out of the loop with Found = False and must take appropriate
action. You could, for example, put this code with the loop

repeat

until Found;

which would force the user to keep entering the string until one
matched.

12-10

Part 2 	 Chapter 12 Defined Scalar Types

This is a nice, straightforward method, and one that meshes
nicely with your output routine. The only real problem is one of
matching cases (as in "UPPER" and "lower"). For example, if the
user enters 'RELIANT', but ShipName[Reliant] = 'Reliant', then
the two aren't going to match, and Found will remain False. So,
you'll need to put some code in right after "ReadLn(TempStr);" to
convert TempStr's case to match that of the strings in ShipName.
In your example, you would need to convert TempStr[1] to upper
case and the rest of TempStr to lower case.

If you don't want to go to all that trouble—and especially if you
don't want or need ShipName for output—then there are other
ways of reading in values and converting them to DSTs. You
could, for example, take advantage of the retyping functions in
TURBO Pascal by having the user enter the ordinal value of the
element desired, then converting it to the appropriate element:

var
Indx 	:Integer,
ShipClass:ShipType;

begin

WriteLn('Ship Classes:');
for ShipClass := NoShip to Baker do

WriteLn(ShipName[ShipClass],': ',Ord(ShipClass));
repeat

Write('Enter value: '); ReadLn(Indx)
until (Ord(NaShip) <= Indx) and (Indx <= Ord(Baker));
ShipClass := ShipType(Indx);

end.

This example assumes that you did set up ShipName but decided
to use numeric (rather than string) input. It first writes out the
names of the different ship classes, along with their ordinal
values. It then goes into a repeat loop which won't let the user out
until a correct value is entered. Finally, it converts that value to the
appropriate ShipType element and assigns it to ShipClass.

12-11

Chapter 12 Defined Scalar Types 	 Part 2

There are other methods, such as prompting for a single
character, then using a case statement to convert from the
character to the DST element, but we'll leave those for now. The
upshot is this: declared scalar types can tremendously aid
program development, documentation, and maintenance, espe-
cially if you think carefully in how they are declared and used.

12.1 SUBRANGES

Besides creating brand-new scalar types, you can also define
subranges of existing (or newly-declared) scalar types. TURBO
Pascal already defines one such subrange: the type Byte, which
is a subrange of Integer. To declare a named subrange, you
simply use the form:

type
SubRange= FirstVal..LastVal;

where FirstVal and LastVal are values of a scalar type such that
FirstVal is less than Lastval. The data type SubRange can now
legally have any value from FirstVa/ through LastVal. Subranges
can also be directly declared, that is, a given variable can be
directly declared as having a subrange value, as opposed to
having to first declare the subrange. Here are some examples of
subranges (with some accompanying declarations):

coast
XMax 	= 8;
YMax 	= 10;
ShipMax = 40;

type
Days 	= (Mon,Tues,Wed,Thurs,Fri,Sat,Sun);
ShipType = (NoShip,Constitution,Enterprise,Reliant,

Lolmar,Larson,Chandley,Excelsior,Baker);

Cruiser 	= Constitution..Reliant;
Nibble 	= 0..15;
UpperCase = 'A'..'Z';
LowerCase = 'a'..'z';
WeekDays = Mon..Fri;
WeekEnd = Sat..Sun;
XRange 	= 1.XMax;
YRange 	= 1..YMax;

12-12

Part 2 	 Chapter 12 Defined Scalar Types

var
SX
SY
ShipCount
Alphas

: XRange;
: 'Mange;
: O..ShipMax;

11,...,1;

Subranges are often used as index ranges for arrays, as data
types for both arrays and records, and as part of the declaration
of a constant set. In all these functions, they serve to limit the
amount of RAM used and to set boundaries as to what values can
be used.

12.2 DIRECT DECLARATIONS

The example above showed that you can declare subranges
directly; in other words, you can write

var
ShipCount :0..ShipMax;

rather than

type
ShipRange =0..ShipMax;

var
ShipCount :ShipRange;

Being able to directly declare subranges like that saves you from
having to come up with names for every subrange that you want
to use. What you may not realize is that you can do the same for
declared scalar types, and, indeed, for any data type (array,
string, record, set, pointer, file). However, there are a few
restrictions on doing this. First, all of the variables of that data
type have to be declared at the same time and in the same place.
You can't write

var
Dayl 	: (Mon,Tue,Wed,Thu,Fri,Sat,Sun);
Day2 	: (Mon,Tue,Wed,Thu,Fri,Sat,Sun);

12-13

Chapter 12 Defined Scalar Types 	 Part 2

You'll get an error when the compiler hits the second declaration,
since the second set of days uses the same identifiers as the first
set. Instead, you would have to write

var
D ayl ,Day2 	: (Mon,Tue,Wed,Thu,Fri,Sat,Sun);

Second, you won't be able to pass any such variables as
parameters to a subroutine or procedure, since you won't have a
data type as which to declare the formal parameter. (There is a
limited exception to this—untyped var parameters—but that's a
special case.) Finally (and this is specific to DSTs) you won't be
able to do any retyping, since there isn't a DST identifier to use.

Well, this is the end of the chapter on scalars. If you take a look at
the program diskette supplied with TURBO Pascal Tutor, you will
find a program called SCALARS.PAS. You should study this
source code and make sure you understand how it works. Then
compile it (by using your TURBO Pascal diskette, of course) and
see how it runs.

12-14

Part 2 	 Chapter 13 Arrays

13. ARRAYS

In previous sections, you've learned about the five predefined
data types—Integer, Byte, Real, Boolean, and Char—as well as
declared scalar types (DSTs). A variable of one of these types can
hold only one value at a time. For example, if you define:

var
Index 	:Integer;

then Index has only one specific value at any moment. However,
there are situations where you'd like to have a list of values, such
as a list of numbers or characters. That's where arrays come in.

We've talked some about the "Trek" game, so that will be the
example here. Let's suppose that the game area is an 8 by 10 grid.
Each square in the grid is called a sector. Each sector contains (1)
0 or more stars, (2) 0 or more enemy ships, and (3) possibly one
starbase. Now, with what you've learned in previous chapters,
how would you represent the grid?

Tough, huh? Now you see why we need arrays. Simply put, an
array is a collection of variables of identical type, each one of
which may be referenced by a unique index value. For example:

var
List 	: array[1..10] of Integer,

The array List is a collection of 10 integer variables, namely,
List[1], List[2], List[3], List[4], List[5], List[6], List[7], List[8],
List[9], and List[10]. You can use any of those 10 variables
anywhere you could use any integer variable. Furthermore, the
index value doesn't have to be a literal value ('1' through '10'); it
can be any expression that resolves to an integer in the range
1..10. For example, the statement

for Index := 1 to 10 do
List[Index] := o;

would set each of those ten variables to 0.

13-1

Chapter 13 Arrays 	 Part 2

An array definition takes the form

array[index range] of data type;

The index range can be an implicit or explicit subrange of any
scalar data type (integer, char, boolean, DST), subject, of course,
to certain limits. For example, it is extremely unlikely that you
would want to define

var
BigArray : array[Integer] of Char;

since that would allocate space for some 65,000+ characters; the
implied subrange being -32,768...32767 for TURBO Pascal.
Implicit subranges are usually used with DSTs; for example:

type
Days 	= (Sunon,Tues;Wed,Thur,Fri,Sat);

var
Regular 	: array[Mon..Fri] of Integer;
Overtime : array[Days] of Integer;
Present 	: array[Days] of Boolean;

The array Regular has an explicit index range (Mon..Fri), while
the arrays Overtime and Present have an implicit index range
(Sun...Sat).

The data type of any array can be almost any data type- Integer,
Boolean, Char, Real, DST, arrays, records, sets, pointers, strings,
or even files. In fact, arrays with multiple index ranges (known as
multi-dimensional arrays) are just arrays of arrays (of arrays...).
For example, you might define your game information as follows:

var
Stars,Ships,Base : array[1..8] of array[1..10] of Integer;

To reference the elements of such an array, you can write
statements like these:

Stars[3][2] := 0;

if Base[X][Y] = 0
then WriteLn('No starbase present')
else RefuelShip;

Danger := 5 * Ships[X] [Y];
13-2

Part 2 	 Chapter 13 Arrays

In writing this, you are selecting an array, then a particular
element of that array; for example, Ships[X][Y] refers to the Yth
element of the Xth array. Both notations can get a little tiring,
especially for arrays with three or more index ranges, so Pascal
allows the following shorthand:

var
Stars,Ships,Base 	: array[1..8,1..10] of Integer;

Stars[3,2] := 0;

if Base[X,Y] = 0
then WriteLn('No starbase present')
else Refuelghip;

Danger := 5 * Ships[X,Y];

This makes for simpler code, but it can hide the fact that you are
working with arrays of arrays. Consider another solution for your
game using a 3-dimensional array:

type
Sectltem 	= (Stars,Ships,Bases);
SectArray 	= array[1..8,1..10] of Integer,

var
Sector : 	array[SectItem] of SectArray;
Temp : SectArray;

Now, you could refer to the number of stars in Sector 3-2 as
Sector[Stars,3,2], Sector[Stars] [3,2], or Sector[Stars] [3] [2]. What
you might not realize is that you could also do the following:

Temp := Sector[Stars];.

This single statement copies all of the values Sector[Stars,1,1]
through Sector[Stars,8,10] into the locations Temp[1,1] through
Temp[8,10]. Why? Because both Sector[Stars] and Temp are
defined as being of type SectArray, and TURBO Pascal will allow
direct assignment of identical array types. In fact, any operation
you could do on Temp, you could also do on Sector[Stars],
Sector[Ships], and Sector[Bases]. The key to making this work is
to define an array type—such as SectArray—and then using that
in all the appropriate declarations.

13-3

Chapter 13 Arrays 	 Part 2

This approach has some real advantages, but other consider-
ations are needed. For example, each and every location in
Sector is an integer, 16 bits' worth of information yielding over
65,000 values. But you don't really need all that space in each
location. You only need one bit (yes or no) for base information,
and only a few bits more each for ships and stars. So, if you're
concerned about space, this might be a better solution to the
problem:

const
ShipMax = 15;
StarMax = 9;
XMax 	= 8;
YMax 	= 10;

type
XRange = 1.XMax;
YRange = 1..YMax;

var
Stars 	: array[XRange,YRange] of O..StarMax;
Ships 	: array[XRange;YRange] of 0..ShipMax;
Base 	: array[XRange;YRange] of Boolean;

This approach has two advantages. First, it prevents you from
getting an "illegal" value for the numbers of stars, ships, or bases
in a given sector. If Ships[3,2] is ever less than 0 or greater than
ShipMax, you'll get a range error, which will tell you that
something has gone wrong somewhere. Second, it will reduce
the amount of memory required for your arrays. The array Sector
requires 480 bytes of memory (RAM), while the arraysStars,
Ships, and Base require a total of just 240 bytes —only half the
amount. The difference may not seem like much, but if you have
lots of arrays—or if your arrays are large—the savings can be
significant.

Another (less preferred) way of indexing is to use the {$R+}
compiler option to flag "out of range" indexing errors. The
drawback to this method is that it uses more space and slows
down compilation.

Yet another solution would be to define an array of records;
however, that will have to wait until you reach the appropriate
section in this tutorial.

13-4

Part 2 	 Chapter 13 Arrays

13.1 PACKED ARRAYS

The discussion on storage space brings up another issue.
Standard Pascal defines defines two kinds of arrays:regular
arrays and packed arrays. It also provides two procedures, Pack
and Unpack, to convert between the two types. TURBO Pascal
doesn't distinguish between the two, though it allows (and
ignores) the keyword Packed. Instead, TURBO Pascal auto-
matically attempts to pack all arrays, that is, store them in the
smallest possible space. The lowest space used is one byte per
element; for example, the array Base sets aside one byte for each
location, even though it technically needs only one bit. Why the
extra space? It allows any element of an array to be passed as a
var parameter to a procedure or function. Other Pascal imple-
mentations don't allow elements of packed arrays to be used in
that manner. One more point: since they aren't needed, the
procedures Pack and Unpack aren't defined.

13.2 ARRAY INITIALIZATION

Often you will want to initialize an array, setting all of its elements
equal to a single value. For example, suppose that you wanted to
set all of the elements in Base to False, so that you could later set
just the ones desired to True. One way of doing this would be:

for X := 1 to XMax do
for Y := 1 to Ylfax do

Base[X,Y] := False;

Of course, this takes a while to do and uses up a bit of space for
code and variables. On the other hand, you could make use of
two built-in TURBO Pascal procedures. The first is FillChar,
which takes the format

FillChar(Dest,Length,Data);

where Pest is the variable (of any sort) to be filled, Length is the
number of bytes to initialize, and Data is the value to which to set
each byte (and can be expressed either as a character or as a byte
value). You know what you want to fill—Base—and you know

13-5

Chapter 13 Arrays 	 Part 2

what you want to fill it with-0, which is Ord(False), that is, the
numeric equivalent of False. Now you just need the length in
bytes . .. which brings you to the next procedure: SizeOf. SizeOf
can take as its argument any variable or the name of any data
type.lt returns the size of that variable (or of a variable of that
type) in bytes. So, to initialize Base, you could write:

FillChar(Base,SizeOf(Base),0);

This statement will set all bits and bytes in Base = to 0. The
combination of FillChar and SizeOf is a hard one to beat,
especially for array initialization.

13.3 ORDER OF ELEMENTS

The elements of an array are stored in a specific order. The order
is different for CP/M-80 systems than for all other version of
TURBO Pascal. The following description applies to all versions
of TURBO Pascal except CP/M-80:

If the array is one-dimensional—that is, if it has only one index—
then the elements are stored in ascending order. For example,
the array List (defined as array[0..9] of Integer) stores its
elements in the order List[0], List[1], List[2], and so on... basically
what you would expect. But what about multi-dimensional
arrays? The array Stars is defined as

var
Stars 	: array[XRange,YRange] of 0..StarMax;

where SRange = 1...8. So, the question is, are the elements in
Stars stored as Stars[1,1], Stars[2,1], Stars[3,1], etc., or are they
stored as Stars[1,1], Stars[1,2], Stars[1,3], and so on? Pascal
itself gives you the answer to that question. Remember that your
definition above is just shorthand for

array[XRange] of array[YRange] of O..Starmax;

13-6

Part 2 	 Chapter 13 Arrays

In other words, Stars' first index doesn't select an element, it
selects an array[YRange] of O..Starmax. The second index
selects an element within that array, and those elements are
stored sequentially, just as in List. So Stars[1,1] says to pick the
first element of the first array; Stars[1,2], the second element of
the first array; and so on. So the elements in Stars are stored in the
order

Stars[1, 1]
Stars[1,2]
Stars[1, 3]
Stars[1, 4]
Stars[1, 5]
Stars[1, 6]
Stars[1, 7]
Stars[1, 8]
Stars[1, 9]
Stars[1,10]
Stars[2, 1]
Stars[2, 2]

Stars[8, 9]
Stars[8,10]

All you need to do is remember that the index furthest to the
right—the last index—changes the fastest. If you have the array

var
BigOne 	: array[0..3,0.4,0..5,0..2] of Byte;

then you can quickly work out that the elements are stored as

BigOne[0,0,0,0]
BigOne[0,0,0,1]
BigOne[0,0,0,2]
Big'One[0,0,1,01

BigOne[3,4,5,1]
BigOne[3,4,5,2]

13-7

Chapter 13 Arrays 	 Part 2

The above description generally applies to CP/M-80 systems,
with the following important difference:

The elements of the array are stored in descending rather than
ascending order. When you address the array, the first element is
located just as in other versions; however, additional elements
will be found in descending memory locations rather than in
ascending memory locations

13-8

Part 2 •
	

Chapter 14 Strings

14. STRINGS

—String—

When Niklaus Wirth designed Pascal, he did so in a punched-
card/mag tape/mainframe environment, where fixed-length data
were the rule. At least, that's probably the reason he was satisfied
to store a character string as a array[1..n] of Char. At any rate,
Standard Pascal does not (currently) have a predefined data type
for strings. String constants such as

coast
FileName 	= 'B:STARS.DAT';
LifeName 	= 'WHATEVER YOU WANT';

are considered to be array[1..n] of Char, where n equals the
number of characters in the string.

The early mainframe (that is, very large) computers were batch-
oriented systems. "Jobs" were "submitted" using large decks of
punched cards or reels of magnetic tapes, and the results came

14-1

Chapter 14 Strings 	 Part 2

out on a high-speed line printer. But the arrival of interactive
operating systems ("timesharing") and the CRT terminal started
a new approach to computer use. When the minicomputer
showed up, so did the first code designed to interactively
manipulate text: word processing programs. The explosive
growth of the microcomputer market over the last 10 years has
been matched by an equal growth in word processors and the
number of people using them. For all its reputation as a number-
crunching machine, the computer is used most often to move
words, not values.

The basic concept behind text manipulation is that of a string. A
string is simply a sequential list of characters of some length. For
our purposes, the characters belong to the ASCI I character set
(the back of the TURBO Pascal Reference Manual gives you the
list). The string can contain letters, digits, and punctuation. It can
even have non-printing (control) or special characters. You can
pick out parts of the string, add to it, take away from it, combine it
with other strings, print it out, read it in—in short, you can
manipulate it.

TURBO Pascal allows you to declare a variable to be of type
string, followed by a length specification. For example, you could
define the following:

var
MyName string[80];
Token 	: string[15] ;
BigString : string[255];

Note that you must specify a length for each variable. This
defines the maximum number of characters that each string can
hold. The variable MyName could hold up to 80 characters.
Token could only hold up to 15 characters, so that the statement

Token := 'this is too long a string for token';

would only store the first 15 characters ('this is too Ion') into
Token. The last variable, BigString, represents the maximum
length possible for a string-255 characters.

14-2

Part 2 	 Chapter 14 Strings

The data type string[n] can be thought of as an array[0..n] of
Char. For example, you can reference individual characters in
Token using the notation Token[1], Token[2], and so on. The first
location, Token[0], contains the current length of Token. If you
execute the statement

Token := 'this string';

then Token[0] contains the value 11, since there are 11 characters
in'this string'. However, you could not do something like this:

program Example;
var

Token 	: string[15];
Len 	: Integer;

begin
Token.: = 'this string;
Len := Token[0];
WriteLn('The length of token is ',Len)

end.

Why not? Because Token[0] is of type Char, and you can't assign
a character to an integer. You could, however, substitute the
statement

Len := Ord(Token[0]);

which would return the ordinal (numeric) value of Token[0],
which happens to be 11.

Using the array notation, you can play with any individual
character of a string. As mentioned above, each element of a
string is a variable of type Char, and you can treat it as such. For
example, you might want a procedure to convert all letters in a
string to uppercase ('A'..'Z'):

14-3

Chapter 14 Strings 	 Part 2

procedure LowToUp(var Str : string[255]);

purpose 	converts characters in Str to upper case
last update 27 Oct 85

var
Indx,Len 	: Integer;

begin
Len := Length(Str); 	{ more on this later }
for Indx := 1 to Len do

Str[Indx] := UpCase(Str[Indx]) {built-in TURBO func}
end; { of proc LowToUp }

A caveat (warning) is in order. You should avoid trying to mess
with any elements beyond the current length of the string.
TURBO Pascal won't give you any sort of error, but you need to
be aware that you've just changed a portion of the string that
won't print out unless you change the length as well. (Note that if
you use the {$R+} compiler directive, and error message will
display.)

You've already seen that you can assign string constants to string
variables (Token := 'this string'). You can also read and write
strings through textfiles (which will be discussed in a later
section). Most notably, you can read and write strings through
the predefined textfiles, Input and Output. For example, this
program allows you to type in a line (up to 80 characters!) and
then writes it back out to the screen. It continues to do this until
you type, "I quit!":

program Echo;
var

Line 	: string[80];
begin

WriteLn('Entering echo mode—type "I quit!" to exit');
repeat

ReadLn(Line);
WriteLn(Line)

until Line = 'I quit!'
end. { of program Echo }

14-4

Part 2 	 Chapter 14 Strings

Now, let's make the following modifications to your program
(don't worry about the file stuff; yes, you'll learn about that later,
too):

program MicroWord;
var

Line 	: string[80];
OutFile 	: Text;

begin
Write('Enter file name: '); ReadLn(Line);
Assign(OutFile,Line); Rewrite(OutFile);
WriteLn('Entering insert mode—type "I quit!" to exit');
repeat

ReadLn(Line);
if Line < > 'I quit!'

then WriteLn(OutFile,Line)
until Line = 'I quit!';
Flush(OutFile); Close(OutFile)

end. f of program MicroWord }

Voila! You've just written a word processor. However complex or
sophisticated they may seem, all word processing programs
eventually boil down to the program above. Start with this
program, add modifications, and eventually you'll have your own
text editor.

14.1 STRING COMPARISONS

Just like numbers, strings can be compared to each other. In the
program MicroWord, you checked to see whether the string
variable Line was equal to the string constant 'I quit!'. The
comparison is simple. First, the lengths of the two strings are
compared. If they're different, then the strings are not equal. If
they're the same, then the characters in the two strings are
compared, starting with the first one and continuing until (1) two
characters are different or (2) all characters have been compared.
In case (1), the strings are not equal; in case (2), they are. You
could even write a function to show this comparison:

14-5

Chapter 14 Strings 	 Part 2

function StrEqual(Strl,Str2 : Bigtr) : Boolean;

purpose 	show how strings are compared for equality
Note well:this function is *not* necessary,
since "Strl = Str2" will perform the same
comparison.

var
Len,Insix 	: Integer;
Flag 	: Boolean;

begin
StrEqual := False;
Len := Length(Strl);
if Len = Length(Str2) then begin

Inc := 1;
Flag := True;
while Flag AND (Indx <= Len) do

if Strl [Indx] = Str2[Indx]
then Indx := Indx + 1
else Flag := False;

StrEqual := Flag
end

end; { of func StrEqual }

Once again, please understand that you do not need this
function. This just shows how the Boolean expression Strl = Str2
comes up with a value of True or False.

Similar comparisons occur when you want to see if one string is
"greater than" or "less than" another. For example, let's suppose
you're sorting a list of names into alphabetical order. At some
point, you'll compare two strings to find which comes before (is
less than) the other. The statement

if Strl > Str2 then ...

will take some action if and only if Str2 comes before Strl. The
comparison algorithm can be described as follows:

1. Point to the first character of each string

2. Compare the two characters

3. If they are not the same, go to 8.

14-6

Part 2 	 Chapter 14 Strings

4. Get the next two characters

5. If they're both there, go to 2.

6. If only one string has characters left, then it is greater than the
other

7. Otherwise, neither string has characters left, so neither is
greater than the other (they're identical!). Stop

8. One character has a greater ASCII value than the other. The
string that character came from is greater than the other
string. Stop

To summarize, you have three cases. First, both strings are the
same length and have the same contents. In that case, they're
equal. Second, both strings have the same contents up to the end
of one string; the other string has additional characters beyond
that point. In that case, the shorter string is less than the longer
one. In the last case, the strings cease to match at some point (it
may even be the first character). In that case, the string whose
unmatched character has the lower numeric (ordinal) value is
less than the other string.

14.2 STRING FUNCTIONS AND PROCEDURES

Another useful aspect the TURBO Pascal string definition is that
it includes more that just the data type string. It also defines a set
of functions and procedures which work on strings. The table at
the end of this chapter lists all of them, but we'll go over each one
at a time (and not necessarily in the order given).

The most commonly-used function is probably Length(St),
which was used in a few of the examples above. It's really just
another way of writing Ord(St[0]); that is, it returns the current
length of St. This is not to be confused with the maximum
possible length of St. For example, the program

14-7

Chapter 14 Strings 	 Part 2

program LengthTest;
type

SmaMgt' 	= string[15];
var

Test 	: SmallStr;

procedure ShowLength(St : SmallStr);
begin

WriteLn('length of <',St,'> is ',Length(St))
end; { of proc ShowLength }

begin
Test := 'hello, there';
ShowLength(Test);
Test := 'hi';
ShowLength(Test);
Test := ";{ null string }
ShowLength(Test)

end. { of program LengthTest }

will produce the output

length of <hello, there> is 12
length of <hi> is 2
length of < > is o

The next most commonly-used function is probably Concat. You
can use it to patch several strings together. It's handy for inserting
string variables in the middle of fixed messages. For example, this
program

program Concatenation;
var

Name,Message: stwing[30];
begin

Write('Please enter your name:');
ReadLn(Name);
Message := Concat('Hello, ',Name,' how are you?');
WriteLn(Message)

end. { of program Concatenation }

14-8

Part 2 	 Chapter 14 Strings

produces this output:

Please enter your name: Deirdre
Hello, Deirdre, how are you?

Besides the explicit function Concat, TURBO Pascal also lets you
piece together strings using the plus sign (+). For example, you
could change the third statement in your program above to read

Message := 'Hello, ' + Name + ', how are you?';

This has exactly the same effect as the Concat function, and you
may find it easier to use.

There are two things you have to be aware of when concatenating
strings. First, as mentioned above, if the resulting string is longer
than the variable can hold, the extra characters will be thrown
away. More importantly, if the resulting string is longer than 255
characters, you'll get a run-time error, and your program will
come to a screeching halt (unless you have used the compiler
option, in which case you would have gotten an error during
compilation).

Right up there with Concat is the function Copy, which allows
you to pull out part of a string (called a substring). It takes as
parameters the string itself and the substring's location and
length. The code

Name := 'Deirdre Ann Webster';
Middle := Copy(Name,9,3);
WriteLn('Your middle name is ',Middle);

would produce the output "Your middle name is Ann".

Of course, the example above depended upon knowing right
where 'Ann' started in the string. Suppose you knew what string
you were looking for, but didn't know where it started? You could
use the function Pos to find it. Given a substring or pattern, and
the string in which to search for it, Pos returns the location of the
start of the substring. If it can't find the substring, Pos returns 0.
Your code could now look like this:

14-9

Chapter 14 Strings 	 Part 2

Name := 'Deirdre Ann Webster';
Loc := Pos('Ann',Name);
Middle := Copy(Name,Loc,3);
WriteLn('Your middle name is ',Middle);

The Delete procedure lets you remove a section of a string. Like
Copy, it requires the string, the starting position, and the number
of characters to delete. For example, you could change the code
above to read

Name := 'Deirdre Ann Webster';
Loc := Pos('Ann',Name);
Delete(Name,Loc,4); { need to cut out an extra blank }
WriteLn('Your name is ',Name);

which would then write out "Your name is Deirdre Webster",
having deleted the string 'Ann '.

Combined with Pos and Copy, Delete can be used to parse a
string, that is, to pull off a chunk at a time. Let's suppose that you
want to write a procedure that will pull the first word off a string,
where a "word" is defined as any substring starting with a non-
space character and followed by a space. Our procedure might
look like this:

14-10

Part 2 	 Chapter 14 Strings

procedure Parse(var Line,Word Biggtr);

purpose removes first word in <line> and returns it in <word>

comfit
Space 	=

var
Indx,Len :Integer,

begin
while Pos(Space,Line) = 1 do{ remove leading blanks }

Delete(Line,1,1);
Len := Pos(Space,Line); 	{ look for blank }
if Len = 0 then begin { no blanks left }

Word := Line; 	{ get word }
Line := " 	{ zero out line

end
else begin { get word and delete from line }

Word := Copy(Line,1 ,Len-1); 	{ get all but blank }
Delete(Line,l,Len) 	 delete word plus blank }

end
end; { of proc Parse }

The next procedure, Insert, is the reverse of the Copy/Delete
operation: it takes one string and stuffs it somewhere inside
another. You just specify the string you want to insert, the string
into which it's to be inserted, and the location of the the insertion.
For example, if you wanted to put Deirdre's middle name back in,
you could use the following code:

Name := 'Deirdre Webster';
Middle := 'Ann';
Insert(Middle,Name,Pos('Webster',Name));
Insert(",Name,Pos('Webster',Name));
WriteLn('Your full name is ',Name);

Note that you use the Pos function to figure out where to insert
'Ann' and also where to insert a blank (to separate 'Ann' and
'Webster').

Token expansion is one good use for Insert. Suppose you were
writing a program to take a form letter and put in the appropriate

14-11

Chapter 14 Strings 	 Part 2

names, dates, and so on. Within the form letter, these fileds might
be represented by tokens; for example, the salutation might look
like this:

Dear <title> <last name>:

The program could scan through the form letter, list all the tokens
(which all have the form <...>), then get the information to
replace them (interactively, from a file, etc.). The following
procedure, then, might be of use:

procedure Replace(var Line : BigStr; Token,Sub TokStr);

	

purpose 	look for Token in Line and replace with Sub

var

	

Indx,Len 	: Integer;
begin

repeat
Indx := Pos(Token,Lin.e);
if Indx > 0 then begin

Delete(Line,Indx,Length(Token));
Insert(Sub,Line,Indx)

end
until Indx = 0

end; { of proc Replace }

The statements

Line := 'And so, <title> <last>, the entire <last> family';
Replace(Lin.e,'<title>','Dr.');
Replace(Line,'<last>','Lewis');
WriteLn(Line);

would produce

And so, Dr. Lewis, the entire Lewis family

This should give you a clue on how all that "personalized" junk
mail that you receive is generated.

14-12

Part 2 	 Chapter 14 Strings

14.3 NUMERIC CONVERSIONS

TURBO Pascal provides two procedures for converting numbers
to strings and vice versa. These two procedures work in a fashion
similar to Read and Write, which you've had some exposure to
and which will be discussed more in a later section. The first
procedure, Str, will convert a number into a string, formatting it
much as it would for text output. The number can be either
Integer or Real, and you can specify the width format just as you
can for output. Here are some calls to Str, along with the resulting
strings (for our purposes, X = 4.281953E3 and I = 14916; S is
defined as string [12]):

call to Str contents of S

Str(X:12:3,S); " 	4281.953"
Str(X:12:0,S); 4282"
Str(X:10:7,S); "42819530000"
Str(-X:12:5,S); " 	-4281.95300"
Str(X: 5:4,S); "42819530"
Str(I:12,S); 14916"
Str(I: 5,S); "14916"
Str(-I: 7,S); "-14916"
Str(I: 3,S); "14916"

Notice that Str does, indeed, behave like numeric output. The
string length is set equal to the field width; if the width is too small
(such as X:10:7, X:5:4, or1:3), it is increased to fit the number. If the
field is wider than is necessary, then the number is right-justified,
that is, blanks are put in front of the number to fill out the
remaining space. In the case of real numbers, rounding off is
done when needed.

The second procedure, Val, converts from a string to a number
(again, either Real or Integer). The string itself must contain
exactly a number and nothing else; no characters other than
digits, except for '+ ' , ' - ' , ' . ' , and 'E' in the appropriate places. And,
of course, the number in the string must be of the same type as
the variable to which Val is converting it. Since there are so many
chances for error, Val has a third parameter—a result value-

14-13

Chapter 14 Strings 	 Part 2

which tells you whether or not there were any problems. If the
result is 0, then there were no problem during the conversion. If
the result is greater than 0, then it indicates the character
(S[Result]) at which it ran into problems. Here are a few
examples:

If S holds
the string:

"14916"

then VAL(S) =

14916 	0

result code

" 32" <undef> 1 {space}
"4281.953" 4281.953 0
"-332.3" -332.3 0
"-332.3 " <undef> 7 {space}
"4,281" <undef> 2 {comma}

Before doing any heavy-duty numeric conversions, you would be
well advised to read the Formatted Output section of Chapter 18,
to get a good understanding of the concept of field widths.

A word of caution for those of you using 8-bit (CP/M) systems: do
not use Str or Val within a function that is itself called within a
Write or WriteLn statement. Strange and undesirable things will
happen as a result. Instead, call the function beforehand,
assigning its value to some variable, then use that variable in the
Write/WriteLn statement. Those of you with 16-bit machines
(CP/M-86, MS-DOS) needn't worry about any of this.

14.4 STRINGS AS PARAMETERS

You've probably noticed in these examples that whenever we
pass a string to a procedure or function, we've defined that
parameter as something like BigStr. or TokStr, rather than
string[255] or the like. For example, we used

procedure Parse(var Line,Word : BigStr);

instead of

procedure Parse(var Line,Word string[255]);

In TURBO Pascal, you cannot directly declare a parameter as
being a string of some given length. Instead, you must declare a

14-14

Part 2 	 Chapter 14 Strings

data type that is equivalent to a string of some length, then use
that data type in the parameter declaration, like this:

program ParseText;
type

BigStr 	= string[255];

procedure Parse(var Line,Word : Bigtr);

You have to take one other factor into account. When you call a
procedure or function that has string parameters, and those
parameters are declared as var, that is, they can be changed by
the procedure, then the string variables you pass must be
declared to have the same length as the parameters. For example,
suppose you added a procedure like this to our example above:

procedure DoParsing;
var

TLine,TWord 	: string[80];
begin

Write('Enter line: '); ReadLn(TLine);
WriteLn('Parsed line: 1);
while Length(TLine) > 0 do begin

Parse(TLine,TWord);
WriteLn('<',TWord,'>')

end
end; { of pros DoParsing }

If you tried to compile the program with this addition, you would
get a type mismatch error when it got to the line Parse(TLine,
Tword);. Why? Because TLine and TWord are declared to be of
length 80, while Parse is expecting two strings of length 255. This,
of course, can cause real problems if you're trying to write some
general-purpose routines (such as LowToUp) to handle all
different strings. The reason for the error is to prevent you from
returning too long a string or indexing into "random" memory
(that is, beyond the end of the string). You can, however, disable
this error checking by putting a compiler option at the start of

14-15

Chapter 14 Strings 	 Part 2

your program (more about these later in the book). All you have
to do is to place the following comment somewhere before the
call to Parse; you could, in fact, put it at the top of your file, like
this:

{$V}
program ParseText;

TURBO Pascal will then no longer check to see if the string
lengths match. Like most "disable" options, you should use this
with caution; if you aren't careful with passing different length
strings (that is, strings with different defined maximum lengths)
to the same procedure, you could get some bizarre errors. One
method would be to disable the checking for each specific call,
such as

{VV-} { turn off string checking }
Parse(TLine,Tword);
{$V+} { turn on string checking}

That way, you will be turning it off for only those places where
you actually do not need it.

14.5 STRINGS, CHARACTERS, AND ARRAYS

TURBO Pascal makes it easy to mix references to strings,
characters, and arrays. You can use strings and characters
interchangeably; in other words, you can use a string almost
anywhere you use a character, and vice versa. There are,
however, a few exceptions. First, you can not use a character as a
parameter to a procedure or function where a var parameter of
some string type is expected. For example, if you have a variable
Ch of type Char, you couldn't write

UpToLow(Ch);

14-16

Part 2 	 Chapter 14 Strings

since UpToLow wants to pass a string back. The {$V-} option
won't even work (and it's probably just as well). Second, if you
assign a string to a character, the string must have a length of
exactly 1; a longer or smaller (null) string will result in a run-time
error.

In a similar fashion, you can use variables that are declared as
array of Char as strings, again with a few restrictions. You can't
assign string variables to arrays, nor use arrays as var string
parameters. You can assign string constants to arrays if the
constant is exactly the same length as the array.

Here is a program which demonstrates many of the ways in which
you can mix strings, characters, and arrays of characters.
Try to predict ahead of time what your output will look like; then
key it in and run it, and see how close you were.

program Test;
type

BigStr 	= string[255];
var

Stl,St2 	: string[40];
Chl,Ch2 	: Char;
Value,Code : Integer;
Arl ,Ar2 	: array [0..9] of Char;

procedure PutLen(St : BigStr);
begin

WriteLn(St,': ',Length(St))
end; I of proc PutLen 1

14-17

Chapter 14 Strings 	 Part 2

main body of program Test
begin

Chl := 'A'; Ch2 := 'Z';
St1 := 'The alphabet goes from' + Chl + ' to ' + Cb2;
Arl := '0123456789';
PutLen(Arl);
St2 := ',)'•
Chl := St2;
Ch2 :='1';
PutLen(St1);
PutLen(St2);
WriteLn('Chl in St2: ',Pos(Chl,St2));
WriteLn('Cli2 in Arl : ',Pos(Ch2,Arl));
Val(Ch2,Value,Code);
WriteLn(Ch2,";Value,",Code);
Stl := Ch2;
Art := '0000000012';
Val(Ar2;Value,Code);
WriteLn(Ar2,";Value,",Code);
St2 := Arl;
PutLen(St2)

end. { of program Test)

Now, here is the table I promised you earlier in the chapter. This
sort of brings all of the string procedures and functions together
into one location, so you can easily compare what they do.

STRING PROCEDURES AND FUNCTIONS

Function which returns string composed of S1
through Sn concatenated together; the plus sign
(+) can also be used
Function which returns string composed of
St[Index]..St[Index+Size-1]
Procedure which deletes Size characters St
starting at St[Index]
Procedure which inserts St1 into St2 starting
at St2[Indexj
Function which returns current length of St
Function which returns position (index) of Pat
within St
Procedure which converts Val (Integer or Real)
into a string and stores it in St
Procedure which converts St into Val (Integer or
Real) and sets Index to the position of any error
occurring (0 = none)

Concat(S1,S2,...,Sn)

Copy(St,Index,Size)

Delete(St,Index,Size)

Insert(St1,St2,Index)

Length (St)
Pos(Pat,St)

Str(Val,St)

Val (St,Val,Index)

14-18

Part 2
	

Chapter 15 Records

15. RECORDS

BYB

—Records and Files—

You've learned about arrays, which allow you to create collections
of objects of the same type, indexed by some sort of value. But
what if you want a collection of objects of different types? You
could declare an array for each data type, but that could get
tedious and complicated. Pascal offers another solution:records.

The record data structure is massively useful, if handled correctly.
It allows you to glue together a lot of different data types into a
single structure. The basic definition of a record is:

15-1

Chapter 15 Records 	 Part 2

record
<Identl> : <DataTypel>;
<Ident2> : <DataType2>;

end;

A record consists of a number of fields (Identl, ldent2, and so
on). Each identifier can be of any data type or structure, including
integer, boolean, real, char, DST, array, record, set, or pointer. To
refer to a field, you give the variable's name, a period, and then the
field's name, such as:

VarName.Identl

In the section on arrays, a few attempts were made to define the
information for sectors in the "Trek" game. Let's see if a new
approach, using records, might not work best. Suppose you
define the following:

program Trek;
coast

StarMax 	 = 9;
ShipMax 	 = 15;
XMax 	 = 8;
YMax 	 = 10;

type
XRange 	 = 1.XMax;
YRange 	 = 1..YMax;
ASector =

record
Ships 	 : 0..S hipM ax;
Stars 	 : O..StarMax;
Base 	 : Boolean

end;
var

Sector 	 : array[XRange;YRange] of ASector;

Note well that Ships, Stars, and Base are not elements of a
declared scalar type, nor are they separate arrays; they are field
identifiers for the record type ASector. Accordingly, you would
refer to the number of stars in sector 3-2 as Sector[3,2].Stars.
Note also that in setting up this record, you've restricted the
possible values of the fields Stars and Ships to a very small

15-2

Part 2 	 Chapter 15 Records

subrange of integers, and you've changed Base into a boolean
variable. You thus avoid two problems: (1) having your variables
take on legal but nonsensical values (such as -34 stars), and (2)
using too much memory.

You may remember that in the section on Arrays, you used two
approaches: a 3-dimensional array of integers that used up 480
bytes, and three separate arrays that used a total of 240 bytes.
This array of records also uses only 240 bytes and has the
additional advantage of holding all of the sector information in
one spot (rather than spread out over three arrays).

This record example is a fairly simple one:just three fields, each
on its own line. Let's work on a more complicated example.
Suppose that you wanted to model each of the stars in a sector as
a solar system, complete with planets. You might make a fairly
simple definition for the planets and systems:

type
PlanetClass 	= (Terroid,Jovoid,Asteroid);
StarClass 	= (0,BAZGX,MAX);
StarSize 	= (SubDwarf,Dwarf,Normal,Giant, SuperGiant);
Planet 	= record

Dist,Angle,Radius,Mass,Gravity
Real;

Class 	: PlanetClass
end;

System =
record

SX,SY 	: Byte; location w/in sector }
Class 	: StarClass;
Size 	: StarSize;
Mass,Radius,Temp,Luminosity

: Real
end;

Not a whole lot of information, but enough to get read-outs on the
"bridge status display." Notice that you can define several fields
of the same type at the same time (SX and SY; Dist, etc.). Had you
wanted to, you could have given each one a separate line; it isn't
necessary, but it can help for documentation purposes.

15-3

Chapter 15 Records 	 Part 2

15.1 THE "WITH" STATEMENT

Let's suppose you have the following definitions:

coast
XMax 	 = 8;
YMax 	 = 10;
ShipMax 	 = 15;
StarMax 	 = 9;

type
XRange 	 = 1.XMax;
YRange 	 = 1..YMax;
ASector =

record
Starbase 	 : Boolean;
SbX,SbY 	 : Byte;
Ships 	 : 0..ShipMax;
Stars 	 : 0..StarMax

end;

var
Sector 	 : arrEw[XRange,YRange] of ASector;

You've defined an array of records which you can now use in
your program. If you wished to clear the entire sector of starbases
and enemy ships, you might do this:

for X := 1 to XMax do
for Y:= 1 to YMax do begin.

Sector[X,Y].Starbase := False;
Sector[X,Y].SbX := 0;
Sector[X,Y].SbY := 0;
Sector[X;Y].Ships := 0;
Sector[X;Y] .Stars := 0

end;

As you can see, this could get very tedious, especially for more
complicated records and/or actions. Luckily, Pascal gives you a
shorthand means of referring to all those fields: the with
statement. This takes the form

with <record id> do <statement>;

15-4

Part 2 	 Chapter 15 Records

Within the statement, you can refer to all of the fields of the record
id without having to specify it each time. Instead, the base
address of record id is calculated when the with statement is
found, and that address is used to offset all of the fields. This
makes it very handy for use in loops. For example, you could
rewrite your initialization code as:

for X := 1 to XMax do
for Y := 1 to YMax do

with Sector[X,Y] do begin
Starbase := False;
SbX := 0;
SbY := 0;
Ships := 0;
Stars := 0

end;

Note that the with statement is inside of the two for statements.
This is critical, for it ensures that Sector[X, Y] refers the desired
element of the array. If you had written

with Sector[X,Y] do
for X := 1 to XMax do

for Y := 1 to YMax do begin

end;

then the base address would be calculated just once: before you
entered the two loops, and using whatever the values of X and Y
were before the loops started.

You can nest with statements, and you can also list more than one
record identifier in a single with statement. For example, you
could write the following:

15-5

Chapter 15 Records 	 Part 2

type
RecTypel =

record
Fieldl 	: Integer;
Field2 	: Real

end;
RecType2

record
Fie1(13 	: string[20];
Field4 	: Boolean

end;
var

Recl 	 : RecTypel;
Rec2 	 : RecType2;

begin
with Recl do begin

Fieldl 	:= 32;
Field2 	:= 17.76;
with Rec2 do begin

Str(Fieldl,Field3);
Field4 	:= (Field2 > 3.14159)

end;
Fieldl 	:= Length(Rec2.Field3)
end.

end.

or you could modify the main body to read

begin.
with Reel ,Rec2 do begin

Fieldl 	:= 32;
Field2 	:= 17.76;
Str(Fieldl,Fiek13);
Field4 	:= (Field 2 > 3.14159);
Fieldl 	:= Length(Field3)

end
end.

In the first example, you had to explicitly identify Rec2 when
assigning the first character of Field4 to Field3 of Recl. In the
second example, you could do a direct assignment.

There are a few pitfalls you much watch for in using the with
statement. First, if you have more than one record defined in a

15-6

Part 2 	 Chapter 15 Records

given with, or if you have nested statements, make absolutely
sure that the records don't have fields with the same name.
Suppose you changed the definition of RecType2 to read:

RecType2 =
record

Fieldl 	: string[20];
Field2 	: Boolean

end;

Now Recl and Rec2 have fields with the same names. If you then
write something like

with Reel ,Rec2 do begin
WriteLn(Fieldl);
WriteLn(Field2)

end;

which record's fields will be written out? The answer: Rec2, since
it was the last defined in the list. Likewise, if you have nested with
statements, the record last appearing has precedence over any
others. In this example, problems are unlikely to occur since the
data types of the identically-named fields are different; an attempt
to assign a value will either go to the correct field or will result in a
compiler error. But what if both records had Fieldl defined as
type Integer? In that case, you might unknowingly assign a value
to the wrong field. The moral:avoid identically-named fields
unless you're very sure of what you're doing.

A similar problem can occur when you create a field that has the
same name as a variable:

program BadExample;
type

RedI'ype =
record

Name 	 : string[25]
Age 	 : Integer

end;

15-7

Chapter 15 Records 	 Part 2

var
Rec 	 : RecType;
Name 	: string[25];

begin
Name := 'J. Michael Browning';
with Rec do begin

Name := 'Bob Trammel';
WriteLn(Name)

end;
WriteLn(Name)

end.

Can you guess what the output of this program is? If you guessed

Bob Trammel
J. Michael Browning

you're absolutely correct. Again, much like the rules of scope you
learned about in Chapter 11, the last declaration takes prece-
dence. In this case, the with statement acts as a declaration.
Again: be careful with identical identifiers.

15.2 VARIANT RECORDS

Occasionally, you may define a record with redundant or
mutually exclusive fields. For example, consider the following
record definition:

15-8

Part 2
	

Chapter 15 Records

type

Government 	= (Federation,Klingon,Romulan,Trader);
AShip =

record
SX 	 : XRa.nge;
SY 	 : YRange;
QX,QY 	 : Byte;
Energy 	 : 0..1023;
Source 	 : Government;
Phaser,Disruptor,Beaml ,Beam2

: Byte;
Photon 	: 0..15;
Torpedo 	: 0..7;
Plasma 	: 0..9;
Cloaked 	 boolean

end;

Let's suppose that Federation ships have Phaser and Photon
weapons; Klingons have Disruptors and Torpedos; Romulans
have Beam and Plasma weapons, along with Cloaking devices;
and Traders have no weapons at all. That means that each and
every ship record has four unused fields and, therefore, wasted
space. If you only have a few records, the space won't matter
much; if you have a lot, it can become significant. Yet, the records
are so similar that it seems silly to define three different records.
Furthermore,if you want to put all the ships in a single array or file,
you have to stay with one record. What do you do?

Well, Pascal allows you to create a record with conditional fields,
called a variant record. To create a variant record, you define a
tag field, which is just a field of some scalar type (often a declared
scalar type). This field goes after all the fixed (non-varying) fields
and is used as the argument in a case statement. For each
possible value of that field, you define the desired exclusive fields.
For example, you might rewrite your definition of AShip as
follows:

15-9

Chapter 15 Records 	 Part 2

type

Government
AShip =

record

= (Federation,Klingon,Romulan,Trader);

SX : 	XRange;
SY : 	YRange;
QX,QY : 	Byte;
Energy
case Source

: 	0..1023;
: 	Government of

Federation : 	(Phaser : Byte;
: 	Photon : 0..15);

Klingon : 	(Disruptor : Byte;
Torpedo : 0..7);

Romulan : 	(Beaml,Beam2 : Byte;
Plasma : 0..9;
Cloaked : Boolean);

Trader
end;

For each value of Source, you define the fields that exist for that
case, enclosed within parentheses. Note that even if there are no
fields at all, you still need to put in the parentheses.

You may wonder what good this all is. First, it cuts down on the
size of the record. Why? Because the fields for each variant
occupy the same space. In other words, the fields Phaser,
Disruptor, and Beam1 all reside at the same location in memory,
rather than each having their own separate slot. The result is less
memory required for each record of that type. The original
definition required 15 bytes per record; this variant record takes
up only 11 bytes. That may not seem like a whole lot, but consider
this example:

15-10

Part 2
	

Chapter 15 Records

type

Government
	

= Federation,Kling,Romulan, Trader);
Sides 	 = (Forward,FPort,FStarboard,APort,

AStarboard,Aft);
Weapons 	 = array[Sides] of Byte;
AShip =

record.
SX
	

: XRange;
SY
	

: YRange;
QX,QY
	

Byte;
Energy 	 : 0..1023;
case Source 	: Government of

Federation 	: (Phaser
	

Weapons;
Photon 	 array[Sides] of 0..15);

1Clingon 	: (Disruptor
	

Weapons;
Torpedo 	 array[Sides] of 0..7);

Romulan 	: (Beaml ,Beam2
	

Weapons;
Plasma 	 array[Sides] of 0..9;
Cloaked
	

Boolean);
Trader

end;

You've replace a single byte value with an array of six bytes in
several places. A variable of this type now takes up 26 bytes.
However, if you declared this as a non-variant record, it would
require 50 bytes, or nearly twice as much room. If you had an
array or file of these records, the difference could be very
important, indeed.

There is a second, more esoteric aspect of variant records. Since
certain fields now occupy the same space, you can set the value
of one field and have it transfer over to another. As mentioned
above, the fields Phaser, disruptor, and Beam1 all occupy the
same space. Because of that, we could do the following:

var
ThisShip 	: AShip;

begin
with ThisShip do begin

Phaser[1] := 72;
WriteLn(Disruptor[1])

end
end

15-11

Chapter 15 Records 	 Part 2

which would write out "72". What good is this capability? Well, it
allows for certain advanced programming tricks. For example,
assuming an 8-bit system, you could define something like this:

type
BigStr 	= string[255];
StringPointer=

record
case Flag : Boolean of

True : (Addr : Integer);
False 	(Ptr: ^BigStr)

end;
var

VStr 	: StringPointer;
begin

VStrAddr 	:= $B000;
VStr.Ptr" := 'This string is being written at $B000'

end.

Now, you can write a string at any given location in memory. Of
course, since you don't always know what is sitting at a given
memory location, this can be dangerous. That's why it's for
advanced programming efforts.

Here's one more variation on variant records. Sometimes you
want the variations, but you don't really care about the tag field.
The StringPointer above is a good example. You're interested in
Addr and Ptr, but you don't need or want Flag. In those cases,
Pascal allows you to dispense with the tag field altogether. For
example, you could rewrite StringPointer as:

type
BigStr 	= string[255];
StringPointer =

record
case Boolean of

True 	: (Addr 	: Integer);
False 	: (Ptr 	: ^BigStr)

end;

Note that you no longer have the tag field, Flag; you just have the
tag field type, Boolean. This is known as a free union (as opposed
to a discriminated union, one with a tag field).

So much for records. Now, let's move on to sets...

15-12

Part 2 	 Chapter 16 Sets

16. SETS

There are times when you want to test a scalar variable (Integer,
Byte, Char, Boolean, DST) to see if its current value belongs to a
set or collection of values. For example, suppose you want to
write a subroutine that will write out . a prompt for the user and
then accept and return only a character belonging to an
allowable set of characters. Using what you know now, how
would you do that?

If you're really clever, you might come up with something like
this:

type
CharSet 	 : array[Char] of Boolean;

var
OKSet 	 : CharSet;

You could then set each location in OKSet to the appropriate
value (True or False) and use that to check the characters read in.
Unfortunately, this approach tends to eat up lots of memory (128
bytes per CharSet) and program space. Fortunately, it's not
necessary. Pascal handles sets for you by letting you define sets.

A set can be defined for any scalar data type, though there is one
restriction: the numeric (ordinal) values of the data type (or
subrange of a data type) used must range between 0 and 255. For
example, you could not define a set of Integer, but you could
define a set of Byte, or even a set of 21..47. This restriction also
means that you can never have more than 256 items in a set.

A set constant is enclosed by brackets ("[" and "]"), with the
elements of the set defined within. You can list each element
separately; however, that could get tedious for sets with lots of
elements (remember, you can have up to 256!). If a number of the
elements are in contiguous (numerical or ordinal) order, you can
use subrange notation as a type of shorthand. Here are some
examples of sets:

16-1

Chapter 16 Sets 	 Part 2

[] 	 { empty set— contains nothing
[1,3,5,7,9] 	 { set of Byte }
['A'..'Z'] 	 { set of Char }
[Mon,Tue,Thur] 	{ set of Days }
[Jan..Jun,Aug,Oct..Dec] { set of Months }
[Loknar,Chandley] 	{ set of ShipType }

As mentioned, a set can hold up to 256 different elements, all of
the same data type. It stores the presence of each element as a
single bit; as a result, a set can be at most 32 (256/8) bytes and is
not always that large.

The usefulness of sets is not always obvious. In fact, it can be
hard at times to think of anything to do with them. However,
here's an example that may show one very good use for sets:

program Chariest;
{ 	 { to avoid any problems passing strings }
type

CharSet 	 = set of Char;
Prompt 	 = string[80];

var
Cmd 	 : Char;

procedure GetChar(var Ch : Char; Msg : Prompt;
OKSet : CharSet);

begin
repeat

Write(Msg); ReadLn(Ch);
Ch := (UpCase(Ch); 	{ force to be upper case }
until Ch in OKSet

end; { of proc GetChar }
{ 	main body of CharTest }
begin

repeat
GetChar(Cmd,'CharTest> S)peak, Count, Q)uit:

['S','C','Q']);
case Cmd of
'S' : WriteLn('Woof Woof1');
'C' : WriteLn('1, 2, 3, 4, 5, 6, 7, 8, 9, 10')

end
until Cmd ='Q'

end. { of prog CharTest

16-2

Part 2 	 Chapter 16 Sets

The procedure GetChar is extremely useful for input processing.
It prompts the user with a message, then accepts a single
character response. It converts the character to uppercase, then
checks to see if it's a valid command. If not, it continues to prompt
until a correct selection is entered. To see how and why this
works, you need to understand about set comparisons.

16.1 SET COMPARISONS

The key of GetChar is the set comparison in, which takes the
form:

<element> in <set>

The term element must be an expression of the same type as set's
base type. If set is a set of Char, then element must resolve to a
single character. This expression returns True if and only if
element is currently in set; otherwise, it returns False. In this
example, Ch in OKSet returns True if the value of Ch is in the set
OKSet. Here, Ch must be S, C, or Q in order for this expression to
be True. Note that GetChar converts any letters received to upper
case, so that this expression will be True if the user types s, c, or q,
as well. Without this conversion, those letters would be ignored,
since lower case letters are different from upper case letters.

Besides testing for membership in a set, you can also make
comparisons between sets themselves. Two comparisons are
obvious: equality (=) and inequality (< >). The other two, "<="
and ">=", are for set inclusion. The expressions

Setl <= Set2
Set2 >= Setl

will return True if all the elements in Seti are also in Set2.
Suppose you have the following:

16-3

Chapter 16 Sets 	 Part 2

type
ShipType 	 = (Constitution,Enterprise,Reliant,Lolmar,

Larson,Chandley,Excelsior,Baker);
ShipSet 	 = set of ShipType;

var
AllShips,Frigates,Destroyers,Cruisers,Battleship,Temp

: ShipSet;
begin

AllShips 	 := [Constitution..Baker];
Frigates 	 := [Loknar,Chandley];
Destroyers 	 := [Larson,Baker];
Cruisers 	 := [Constitution..Reliant,Excelsior];
Battleship 	 := [Excelsior];
Temp 	 := [Constitution..Baker];

end.

Given this, the following expressions have the values shown:

AllShips = Temp 	 True
AllShips = Cruisers 	False
Frigates < > Destroyers 	True
BattleShip <= Cruisers 	True
Temp >= AllShips 	 True
Destroyers <= AllShips 	True
Cruisers <= Battleship 	False
[<= <any set> 	 True

16.2 SET OPERATIONS

As has been mentioned, sets represent collections of values of a
scalar data type (Integer, Byte, Boolean, Char, or a declared
scalar type). You've seen how to compare sets; you can also
perform several operations on them. Let's assume the following
definitions:

type
ShipType 	 = (Constitution,Enterprise,Reliant,Loknar,

Larson,Chandley,Excelsior,Baker);
ShipSet 	 = set of ShipType;

var
Set' ,Set2,Set3rAllSets,Empty

: ShipSet;

16-4

Part 2 	 Chapter 16 Sets

begin
AllSets 	 := [Constitution..Baker];
Setl 	 := [Constitution..Reliant,Excelsior];
Set2 	 := [Loknar,Larson,Chandley,Baker];
Set3 	 := [Enterprise,Loknar,Baker];
Empty 	 :=

end.

The first operation to look at is set intersection, which uses the
multiplication symbol (*). The intersection of two sets is a set
containing all the elements common to both sets. For example,
here are some intersections, along with the resulting sets:

Setl * Set2 	[]
Set2 * Set3 	[Lolmar,Baker]
Set3 * AllShips 	[Enterprise,Lokriar,Baker]
AllShips * Empty 	[]

In each case, the result is a set containing the elements that
appear in both sets. In two cases (the first and the last), there were
no elements in common, so the result was the empty set.

The second operation is set union, which uses the plus sign (-F).
The union of two sets is the set containing all the elements in both
sets. Here are some examples:

Setl + Set2 	[Enterprise..Baker] (= AllShips)
Set2 + Set3 	[Enterprise,Loknar,Larson,Chandley,Baker]
Set3 + Setl 	[Constitution-Loltnar,Excelsior,Baker]
AllShips + Empty 	[Enterprise..Baker]

The third and last operation is set difference, which uses the
minus sign (-). The difference of two sets is the set containing all
of the elements in the first set that are not in the second set. Note
well that, unlike set intersection and set union, the set difference
operation is not commutative; that is, Sett -Set2 is not the same
as Set2 -Sett . Here are some examples:

16-5

Chapter 16 Sets 	 Part 2

AllShips - Set1 	[Loknar..Chandley,Baker] (= Set2)
AUShips - Set2 	[Constitution..Reliant,Excelsior]

(= Setl)
Setl - AllShips 	[]
Setl - Set2 	[Constitution..Reliant,Excelsior]
Setl - Set3 	[Constitution,Reliant,Excelsior]
Set3 - Set1 	[Loknar,Baker]
Set3 - Set2 	[Enterprise]
Set2 - Set3 	[Larson,Chandley]

Note that if SetA - SetB = [] (the empty set), then SetA and
SetB are mutually exclusive, that is, they have no elements in
common.

16-6

Part 2
	

Chapter 17 Pointers

17. POINTERS AND
DYNAMIC ALLOCATION

—Pointers—

From time to time, you will find yourself wanting to be able to
create and destroy data structures while a program is actually
executing. Let's recall the Ship data type from the chapter on
records:

coast
Xhiax 	 = 8;
YMax 	 = 10;

type
XRange 	 = 1.XMax;
YRange 	 = 1..YMax;
Government 	 = (Federationjilingon,Romulan,Trader);
Sides 	 = (Forward,FPort,FStarboard,APort,

AStarboard,Aft);
Weapons 	 = array[Sides] of Byte;

17-1

Chapter 17 Pointers

AShip =
record

Part 2

SX XRange;
SY YRange;

QX,QY Byte;
Energy
case Source

0..1023;
Government of

Federation (Phaser : Weapons;
Photon : array[Sides] of 0_15);

Klingon (Disruptor
Torpedo

: Weapons;
array[Sides] of 0..7);

Romulan (Beaml,Beam2 : Weapons;
Plasma : array[Sides] of 0..9;
Cloaked : Boolean);

Trader
end;

()

Now, let's suppose that the number of ships in existence during
the course of a game varies widely. What kind of data structure
would you use to be sure you could handle all (reasonable)
cases?

One possible solution, using arrays, might look like this:

var
Ships 	 : array[1..MaxShips] of AShip;
ShipCount
	

: O..MaxShips;

where MaxShips is a const value representing the maximum
number of ships allowed during the game. The variable Ship-
Count would be initially set to 0. Each time a new ship was
created, the next free slot in Ships would be used:

if ShipCount < MaxShips then begin
ShipCount := ShipCount + 1;
CreataShip(Ships[ShipCount])

end
else WriteLn('No more space for ships');

The procedure CreateShip is one that you would write. It would
set all of the fields of Ships[ShipCount] to the appropriate initial
values. When a ship was destroyed, say Ships[Indx], then you
would "shuffle down" all the ships from Indx+1 to ShipCount like
this:

17-2

Part 2 	 Chapter 17 Pointers

for Jndx := Indx+1 to ShipCount do
Ships[Jndx-1] := Ships[Jndx];

ShipCount := ShipCount - 1;

This method is fine, but has two drawbacks. First, you (the
programmer) must decide ahead of time the maximum number
of ships possible (MaxShips). The program will never be able to
handle any more ships than that. Second, space (memory) will
always be allocated for the maximum number of ships, regardless
of how many are actually in use. If you defineMaxShips to be 100,
then you can never have more than 100 ships, and space for 100
ships will always be set aside even if you only have one or
two. These are common limitations in most languages, but
Pascal does offer a way around them: pointers.

17.1 POINTERS

Suppose you modify the definition of Ships as follows:

var
Ships 	 : array[1..MaxShips] of ^AShip;
ShipCount 	 : O..MaxShips;

If you'll look closely, you'll see that Ships is no longer an array of
AShip but of ^AShip. The notation " on a data type refers to a
pointer to the data type. In other words, Ships is no longer 100
records (or whatever MaxShips is), but 100 pointers to records.
"What's the difference?", you may ask. Simple. The record is
some collection of data. The pointer is an address. If you still
don't see the distinction, consider this: what's the difference
between 100 people and the phone numbers of 100 people? With
either one, you can talk to 100 people, but you need an
auditorium for the former; for the latter, you just need a phone
and sufficient room for the people you choose to summon. The
analogy is a little rough, but you should get the idea.

The next question is, how do you use a pointer? Or, better put,
how do you use the record that the pointer points to? Answer:by
pointing to it. If Ships is an array of ^AShip (that is, pointers to
records of type AShip), then Ships[1] is a pointer—that is, an

17-3

Chapter 17 Pointers 	 Part 2

address—and Ships[1] ,, is the record to which it is pointing. In
other words, by sticking a carat (^) at the end of the pointer
variable, you now refer to the data structure to which it points. For
example, if you wanted to set the energy level of all currently
allocated ships to 1023, you would do the following:

for Infix :=Number to ShipCount do
Ships[Indx]".Energy := 1023;

Note well that you cannot write Ships[Indx].Energy := 1023, since
Ships[Indx] is a pointer, not a record of type AShip. The carat
makes a big difference.

The third question is, how do you point the pointer? In other
words, how do you assign an address to the pointer, and how do
you ensure that the address the pointer contains represents an
area of memory that is not being used by anything else (operating
system, program, other pointers, etc.)? Answer: Pascal does it for
you via the predeclared procedure New. For example, your ship
initialization routine could look like this:

if ShipCount < MaxShips then begin
ShipCount := ShipCount + 1;
New(Ships[ShipCount]);
CreateShip(Ships[ShipCount]^)

end
else WriteLn('Maximtun number of ships allocated');

Note that the procedure New takes a pointer as its argument. It
allocates the necessary amount of memory and sets the pointer
to the appropriate address. Also, note that there is a special
pointer value called nil which is used to indicated pointing at
nothing. Its special value is usable on all pointer types.

17.2 THE HEAP

The procedure New creates a new copy of the appropriate type of
data structure. For example, the statement

New(Ships[ShipCount]);

17-4

Part 2 	 Chapter 17 Pointers

creates a new record of type AShip, the address of which
Ships[ShipCount] now contains. You may recall that a variable of
type AShip takes up 26 bytes. The question is, just where are
those 26 bytes? They're not in the array Ships, which just
contains pointers. Instead, they have been allocated in an area of
RAM known as the heap. Loosely put, the heap consists of
whatever memory is left over after allocating space for the
operating system (CP/M, CP/M-86, MS-DOS), TURBO Pascal (if
loaded), the run-time library, your program, and any variables
declared within the program (such as Ships).

If you're using an 8-bit system (with a maximum of 64K), have
TURBO Pascal loaded, and are running a large program, then the
heap may be very small; possibly as little as 1K, enough to hold
about 40 AShip records. On the other hand, if you're using a
16-bit system with lots of RAM, then the heap can be very big.
How big? A program running under MS-DOS 2.0 on a 512K
system has over 430K of memory in the heap, or enough space
for about 17,000AShip records. Because of those variations, and
because of the different operating systems involved, it's hard to
discuss specifics of how the heap works; that information is best
gleaned from the OS-specific appendices in the TURBO Pascal
Reference Manual.

Having read all that, you're probably still wondering how the
heap is used. When your program starts running, a special
variable (HeapPtr) points to the start (or bottom) of the heap.
When you call New(Ptr), then Ptr gets the value of HeapPtr, and
HeapPtr is increased by the size of the data structure that Ptr
points to. In other words, the sequence is something like this:

Ptr := HeapPtr; 	HeapPtr := HeapPtr + Size0f(Ptr");

Repeated calls to New causes HeapPtr to "grow" upwards,
reducing the space remaining on the heap. You can find out at
any time just how much free space is left on the heap via the
standard function MemAvail. For 8-bit systems, MemAvail returns

17-5

Chapter 17 Pointers 	 Part 2

the number of bytes left on the heap; for 16-bit systems, the
number of paragraphs (16-byte chunks). MemAvail returns an
Integer value, which means that it will be negative if there are over
32K bytes/paragraphs free. You can convert it to a positive
number with the following code:

var
TrueFree 	: Real;

begin
TrueFree := MemAvail; 	convert to real value}
if TrueFree < 0.0

then TrueFree := TrueFree + 65536.0;
WriteLn('Space available: ',TrueFree:7:0)

end.

17.3 LINKED LISTS

You've partially solved your problem—you no longer have to
allocate space for the maximum number of ships—but you still
have to decide ahead of time what that maximum number is. And
since that means that you always have to allocate space for that
many pointers, you may not have gained that much of an
advantage. Is there no way around this problem?

Obviously there is, or else you wouldn't be reading this. The
answer lies in creating what is known as a linked list. At this point,
there is a temptation to refer you to Chapter 2 in the book
Fundamental Algorithms (2nd ed.) by Donald E. Knuth (Addison-
Wesley; Reading, Massachusetts; 1973) and leave it at that.
However, having brought the subject up, there results a certain
obligation to tell you something about it. Here goes.

Let's modify the definition of the record AShip as follows:

17-6

Part 2
	

Chapter 17 Pointers

type

AShipPtr 	 = ^AShip;
AShip =

record
SX 	 : /Mange;
SY 	 : YRange;
QX,QY 	 : Byte;
Energy 	 : 0..1023;
Shields,Beams 	: Byte;
Next 	 : AShipPtr

end;

You may realize that you just have violated the Great Underlying
Rule of Pascal, namely that no identifier can be referenced until it
has been declared. As you can see, you defined AShipPtr to be a
pointer to type AShip before you defined AShip. This ability is a
necessary exception, since without it linked lists would be
impossible (or, at least, very messy).

Having modified your data structure, you now define your
variables as follows:

var
First,Last 	 : AShipPtr
ShipCount 	 : Integer;

At the start of the game, you would initialize your variables as
follows:

First := nil;
Last= nil;
ShipCount := o;

(The predefined identifier nil represents the value a pointer has
when it's not pointing at anything.)When you wish to create a
new ship, you call your procedure AddShip:

17-7

Chapter 17 Pointers 	 Part 2

procedure AddShip;
begin

if First = nil then begin
New(First);
Last : = First

end
else begin

New(Last(' .Next);
Last := Lasti• Next

end;
Last(•.Next := nil;
ShipCount := ShipCount + 1;
CreateShip(Lasti•)

end; { of pros AddShip }

(Note that you have a special test for creating a ship when none
exist.) The pointer First always points to the first ship in the list.
Each ship then points to the next one in the list via the field Next.
The pointer Last always points to the last ship in the list. If there is
only one ship in the list, then First and Last both point to it. If there
are no ships at all in the list (the list is empty), then both First and
Last equal nil.

Now that you can create the list, how do you reference a
particular ship in it? With the array it was easy: all you had to do
was index into the array and hey, presto! there it was. With the
linked list, you have to look for it. Here's a procedure to do just
that. It takes the index value and returns a pointer to the
appropriate ship (if it exists):

procedure FetchShip(Index : Integer;
var Ptr : AShipPtr);

begin
Ptr := First; 	{ point at first ship in list }
while (Index > 0) and (Ptr < > nil) do begin

Index := Index - 1;
Ptr := Ptr^.Next

end
end; { of pros FetchShip }

If Index is less than or equal to 0, then Ptr points to the first ship in
the list. If Index is greater than the number of ships in the list, then
Ptr gets set to nil. Otherwise, Ptr points to the appropriate ship.

17-8

Part 2 	 Chapter 17 Pointers

17.4 DEALLOCATION AND MEMORY MANAGEMENT

At this point, you need to know about how to reclaim the memory
used by a pointer when you no longer need the data structure it
points at. TURBO Pascal provides two approaches to memory
management. One method is to use the predefined procedure
Dispose to reclaim the memory pointed to by a given pointer.
Going back to your array of pointers (Ships), you could delete a
particular ship this way:

if Ships[Indx] < > nil
then Dispose(Ships[Indx]);

This would set Ships[Indx] equal to nil and make the memory that
it had used available for other pointers. If you just wrote

Ships[Indx] := nil;

then the memory would not be reclaimed because the pointer
would simply be pointing at nil.

Even when memory is reclaimed (via Dispose), there arise the
problems of memory management, fragmentation, and garbage
collection (honest, that's what it's called!). Without going into all
of the gory details (again, see Knuth), here's a brief, simple
description of the problem.

Think of the heap (the memory used for dynamic allocation) as a
long, narrow shelf. Each time you create a variable using New,
you place a wooden block (width = amount of memory needed)
somewhere on the shelf where it will fit. Some decision has to be
made about where to place it. That's memory management. Each
time you destroy a variable using Dispose, you remove the
corresponding block from the shelf. After repeated calls to New
and Dispose, you can find that the free space on the shelf is tied
up in lots of small, often useless chunks between blocks. That's
fragmentation. To reclaim all of those little chunks, you shove all
of the wooden blocks together and move them to one end of the
shelf. Now, all of the free space is in one large chunk. That's
garbage collection. It all sounds easy, but in practice it can be a
real headache.

17-9

Chapter 17 Pointers 	 Part 2

TURBO Pascal supports New, Dispose, and MaxAvail (which
returns the size of the largest free block of memory on the heap),
but it does not have a garbage collection facility. If, however, all
the data structures you create and destroy are the same type, or
even just the same size, then fragmentation and garbage col-
lection are not problems. Why? Because any gap that appears
because of a given item being disposed will be exactly the right
size for any new item being created. In other words, if all the
wooden blocks on the shelf are the same size, then you'll never
have a problem adding and deleting them (except, of course,
when you run out of space altogether).

If you foresee problems using Dispose, you might consider
TURBO's alternate memory management scheme, a very simple
one. When you create variables using New, the blocks are placed
next to each other, starting at the left end of the shelf (low
memory). At any point, you can use the procedure Mark to get the
address where memory for the next variable would be allocated.
You can then continue to create variables. Later, you can call the
procedure Release with the value you received from Mark. This
effectively clears everything off the shelf that's to the right
(above) the address passed to Release. Variables now created
will be allocated starting at the address read when you called Mark.

There are some important things to note here. Let's suppose that
you executed the following code:

First := nil;
ShipCount := 0;
Mark(TempPtr);
for Indx := 1 to 10 do

AddShip;
Release(TempPtr);

You have created 10 ships, then reset your next-free-location
pointer (called the heap pointer) to where it was before those ten
ships were created. This has done nothing to affect the linked list of
ships. All the information is still there, all of the pointers are still cor-
rect. The call to Release has no effect until the next time you call
New. At that time, the newly-created data structure would start to
overwrite the linked list. If you then read the linked list, funny
things could result. The moral? If you use Mark and Release, be
sure to set to nil any pointers pointing into the freed-up memory.

17-10

Part 2 	 Chapter 18 Files

18. FILES

Throughout this book, you've probably noticed the heavy
emphasis Pascal places on data structures: scalar variables,
declared scalar types (DSTs), records, arrays, sets, and the like. It
is no coincidence that when Niklaus Wirth, the father of Pascal,
wrote a book on software development, he entitled it Algorithms=
Data Structures + Programs. You've seen all kinds of data
structures in the examples in this book, and you've been shown
just how powerful they can be.

But, as always, a new problem has cropped up. Sure, you can
define packed records with variant tag fields, or you can create
arrays of sets of DSTs. But what happens when the program
ends, as it sooner or later must? All your data structures quietly
vanish away, and the information they hold is lost. Of course, you
often don't care; when the program is done, you're done, too, and
you no longer need the information. There are times, however,
when you would like to save that data for the next time you run the
program. For example, if you are playing a game, you may want
to (or have to) stop for a while (hours, days, weeks). It could be
disastrous to have to start over again from scratch.

There is, of course, a solution to this problem: files. A file is a
collection of data structures, all of the same type. It is similar to an,
array, but with one big difference: most of the information is out
on a disk. If that doesn't tell you much, don't worry. The following
example should help clear things up:

18-1

Chapter 18 Files 	 Part 2

coast
ShipMax 	 = 40;
XMax 	 = 8;
YMax 	 = 10;

type
XRange 	 = 1.2:Max;
YRange 	 = 1..YMax;
AShip

record
SX 	 : XRange;
SY 	 : YRange;
QX,QY 	 Byte;
Energy 	 : 0..1023;
Shields,Bearns 	: 0..255

end;
var

ShipFile 	 : file of AShip;
Ship 	 : array[1..ShipM ex] of AShip;
ShipCnt 	 : 0..ShipMax;

The array Ship is a collection of 40 records of type AShip. All of
those records are always in memory, and any one of them can be
referred to using the notation Ship[Indx], where lndx is an integer
variable or expression resolving to a value from 1 to 40 (ShipMax).
All the information in Ship is lost when the program is done.

The file ShipFile manages a collection of some number of
records of type AShip. All of those records are kept out on mass
storage (floppy disk, hard disk, RAM disk, whatever). ShipFile
represent a "door" through which you can get or put individual
records. However, it does it in a manner somewhat different from
Standard Pascal. Standard Pascal uses the file variable (ShipFile)
as a pointer; you then use the standard procedures Put and Get to
copy records to and from the file. TURBO Pascal simply uses the
Read and Write statements, along the same lines as textfile I/O.

The best way, of course, to show you what this all means is to give
an example. Let's suppose that you've been playing , your game
for a while, and you want to quit, but you want to be able to
resume your game later. Among other things, you need to save
on the disk the information in Ship. The variable ShipCnt
indicates how many of the records in Ship you are actually using.
You then could write those records out to disk as follows:

18-2

Part 2 	 Chapter 18 Files

Assign(ShipFile,'SHIPS.DAT');
Rewrite(ShipFile);
for Indx := 1 to ShipCnt do

Write(ShipFile,Ship[Indx]);
Close(ShipFile);

I assign to a file on disk
{ open the file for writing}

{ put the next record out)
{ close and save the file}

The Assign statement connects the file variable ShipFile to the
name "SHIPS.DAT". No disk file has actually been accessed at
this point. The Rewrite statement, however, does cause some
action. A file named SHIPS.DAT is now created out on the disk; if
a file by that name already exists, it is erased. The file variable
points at the first (0th) record in the file; the file itself is empty.
Each call to Write copies the record contained in Ship[Indx] out
to the disk file and advances to pointer to the next position. Close
makes sure that any records being held in memory by the
operating system are actually written out to the disk. and closes
out the file, breaking the connection between ShipFile and
"SH I PS. DAT".

You've saved the ship information out to disk and have stopped
playing. Now, after a while, you want to start the game up again
where you left off. Among other things, you need to read the
records you saved back into Ship. One problem faces you,
though: how does the program know how many records there are
in the file? Answer: it doesn't need to. Instead, Pascal provides
the boolean function EOF. EOF stands for end of file. As you read
the file, EOF returns a False value until you hit the end; then it
returns True. You can now read in the records as follows:

Assign(ShipFile,'SHEPS.DAT'); 	{ assign to a disk file}
Reset(ShipFile); 	 { open the file for reading
ShipCnt := 0; 	 { # of ships in array)
while not EOF(ShipFile) do begin

ShipCnt := ShipCnt + 1; 	{ yes, there is another ship}
Read(ShipFile,Ship[ShipCnt]);

end;
Close(ShipFile); 	 { close file}

The Assign statement works as before. This time, though, you
use Reset to start reading from the file. If SHIPS.DAT doesn't
exist, you'll get an I/O error (see the section on Error Handling
later on); otherwise, the file variable will point at the first (0th)
record. Each call to Read copies the record currently pointed at

18-3

Chapter 18 Files 	 Part 2

into Ship[ShipCnt] and then points at the next record. If there is
no next record, then the function EOF starts returning True, and
you drop out of the end of the loop. Since you didn't know ahead
of time how many records there were, you had to count them (by
incrementing ShipCnt) until you reached the end of the file.

Actually, with TURBO Pascal, you could have found out ahead of
time just how many records there were (though it really wouldn't
matter). The function FileSize will return the number of records in
a file, so you could have written:

Assign(ShipFile,'SHIPS.DAT');
Reset(ShipFile);
ShipCnt := FileSize(ShipFile);
for Indx := 1 to ShipCnt do

Read(ShipFile,Ship[Indx]);
Close(ShipFile);

Both approaches work equally w611; the second one has the
advantage of letting you know ahead of time just how many
records you have to read in (in case that's important).

In this example, ShipFile was a file of records of type AShip. You
can define a file of anything (except files), so you could have
done this instead:

type

AShip =
record

SX 	 : Xiiange;
SY 	 : YRange;
QX,QY 	 : Byte;
Energy 	 : 0..1023;
Beams,Shields 	: 0..255

end;
ShipArray 	 = array[1.2hipMax] of AShip;

var
Ship 	 : ShipArray;
ShipFile 	 : file of ShipArray;
ShipCnt 	 : 0.2hipMax;

18-4

Part 2 	 Chapter 18 Files

Now, to save the information in Ship, you could write:

As sign(hipF ile,' SHIPS .DAT') ;
Rewrite(ShipFile);
Write(ShipFile,Ship);
Close(ShipFile);

Simple, isn't it? With a single Write statement, you have sent all
the ship records out to the disk. To read it back in, you just write:

Assign(ShipFile,'SHIPS.DAT');
Reset(ShipFile);
Read(ShipFile,Ship);
Close(ShipFile);

Unfortunately, you've now lost track of one piece of information,
namely the value of ShipCnt. However, there are a number of
ways around this. First, you could redefine ShipArray to be a
record with two fields: the ship count and the array itself. Second,
you could save the value of ShipCnt in another file, either by itself
or as part of another data structure. Third, you could add another
field to the definition of AShip which would indicate whether or
not that record was, indeed, a "real" ship; then, after you've read
Ship in, you just go through and count all of the records with that
value set. Finally, you could rewrite the game so that the value
ShipCnt is no longer needed.

18.1 RANDOM ACCESS OF FILES

From what you've seen so far, to read or write a particular record
in a file, you must go to the start of the file and work from there. If
you wish to read the 10th record in a file, you must reset the file
and go through the first nine records to get to the tenth. If you
want to modify the tenth record, you must read it in as mentioned,
reset the file, read in the first nine, then write the 10th back out. In
short, a lot of work.

18-5

Chapter 18 Files 	 Part 2

Now let's suppose that you want to sort that file in some way.
Your sorting program would have to do a lot of reading from and
writing to the file, using the clumsy procedure above. If the file is
small enough, you can read the entire thing into memory, sort it
there, then write it back out. If it isn't, you're in fora long, tedious
program.

Your task would be easier if you could read and write any given
record in the file without having to go back to the start and read all
the preceding records. Such a capability is known as random
access of files, as opposed to the sequential access described
above. Since this is such a desirable trait, TURBO Pascal offers it
to you via the Seek statement, taking the form

Seek(FileVar,RecNum);

where FileVar is the file variable and RecNum is an integer
variable or expression indicating the record number. After
executing such a statement, Read(FileVar,Rec) will copy record
#RecNum into Rec, while Write(FileVar,Rec) will write the data
inRec out to record number #RecNum in the file. Since (as
mentioned above) the first record is record #0, the statement

Seek(FileVar,O);

will point to the first record in the file. By the same token, the
statement

Seek(FileVar,FileSize(FileVar)-1);

will point at the last record in the file. Seek can, in fact, be used to
expand a file, that is, to add records onto the end of it. The
statements

Seek(FileVar,FileSize(FileVar));
Write(FileVar,Rec);

will append Rec onto the end of the disk file that FileVar is
assigned to. You can continue to do this until you run out of disk
space. Note, though, that you cannot seek beyond FileSize(File
Vat.); that, too, will result in an I/O error.

18-6

Part 2 	 Chapter 18 Files

There is one more function that TURBO Pascal provides for
random access of disk files: FilePos. The expression FilePos(File
Var) returns the number (O..FileSize) of the record that FileVar is
currently pointing at.

18.2 TEXT FILES

Pascal differs from BASIC, FORTRAN, and several other lan-
guages in that it writes data files as binary files, rather than text
files. In other words, Pascal stores a two-byte integer value as a
two-byte integer value, not as a character string several bytes
long, with spaces and carriage returns as delimiters. This results
in smaller data files and faster disk I/O (since there is no
conversion from data to ASCII and back). This also allows you to
do things like read in or write out an entire array with a single
command, rather than having to use intricate loops and heavily
formatted I/O statements.

Often, though, you do need to read and write text files—for
example, when you are reading in user-entered data or writing
out reports or other information. Pascal allows for that, too. You
can use the predefined data type Text, which is equivalent to file
of Char. (The latter is not available in TURBO Pascal.) So, for
example, you could define:

program FileTest;
var

InFile,OutFile 	: Text;
begin

Assign(InFile,'INPUT.TXT');
Reset(InFile);
Assign(OutFile,'Oun'uT.TXT');
Rewrite(OutFile);

end. { of program FileTest }

You can now read in text from InFile, and write it out to OutFile,
using the following procedures:

18-7

Chapter 18 Files 	 Part 2

Read(F,P1,...,Pn)

Readln(F,P1,...,Pn)

Write(F,P1,...,Pn)

WriteLn(F,P1,..,Pn)

reads in the variables P1 through
Pn from text file F
reads as above, plus advances to
next line
writes variables P1 through Pn into
text file F, all on same line
writes as above and advances to next line

These routines are pretty much what they appear to be. The
parameters can be variables (and, for Write and WriteLn, con-
stants and expressions) of type Integer, Real, Char, and String
(Write/WriteLn can also handle Boolean). ReadLn and WriteLn
don't need to have parameters at all; they can simply be used to
read and write end-of-line markers. If you leave the file variable
(F) out, then Read and ReadLn default to keyboard input, while
Write and WriteLn default to screen output.

Let's say that you wanted to write out the data for your game in
textfile format, and had InFile and OutFile declared as Text. Our
game save routine might look like this:

Assign(OutFile,'SHIPS=);
Rewrite(OutFile);
WriteLn(OutFile,ShipCnt:4);
for Infix := 1 to shipcnt do

with Ship[Inclx] do begin
Write(OutFile,SX:4,SY:4,QX:4,QY:4);
WriteLn(OutFile,Energy:5,Beams:4,Shields:4)

end;
Close(OutFile);

(The formatting notation, p:n, means to right-justify the value of p
within a field of n characters. More on this later.)

Your ship information has now been stored out as a text Tile, one
which you could edit or print. If you had three ships, at various
locations, with full energy (1023), and with beams and shields set
at 0, the file SHIPS.TXT might look like this:

3
7 2 50 175 1023 0 0
3 10 199 12 1023 0 0
5 5 0 47 1023 0 0

18-8

Part 2 	 Chapter 18 Files

Having saved your game information as text, you can (and must)
read it back in the same way. The following code would suffice:

Assign(InFile,'SHIPS.TXT');
Reset(InFile);
Readln(InFile,ShipCnt);
for Indx := 1 to ShipCnt do

with Ship[Indx] do
ReadLn(InFile,SX,SY,QX,QY,Energy,Bearns,Shields);

Close(InFile);

18.3 THE EOLN FUNCTION

Earlier, we discussed the Boolean function eof(f) which tells you
when you've reached the end of a file. However, text files have an
additional delimiter: end of line. At times, you may want to read in
a line item by item and know when you've hit the end of the line.
How can you tell? By using the Boolean function eoln(f), which
tells you just that.

Let's suppose that you have the following text file:

342 3 	1123
41 1772 1 2 33 5
65
441 233 23 67

You don't know ahead of time how many numbers there are on a
line, but you still need to read them in. The following chunk of
code will read them into an array:

program eolntest;
coast

nummax 	 = 50;
var

text;
array[1..nummax] of integer,
integer;

infile :
numlist :
numcnt :

18-9

	

Chapter 18 Files 	 Part 2

begin

	

reset(infile); 	 { again, this will vary

	

numcnt := 0; 	 { nothing in array yet}
while not eof(infile) and (numcnt < nummax) do begin

while not eoln(infile) and (numcnt < nummax) do begin
numcnt := numcnt + 1;
read(infile,numlist[numcnt])

end;
readln(inflle); 	{ read in end of line}

end;
for indx := 1 to numcnt do

writeln(inumlistU,indx:2,1 = `,numlist[indx]:5); close(infile)
end. { of program eolntest }

In the innermost loop, you read numbers off of a line, one by one,
until you hit the end of the line (eoln). You then advance to the
next line (using readln) and continue the process until you either
hit the end of the file (eof) or have filled up the array (numcnt =
nummax). At the end, for a check, you write all of the values out to
the screen.

18.4 FORMATTED OUTPUT

Pascal has been accused of having lousy I/O capabilities, usually
by people who are familiar with BASIC, FORTRAN, etc., and who
are used to the extensive I/O formatting commands available.
Actually, TURBO Pascal has extremely powerful I/O capabilities
and is capable of doing things that cannot even be done if you're
programming in BASIC or FORTRAN.

TURBO Pascal contains formatting capabilities. You can write
out Integer (and Byte), Real, Char, Boolean, and String values
(variables, constants, expressions). For all of those, you can
specify a field width, using the notation Parm:N, where N is the
width (in characters) of the field. If N is greater than the number of
characters that Parm actually requires, then blanks are added in
front of Parm to expand it to the proper width (this is called
right-justification, because you're forcing Parm to be flush with—
or justified against—the right-hand side of the field). For example,
the statements

18-10

Part 2 	 Chapter 18 Files

Indx := 16421;
WriteLn('This field is too narrow:',Indx:3);
WriteLn('This field isjust right:',Indx:6);
WriteLn('This field is too wide :',Indx:15);

would produce

This field is too narrow:16421
This field is just right 16421
This field is too wide : 	16421

Note that if you specify a field that is too narrow, the field
automatically expands by the minimum amount necessary to
write the value out. Specifying no field at all is equivalent to giving
one that is too short: just enough space is allocated to write the
value out, and no more. This can cause problems if you're writing
more than one value per line. For example, if you had written

Write(OutFile,SX,SY,QX,QY);
WriteLn(OutFile,Energy,Beams,Shields);

in the code to save the ship information out to a text file, the file
SHIPS.TXT would look like this instead:

3
7250175102300
31019912102300
55047102300

Reading the information back in would be impossible, since you
would be unable to separate the fields into their different values.
So it pays to use a width specifier whenever appropriate.

As mentioned above, you can write out Boolean values, with or
without a width parameter. The values translate into the strings
'TRUE' and 'FALSE', so that the statements:

Flagl := True; Flag2 := False;
Writeln('Flagl: ',Flagl :5,' Flag2: ',Flag2:5);

would produce the output

Flagl: TRUE Flag2: FALSE

18-11

Chapter 18 Files 	 Part 2

You cannot, however, read in TRUE and FALSE as boolean
values. Instead, you would have to read them in as strings and
convert accordingly.

Real values have their own special output rules for TURBO
Pascal. If no field width is specified, then the value is written out in
an 18-character-wide field, with the format

bsd.ddddddddddEtdd 	where b = blank (")
s = blank or'-'
d = digit ('0'..19')
t = '+' or „

If a single field width (Parm:N) is given, then the same basic
format is used, with some adjustments for field width:

sd.<d>Etdd 	where is 0 or more blanks
<d> is 1 to 10 digits

The minimum value for N is 7 (8, if Parm < 0.0). As N gets large,
the number of digits is<d> expands until it hits 10. After that, the
number of blanks in starts increasing. The format given
above for no width parameter is equivalent to Parm:18.

You can specify a second field width for reals (Parm:N:M). In that
case, M represents the number of digits after the decimal point
that should be displayed, and fixed-point (rather than floating
point) notation is used. M must be less than or equal to N-3. If M
equals 0, then no decimal point and no following digits are
displayed. If M is greater than 24, then floating-point notation is
used.

If all of this seems confusing, here are some examples to show
you how everything works:

18-12

	

Part 2 	 Chapter 18 Files

program FormatDemo;
const

	

Pi 	= 3.1415926535;
begin

WriteLn(P1);
WriteLn(P1:8);
WriteLn(-P1:8);
WriteLn(P1:12);
WriteLn(P1:16);
WriteLn(Pi:20);
WriteLn(P1:8:0);
WriteLn(P1:8:4);
WriteLn(P1:12:10)

end. { of program FormatDemo }

will produce the output

3.1415926535E+00
3.14E+00
-3.1E+00
3.141593E+00
3.1415926535E+00

3.1415926535E+00
3

3.1416
3.1415926535

18.5 FILENAMES

TURBO Pascal runs under CP/M, CP/M-86 and MS/DOS (a
version is available for each), so it follows the file conventions of
each system, which are essentially the same: a file name of up to
eight (8) letters and/or digits, with an optional 3-character
extension. If the extension exists, it is separated from the file
name by a period. For example, the following file names are
acceptable:

thisfile
thx1138
simple.pas
simple.exe
stars.dat

18-13

Chapter 18 Files 	 Part 2

If you use these file names "as-is", then your program will
assume that they are on the currently logged drive (as defined
either by TURBO Pascal, if it's loaded, or by the operating system
prompt "X>", where "X" is the logged drive). You can, of course,
explicitly state which drive the file is on by appending the drive
name in front of the file name:

azthisfile
b:thx1138
c:stars.dat

18.6 UNTYPED FILES

Up until now, all files you've looked at have been textfiles (= Text)
or data files (= file of <type>). However, there are times when you
want to deal with "raw" data, i.e., data that hasn't been formatted
for you. For example, in some programs, you need to have many
different types of data out on the disk. However, you don't want
the overhead of having many files open at once or having to
constantly open and close files.

The solution? You put everything into one large disk file and use
an untyped file to access it. An untyped file is declared as follows:

var
BigFile 	: file;

It's opened and closed just like any other file. Reading from and
writing to it are different, though, from other files. Untyped files
can only be read or written a block (128 bytes) at a time. You do
this using two procedures, BlockRead and BlockWrite. Here's
their format:

BlockRead(FileVar,Buf,NumBlocks);
BlockWrite(FileVar,ButNumBlocks);

FileVar is, of course, the untyped file variable (such as BigFile
above). Buf can be any type of variable; most often, it's an array of
some sort. NumBlocks is the number of blocks that you want to
read or write. Since each block is 128 bytes, SizeOf(Buf) must be

18-14

Part 2 	 Chapter 18 Files

greater than or equal to 128*NumBlocks. This is critical. These
two routines do not do any range-checking, and if Buf is too
small, then a BlockRead will cheerfully copy the requested
blocks to memory, overwriting whatever code and/or variables
follow Buf. A BlockWrite in such a case is not necessarily as
disastrous—you merely copy extra garbage out to the file—but
even that can catch up with you later.

All of the standard file routines (except for Read, Write, and
Flush) work on an untyped file. This means, among other things,
that you can do random access on the file. For an untyped file,
Seek will assume that each block is one record, with the first
block being record #0. You can directly move to a given block,
then use BlockRead and BlockWrite to access it (and those that
follow it). A word of caution, though: if you are opening an
existing file to update it (with BlockRead and/or BlockWrite), be
sure to use the Reset procedure. Just as with data files and text
files, a call to Rewrite erases any existing file and creates a new
one.

Let's illustrate all this with an example. Suppose that our "Trek"
program has one data file to contain all game information:
sectors, ships, and so on. Suppose that blocks 10 through 13 of
your data file contain records which, for convenience's sake, are
32 bytes long each. Each block then has 4 of these records in it,
and there are 16 (4 * 4) records in all. You could then write the
following routine to get or put a specific record (numbered 0
through 15) from that chunk of the file. Let's say that record type
is BaseRec and that your untyped file (BigFile) is already open.

procedure BaseReclO(Indx 	: Integer,
ReadFlag : Boolean;
var Rec : BaseRec);

does read/write for Rec[Indx]
if ReadFlag = True, then reads Rec, else writes it

var
Bcnt,IBlk,IRec,IErr 	: Integer,

: array[0..3] of BaseRec;

18-15

Chapter 18 Files 	 Part 2

begin
Indx := Abs(Indx) mod 16; 	{ force to allowable range }
IBlk := Indx div 4 + 10; 	{ calculate block #}
IRec := Indx mod 4; 	 { calculate rec w/in block }
Seek(BigFile,IBlk)
BlockRead(BigFile,Data,IBlk) 	{ get the data }
if ReadFlag
then Rec := Data[IRec] 	{ get appropriate record}

else begin
Data[IRec] := Rec; 	 { else save it in 'data'}
Seek(BigFile,IBlk)
BlockWrite(BigFile,Data,IBlk) 	{ & write it }

end
end; { of proc BaseRecIO }

By writing similar routines for the other data types stored in
BigFile, you can have ready access (and random access, at that)
for a wide variety of data types with a minimum of overhead. If the
size of the buffer (128 bytes or some multiple thereof) bothers
you, you can always use New to create it on the heap and Dispose
(or Mark and Release) to get rid of it. Actually,since it is a local
variable, it is already allocated and deallocated on the fly.

18.7 DEVICE I/O

—Input/Output-

18-16

Part 2 	 Chapter 18 Files

Most applications require I/O involving the computer hardware
itself. Reading from the keyboard and writing out to the screen
are the two most obvious examples. Standard Pascal (and
TURBO Pascal) predefines the textfi les Input and Output for just
those functions. All Read and Write statements without a file
variable use these two files. But there are other times when you
might want to read from or write to a specific device. How do you
do this?

Simple. You use a set of special filenames that refer to hardware
devices rather than to disk files. Consider, for example, the
following program:

procedure Convert;
const

OutFileName 	 = 'STARS.DAT';
type

StarArray 	 = array[1..3] of Real;
var 	 Stars[1] = X, Stars[2] = Y, Stars[3] = Z

InFileName 	 : atring[30];
InFile 	 : Text;
OutFile 	 : file of StarArray;
Star 	 : StarArray;

begin
Write('Enter input file: '); ReadLn(InFileName);
Assign(InFile,InFileName);
Reset(InFile);
Assign(OutFile,OutFileName);
Rewrite(OutFile);
while not EOF(InFile) do begin

ReadLn(InFile,Star[1],Star[2],Star[3]);
Write(OutFile,Star)

end;
Close(InFile); Close(OutFile)

end. of program Convert 1

This program prompts the user for the name of an input file,
which it expects to be a text file with three real numbers on each
line. It reads those three numbers into Star, then writes Star out to
the data file STARS.DAT. In short, it's converting the star
information from a text file to a data file.

18-17

Chapter 18 Files 	 Part 2

Now, suppose you wanted to enter the data manually instead of
having it read from a disk file. All you would have to do is give the
filename 'CON:' when asked for the input file. You would then
enter the data, line by line. When you weredone, you would type
ctrl-Z, which tells the program that it's reached the "end of file".
By the same token, a program that writes a text file to disk could
be redirect to write the output to the screen by also using 'CON:'.
CON: is known as a logical device, and there are several other
logical devices as well, representing keyboard input, screen
output, the printer, the serial port, and other such items. Note that
because these are character-oriented devices, only files of type
Text should be connected with them.

Here's a list of the special filenames that TURBO Pascal
recognizes:

CON: 	 console I/O, i.e., read from the keyboard and write
to the screen. Echoes input, allows correction with
backspace. Expands tabs on output. Echoes CR
(carriage return) as CR/LF (carriage return/line
feed) for both input and output.

KBD: 	 keyboard input with no echo or interpretation.

TRM: 	 console output with no interpretation.

LST: 	 the line printer. Can only be used for output. No
interpretation. Tabs are not expanded.

AUX: 	 input and output device, usually an RS232 port.
Corresponds to PUN: and RDR: in CP/M.

USR: 	 user I/O device. Advanced programmers can write
their own I/O drivers for specific devices.

In Convert, you wanted to be able to specify the input file when
you actually ran the program. Sometimes, you'll know ahead of
time that you want to do I/O with a specific device. In that case,
you don't have to define the file variable, assign it, and so on;
instead, TURBO Pascal has predefined (and pre-assigned) file
variables for each of these devices. In other words, you can use
the file variables Com, Trm, Kbd, Lst, Aux, and Usr without having
to do anything.

18-18

Part 2 	 Chapter 18 Files

18.8 "REAL-TIME" KEYBOARD INPUT

In certain applications (such as games), you want the program to
continue to run while at the same time checking for user input. In
other words, the program doesn't sit and wait for you to enter a
command, but instead would periodically check for and handle
user commands. For example, the "Trek" game would be
considerably more exciting if the attacking ships continued to
advance and fire while you were trying to make up your mind
what to do.

TURBO Pascal makes this fairly easy, via the Kbd device and the
Boolean function KeyPressed. As you might guess, KeyPressed
returns True if the user has hit any key, and False otherwise. It
does not sit and wait, but merely checks the console status. You
might, then, write a routine like this:

procedure CheckCommand;
var

Cmd 	: Char;
begin

if KeyPressed then begin
Read(Kbd,Cmd); 	{ read key w/out echo }
Cmd := UpCase(Cmd); 	{ force to upper case }
case Cmd of

handle commands}
else

Write(Chr(7)); 	{ beep at illegal cmd }
end

end
end; of proc CheckCommand }

By scattering calls to CheckCommand through your program,
you can give the illusion of "real-time" commands, with swift
response to any user input at any point. You do need to be careful
of one thing, though: make sure that you don't call Check-
Command at a point where any of the commands could have

18-19

Chapter 18 Files 	 Part 2

side-effects on what's currently being done. For example, you
shouldn't call it if the program is updating the display and
CheckCommand can change that display. Instead, call Check-
Command just before or just after that section of code.

18.9 I/O ERROR HANDLING

Suppose that you ran Convert (the program listed above), and
that you gave it the name of a file that didn't exist. What would
happen? As soon as the program tried to open that file for input
(via the Reset call), you would get an I/O error, and the program
would abort. This, of course, is something of a pain, more so if
you were in the middle of a large, complex program rather than
just at the start of a small, simple one. Fortunately, TURBO Pascal
offers a solution to this problem. Using a compiler directive, you
can disable the "abort on I/O error" feature for sections of code
(or, if you wish, for the entire program). To turn off I/O error
trapping, you insert the comment statement { VI into your
program. When you want to turn it back on, you insert { $I+}. For
example, you could rewrite part of Convert to read

$I-}
Write('Enter input file: '); ReadLn(InFileName);
Assign(InFile,InFileName);
Reset(InFile);

$1+}

Of course, this by itself doesn't really solve your problem; the
program won't bomb, but if the file doesn't exist, you won't be
able to read in any stars. TURBO Pascal again comes to the
rescue with a built-in function named lOresult. lOresult returns
an error code based on the success or failure of the last I/O
operation you tried to perform. If the operation was successful, it
returns the value 0; otherwise, it returns a value indicating just
what the problem was. For example, we could again rewrite the
code above like this:

18-20

Part 2 	 Chapter 18 Files

$11
repeat

Write('Enter input file: '); ReadLn(InFileName);
Assign(InFile,InFileName);
Reset(InFile)

until IOresult = 0;
{ $I+}

The I/O compiler directive, along with lOresult, can be used in
many places to develop "bulletproof" programs, that is, programs
which cannot be bombed through various problems.

There are some important things you need to be aware of in using
these techniques. First, any call to lOresult returns the current
value, then resets the error condition to 0. This means that you
can't keep calling lOresult and expect it to continue to return the
error code for the last problem you ran into. Suppose you had
written

$11
repeat

Write('Enter input file: '); ReadLn(InFileName);
Assign(InFile,InFileName);
Reset(InFile);
if IOresult > 0
then WriteLn('File not found; try again')

until IOresult = 0;
$1+1

If you entered the name of a non-existent file, you would get the
message 'File not found; try again'. However, the call to lOresult
that caused that message would clear the error condition.
lOresult would then always return 0 at the until statement, and the
program would never go back and ask you to re-enter the file
name. What you need, instead, is something like this:

I $1-1
repeat

Write('Enter input file: '); ReadLn(InFileName);
Assign(InFile,InFileName);
Reset(InFile);
IOerr := (IOresult < > 0);
if IOerr
then WriteLn('File not found; try again')

until not IO err;
1 $1+1

18-21

Chapter 18 Files 	 Part 2

where IOerr is a variable of type Boolean. That way, IOerr can
"remember" that there was an I/O error, even after lOresult has
been reset to 0.

There is a second caution in using {$1-}If MI and lOresult. If an
error does occur, your program must call lOresult before
attempting addition I/O. In other words, if you attempt to do I/O
when the error code is something other than 0, problems can
occur (such as your program hanging). Because of this, it is a
good idea either to limit your use of $1-1/{ $l+ } to very specific
sections of your program, or to write your own I/O checking
routine and then call that anywhere where problems might occur.
Assuming that you have set aside line 24 of the screen for error
messages, your routine might look like this:

program MyProgram;

coast
Bell 	: Char = Chr(7);
IOerr 	: Boolean = False;

{ These are both typed constants }

type
Prompt 	: string[80];

procedure Error(Msg : Prompt);

write error Msg out on line 24 of the screen

begin
GoToXY(1,24); ClrEol;
Write(Bell,Msg)

end; { of proc Error }

18-22

	

Part 2 	 Chapter 18 Files

procedure IOcheck;

check for I/O error; print message if needed

var

	

I0code 	: Integer;

	

Ch 	: Char;
begin

I0code := IOresult;
I0err := (I0code < > 0);
if I0err then begin

case I0code of

	

$01 	: Error('File does not exist');

	

$02 	: Error('File not open for input');

	

$03 	: Error('File not open for output');

	

$04 	: Error('File not open');

	

$10 	: Error('Error in numeric format');

	

$20 	: Error('Operation not allowed on logical device');

	

$21 	: Error('Not allowed in direct mode');

	

$22 	: ErrorCAssign to standard files not allowed');

	

$90 	: Error('Record length mismatch');

	

$91 	: Error('Seek beyond end-offile0;

	

$99 	: Error('Unexpected end-of-file');

	

$F0 	: Error('Disk write error');

	

$F1 	: Error('Directory is full');

	

$F2 	: Error('File size overflow');

	

$FF 	: Error('File disappeared')
else

Error('Unkno-wn I/O error: `);
Write(IOcode:3)

end; { of case }
Read(Kbd,Ch)

end
end; { of proc IOcheck }

This routine does a number of things. First, since it always calls
lOresult, it clears the pending I/O error code. Second, it sets the
global flag IOerr, so that other parts of the program will know
whether or not there has been an error and can act accordingly.
Third, it prints out an error message on line 24, pausing until the
user hits any key (hence "Read(Kbd,Ch)", which will read a
single character without echoing it back to the screen). Fourth, it
uses the else clause of the case statement to handle any
undefined I/O errors.

18-23

Chapter 18 Files 	 Part 2

(A programming note: this routine uses a single case statement
for clarity. However, since the values in the case statement are so
widely spread—using only 15 values within a range of 255—a
combination of if..then..else and case statements might be more
efficient.)

If we insert this code into Convert, then we might rewrite our loop
to look like this:

{ $1-} program Convert;

begin { main body of Convert }
repeat

Write('Enter input 	'); ReadLn(InFileName);
Assign(InFile,InFileName);
Reset(InFile); IOCheck

until not IOerr;

end. { of program Convert }

Since you are now using lOcheck here (and, presumably,
elsewhere throughout your code), you can now turn off I/O error
trapping for the entire program with a single $I-} directive at the
start of the program. Well, you and I have journeyed far. We have
covered many, many aspects of programming using TURBO
Pascal, and with some practice and practical application, you
should be well on your way to solving some real problems of your
own.

I've included a program called GAME1.PAS that brings many of
these concepts together in a practical way, and lets you have fun
besides. You should study it, compile it, and play with it for
awhile. Then, when (and if) you feel up to it, you might want to
tackle the advanced programming concepts presented in Part III.

But now you have the basis for doing just about anything you
want to do. Your only limit is your imagination, and the sky is the
limit...

18-24

4.

Part 2
	

Chapter 18 Files

sp

—The Sky's the Limit-

18-25

PART In
ADVANCED TOPICS
IN TURBO PASCAL

Part 3 	 Chapter 19 Useful Pascal Routines

19. USEFUL TURBO PASCAL ROUTINES

Welcome to Part III! I am glad you made it this far. Since you are
here, I assume that you are interested in some advanced
programming techniques. Well, there's no shortage of those
here. Happy programming!

Here are some program examples designed for advanced func-
tions under TURBO Pascal. They aren't specific to an operating
system (such as MS-DOS or CP/M); instead, they can be used
anywhere. They're designed as utilities to help you put your
programs together.

All of these programs can be found on your Turbo Tutor diskette.
The file name of each program is given in the title for each
section. These programs can all be compiled and executed
immediately; no special hardware or software is assumed.

19.1 FUNCTION KEY DETECTION (FUNCKEYS.PAS)

This routine allows you to see what character or character
sequences are produced by any special keys on your computer's
keyboard. This will help you to use those keys for special
functions in your programs. It does assume that any two-
character sequences have ESC (Chr(27)) as the first character.

program GetPunctionKeyData;

This program looks at keyboard input to see if a key was hit that
generates a two-character sequence. On most keyboards, these two
characters consist of chr(27) [ESC] plus an alphanumeric char.

1
var

Ch 	: Char;
Previous 	: Boolean;
Count 	: Integer,

19-1

Chapter 19 Useful Pascal Routines 	 Part 3

begin
for Count := 1 to 20 do begin

Read(Kbd,Ch); 	{ Read a character, if ESC (chr(27) then)
if (Ch = chr(27)) and keypressed then begin

{ keystroke must be either ESC key or one }
Previous := True; 	{ that generates a two-digit code }
Read(Kbd,Ch);

end
else Previous := False;
if Previous

then Write(' previous ')
else Write('single char');

WriteLn('Ord(Ch)= ',Ord(Ch))
end end { of program GetFunctionKeyData

19.2 BUFFERED INPUT (TYPEAHED.PAS)

This program shows how to guarantee that any characters typed
by the user will be read. In other words, even if the program is off
doing something else, characters typed will not be lost (up to the
size of the buffer, the size of which depends upon your computer
model and operating system).

program Buffered;

The $C-directive is necessary for type-ahead (buffered)
input; otherwise, characters will be lost. Also, since
Read(Ch) require an end-of-line before processing, you
must use the Read(Kbd,Ch). Type "#" to end the program.

var
Ch 	 : Char;
Indx,Jndx 	: Integer;

begin
repeat

for Indx := 1 to 10000 do { delay loop to show type-ahead }
Jndx := Indx + Indx;

Read(Kbd,Ch); 	 { get next character from buffer
Write(Ch) 	 { and echo it back out to the screen }

until Ch = 	 { continue until "#" is entered }
end. { of program Buffered }

19-2

Part 3 	 Chapter 19 Useful Pascal Routines

This program will delay between each character. Therefore, it
could take a while to exit from if you typed many characters
ahead.

19.3 I/O ERROR CHECKING (IOERROR.PAS)

This program contains a subroutine (I0Check) along with two
global variables (/0 Val and IOErr) that should be a part of any
program which you want to make "bullet-proof". You need to
turn off I/O error trapping (using the $1- compiler option) and
then makes calls to I0Check after most (if not all) I/O operations.
There are two important reasons for this. First, you (and your
program) will then know if any errors have occured and can take
appropriate steps. The global variables /0 Val and IOErr can be
used to test for specific problems. Second, if an error has
occured, you need to read lOresult (which lOCheck does) to
clear it before performing another I/O operation; otherwise, a
second (and different) error can result.

{ $1- I
program TestIOCheck;
{

The routine IOCheck, along with the global declarations
I0Flag and IOErr, should be placed in any program where you
want to handle your own I/O error checking.

I
coast

IOVal 	: Integer = 0;
IOErr 	: Boolean = False;

var
InFile 	: Text;
Line 	: string[80];

procedure IOChecic
{

This routine sets IOErr equal to IOresult, then sets
I0Flag accordingly. It also prints out a message on
the 24th line of the screen, then waits for the user
to hit ally character before proceding.

I
var

Ch
	

: Char;

19-3

Chapter 19 Useful Pascal Routines 	 Part 3

begin
IOVal := IOreErult;
IOErr := (IOVal < > 0);
GotoXY(1,24); ClrEol; 	{ Clear error line in any case }
if IOErr then begin

Write(Chr(7));
case IOVal of

$01 	: Write('File does not exist' ;
$02 	: Write('File not open for input');
$03 	: Write('File not open for output');
$04 	: Write('File not open');
$05 	: Write('Can"t read from this file');
$06 	: Write('Can"t write to this file');
$10 : Write('Error in numeric format');
$20 : Write('Operation not allowed on a logical device);
$21 	: Write('Not allowed in direct mode');
$22 	: Write('Assign to standard files not allowed');
$90 : Write('Record length mismatch');
$91 	: Write('Seek beyond end of file');
$99 	: Write(Trnexpected end of file');
$F0 	: Write('Disk write error');
$F1 	: Write('Directory is Hill');
$F2 : Write('File size overflow');
$FF : Write('File disappeared')

else 	Write('Unknown. I/O error: ',10Val:3)
end;
Read(Kbd,Ch)

end
end; { of proc IOCheck

procedure PutLineNum(LineNum : Integer);

This routine tells you which line is being executed,
so that you can see which statement is causing which
error.

begin
GotoXY(1,1); ClrEol;
Write('Executing line #',LineNum)

end; { of proc PutLineNum }

begin
PutLineNurn(1); Assign(InFile,' dummy') ; 	IOCheclq
PutLineNum(2); Rewrite(InFile); 	 IOCheck;
PutLineNum(3); Read(Infile,Line); 	 IOCheclq
PutLineNum(4); Close(Infile); 	 IOCheck

end. { of program TestlOCheck }

19-4

Part 3
	

Chapter 30 MS-DOS Routines

20. MS-DOS ROUTINES

—DOS Function Calls—

Over half of the copies of Turbo Pascal out there are running
under MS-DOS, so this advanced section will start with some
code designed to aid in interfacing with MS-DOS. These routines
are meant to serve as examples for advanced programmers; by
their very nature, they can get you into trouble if you're not sure of
what you're doing.

All of these programs can be found on your TURBO Tutor disk
(assuming that you have the MS-DOS version). The file name of
each program is given in the title for each section. These
programs can all be compiled and executed immediately; how-
ever, you should look at each program before running it, since it

20-1

Chapter 20 MS-DOS Routines 	 Part 3

may expect certain things, such as a color graphics card or a
software driver.

20.1 RANDOMIZE (RANDOM.PAS)

We'll start with fixing a problem in TURBO Pascal. As you may
have noticed, the procedure Randomize does nothing at all in
TURBO. Here is a procedure for MSand PC-DOS that replaces
the built in Randomize with a working version.

The new Randomize has two Integer parameters. If they are both
0, then the random number seed is set randomly. If either of the
parameters is nonzero, then they are both stored directly into the
32 bit seed.

To set the seed randomly (Randomize(0,0)), the procedure calls
MS-DOS to get the current time. This is a 32 bit value, which is
also stored directly into the seed. On some systems, (i.e. the NCR
Decision Mate V), the clock does not tick, so the time never
changes. Randomize checks this, and if the clock hasn't changed
after a De/ay(100), it asks the user to hit a key. While waiting for
the key, it continuously increments two counters. These are then
stored into the seed.

Please note: This routine is for MS-DOS/PC-DOS TURBO
ONLY!

program RandomTest;

This program tests out the Randomize procedure. It also
calculates a chi-square value as a test of Random itself
Chi-square values between 3 and 16 are desirable, with
values close to 8.3 being optimum_

var
S 1,82,Indx,Jndx,Count 	: Integer;
Sum,T,NP 	 : Real;
Tally 	 : array[0..9] of Integer;

procedure Randomize(I,J: Integer);

20-2

Part 3

var
RSet

Ch

Chapter 20 MS-DOS Routines

: record
AX,BX,CX,DX,BP,SI,DI,DS,ES,Flags: Integer,

end;
: Char;

begin
if (I=0) and (J=0) then begin { Generate a random random number

seed }
RSetAX:=S2C00;
	

{ DOS time of day function }
MSDos(RSet);
I:=RSet.CX;
	

{ Set I and J to the system time }
J:=RSetDX;
Delay(100); { This delay may have to be increased for faster systems }
MSDos(RSet);
if (I=RSet.CX) and (J=RSet.DX) then begin { Clock isn't ticking }

I := 0;
J := 0;
while KeyPressed do

Read(Kbd,Ch); 	 { Clear keyboard buffer }
Write('Hit any key to set the random number generator: ');
repeat

I := 1+13;
J := J+17

until Keypressed;
Read(Kbd,Ch); 	 { Absorb the character }
WriteLn

end
end;
MemW[DSeg:S0129]:=I; { This is the core of the routine: store a 32 bit }
MemW[DSeg:012B]:=J; 	{seed at locations DSeg:$0129...DSeg:$012B}

end; 	 { of procedure Randomize }

begin{ main body of program RandomTest }
Writeln('Enter count <= 0 to end program');
repeat

Write('Enter count: 	');
ReadLn(Count);
if Count > 0 then begin

Write('Enter seeds (51 82): ');
ReadLn(S1,82);
Randomize(S1,32);
FillChar(Tall,y,SizeOf(Tally),0);
for Indx := 1 to Count do begin

Jndx := Random(10);
Tally[Jndx] := Tally[Jndx] + 1

end;

{ get # of samples }

{ do random number test }
{ get 2 integers for seed }

set random number seed }
{ clear tally array }

generate Count numbers }
{ range is 0..9 }

count how many of each }

20-3

Chapter 20 MS-DOS Routines 	 Part 3

Sum := 0.0; 	 { clear sum for X"2 }
NP := Count/10.0; 	 { theoretical number for each }
for Indx := 0 to 9 do begin 	{ for each possible result do }

Writs(Tally[Indx]:5); 	 { write total for that value
Sum := Sum + Sqr(Tally[Indx]-NP)/NP 	{ and calculate X^2 }

end;
WriteLn;
WriteLn('Chi-Square (9 degrees of freedom) = ',Sum:8:3)

end
until Count <= 0

end. of program RandomTest }

20.2 READ DIRECTORY (DIRECTRY.PAS)

TURBO Pascal gives you a lot of control over disk files, including
the ability to erase files as well as to rename them. But nothing
quite beats being able to read the directory off the disk.

Here's a simple program that will read the names of all the files off
a given drive. You can also specify a mask, so that you only get
files matching a given pattern.

program DirList;

This is a simple program to list out the directory of the
current (logged) drive.

}
type

Charl2arr 	= array [1..12] of Char;
String20 	= string[20];
RegRec =

record
AX, BX, CX, DX, BP, SI, DI, DS, ES, Flags : Integer,

end;

var
Regs 	: RegRec;
DTA 	 : array [1..43] of Byte;
Mask 	: Charl2arr;
NamR 	 string20;
Error, I 	: Integer,

begin { main body of program DirList }

20-4

Part 3 	 Chapter 20 MS-DOS Routines

FillChar(DTA,SizeOf(DTA),0);
	

{ Initialize the DTA buffer }
FillChar(Mask,SizeOf(Mask),0);

	
{ Initialize the mask }

FillChar(NamR,SizeOf(NamR),0);
	

{ Initialize the file name }

WriteLn('Directory list program for MS-Dos.');
WriteLn;
Regs.AX := $1A00; 	{ Function used to set the DTA }
Regs.DS := Seg(DTA); 	{ store the parameter segment in DS }
Regs.DX := Ofs(DTA); 	{ " 	" "offset in DX }
MSDos(Regs); 	 { Set DTA location }
Mask •. '99999999 999'; 	{ Use global search }
RegsAX := $4E00; 	 { Get first directory entry }
Regs.DS := Seg(Mask); 	{ Point to the file Mask }
Regs.DX := Ofs(Mask);
Regs.CX := 22;
	

{ Store the option }
MSDos(Regs);
	

{ Execute MSDos call }
Error := Regs.AX and $FF;

	
{ Get Error return }

I := 1; 	 { initialize 'I' to the first element }
if (Error = 0) then

repeat
NamR[I] := Chr(Mem[Seg(DTA):Ofs(DTA)+29+I]);
I := I + 1;

until not (NamR[I-1] in ["..'—']) or (I>20);

NamR[0] := Chr(I-1); 	{ set string length because assigning }
{ by element does not set length }

while (Error = 0) do begin
Error := 0;
Regs.AX := $4F00; 	 Function used to get the next }

directory entry }
Regs.CX := 22;
	

Set the file option }
MSDos(Regs);
	

Call MSDos }
Error := Regs.AX and $FF; 	get the Error return }
I := 1;
repeat

NamR[I] := Chr(Mem[Seg(DTA):Ofs(DTA)+29+I]);
I := I + 1;

until not (NamR[I-1] in ["..'—']) or (I > 20);
NamR[0] := Chr(I-1);
if (Error = 0)

then WriteLn(NamR)
end

end. 	 { of program DirList}

20-5

Chapter 20 MS-DOS Routines 	 Part 3

20.3 READ DIRECTORY II (QDL.PAS)

Here's a more extensive directory-reading program.

program QDL;

program QDL Version 2.00A 	 09/01/84

QDL uses MSDos to get a listing of an IBM formated diskette.
The function calls used can be found in the DOS Technical Reference
Manual. This program saves the current Data TransferArea (DTA) in
the variables DTAseg and DTAofs. The DTA is then reset to the Segment
and Offset of a Buffer variable 'DTA'.

{

type 	 { TYPE declarations }
Registers =

record 	 { register pack used in MSDos call }
AX, BX, CX, DX, BP, SI, DI, DS, ES, Flags : Integer,

end;
Char80arr 	= array [1..80] of Char;
String80 	= string[80

var
DTA : array [1..43] of Byte;
DTAseg,
DTAofs,
SetDTAseg,
SetDTAofs,
Error,
I, J,
Option : Integer;
Regs : registers;
Buffer,
NamR : string80;
Mask : Char80arr;

{ VARIABLE declarations }
{ Data Transfer Area Buffer }
{ DTA Segment before execution }

DTA Offset 	"
{ DTA Segment and Offset set after
{ start of program }
{ Error return }
{ used as counters }
{ used to specify file types }
{ register pack for the DOS call}
{ generic Buffer }
{ file name }
{ file Mask }

20-6

Part 3 	 Chapter 20 MS-DOS Routines

SetDTA resets the current DTA to the new address specified in the
parameters 'SEGMENT' and 'OFFSET'.

procedure SetDTA(Segment, Offset : Integer; var Error : Integer);
begin

Regs.AX := $1A00;
	

{ Function used to set the DTA }
Regs.DS := Segment;
	

{ store the parameter Segment in DS }
Regs.DX := Offset;
	

" 	Offset in DX 1
MSDos(Regs);
	

{ Set DTA location }
Error := Regs.AX and $FF;

	
{ get Error return }

end; { of proc SetDTA }

GetCurrentDTA is used to get the current Disk Transfer Area (DTA)
address. A function code of $2F is stored in the high Byte of the AX register
and a call to the predefined procedure MSDos is made. This can also be
accomplishedby using the "Intr" procedure with the same register record
and a $21 specification for the interrupt.

procedure GetCurrentDTA(var Segment, Offset : Integer;
var Error : Integer);

begin
Regs.AX := $2F00;
	{ Function used to get current DTA address }

{ $2F00 is used instead of $2F shl 8 to save
three assembly instructions. An idea for
optimization. }

MSDos(Regs); 	{ Execute MSDos function request }
Segment := Regs.ES; 	{ Segment of DTA returned by DOS }
Offset := Regs33X; 	{ Offset of DTA returned }
Error := Regs.AX and $FF;

end; { of proc GetCurrentDTA

GetOption returns the code used to find the file names on the current
directory (ie. hidden, standard, or directory).

procedure GetOption(var Option : Integer);
var

Ch : Char;
begin

Ch := '?';
Option := 1;
while (Ch = '?') do begin

20-7

Chapter 20 MS-DOS Routines 	 Part 3

Write('File Option
ReadLn(Ch);
WriteLn;
case (Ch) of

'1' : Option := 1;
'2' : Option := 7;

to use, [?] for list : ');

I 	-\
\

'3' : Option := 8; { - These are the options.
'4' : Option := 16; { - Look below for an expla-
'5' : Option := 22; { / 	of each.
'6' : Option := 31; - /
'?' : begin { gives list of possible options

WriteLn(`File options are : ');
WriteLn;
WriteLn(' [1] for standard files [default].');
Write(' [2] for system or hidden files ');
WriteLn('and standard files.');
WriteLn(' [3] for volume label.');
Write(' [4] for directories and ');
WriteLn('standard files.');
WriteLn(' [5] for directories, hidden or ');
Write('
	

system files, and standard');
WriteLn(' files.');
Write(' [6] same as 5, but with volume');
WriteLn(' label included.');
WriteLn;

end;
else Option := 1;
	

{ if nothing is typed or an
end;
	

{ incorrect entry is made Option 1 is used}
end

end; of proc GetOption)

GetFirst gets the first directory entry of a particular file Mask. The Mask is
passed as a parameter 'Mask' and,the Option was previously specified in
the SpecigyOption procedure.

procedure GetFirst(Mask : Char8Oarr; var NamR : String80;
Segment, Offset : Integer, Option : Integer;
var Error : Integer);

var
I : Integer;

begin
Error := 0;
Regs.AX := $4E00;
Regs.DS := Seg(Mask);
Regs.DX := Ofs(Mask);

{ Get first directory entry
{ Point to the file Mask }

20-8

Part 3 	 Chapter 20 MS-DOS Routines

Regs.CX := Option;
	

{ Store the Option }
MSDos(Regs);
	

{ Execute MSDos call }
Error := Regs.AX and $FF; { Get Error return }
I := 1; 	 { initialize 'I' to the first element }
repeat
	

{ Enter the loop that reads in the }
{ first file entry }

NamR[I := Chr(mem[Segment : Offset + 29 + I);
I := I + 1;

until (not (NamR[I - 1] in []));
NamR[0 := Chr(I - 1); 	{ set string length because assigning }

{ by element does not set length }
end; { of proc GetFirst

GetNextEntry uses the first bytes of the DTA for the file Mask, and returns
the next file entry on disk corresponding to the file Mask

procedure GetNextEntry(var NamR : String80; Segment, Offset : Integer,
Option : Integer; var Error : Integer);

var
I : Integer;

begin
Error := 0;
Regs.AX := $4F00;
	

{ Function used to get the next }
{ directory entry }

Regs.CX := Option;
	

{ Set the file option }
MSDos(Regs);
	

{ Call MSDos }
Error := Regs.AX and $FF; { get the Error return }
I := 1;
repeat

NamR[I := Chr(mem[Segment : Offset + 29 + I);
I := I + 1;

until (not (NamR[I - 1] in []));
Na,mR[0 := Chr(I - 1);

end; { of proc GetNextEntry }

main body of program QDL

20-9

Chapter 20 MS-DOS Routines 	 Part 3

begin
for I := 1 to 21 do DTA[I := 0; 	{ Initialize the DTA Buffer

for I := 1 to 80 do begin 	{ Initialize the Mask and }
Mask[I := Chr(0); 	{ file name buffers
NamR[I := Chr(0);

end;
NamR[0 := Chr(0); 	 { Set the file name length to 0
WriteLn('QDL version 2.00A');
WriteLn;
GetCurrentDTA(DTAseg, DTAofs,
Error); 	 { Get the current DTA address }
if (Error < > 0) then begin 	Check for errors }

WriteLn('Unable to get current. DTA');
WriteLn('Program aborting.'); 	and abort. }
Halt; 	 { end program now }

end;
SetDTAseg := Seg(DTA);
SetDTAofs := Ofs(DTA);
SetDTA(SetDTAseg, SetDTAofs,
Error); 	 { Reset DTA addresses }
if (Error < > 0) then begin 	Check for errors }

WriteLn('Cannot reset DTA'); 	{ Error message }
WriteLn('Program aborting.');
Halt; 	 { end program }

end;
Error := 0;
Buffer[0] Chr(0); 	 { Set Buffer length to 0
GetOption(Option); 	 { Get file Option }
if (Option< > 8) then begin

Write('File Mask :'); 	 { prompt }
ReadLn(Buffer);
WriteLn;

end;
if (length(Buffer) = 0) then 	if nothing was entered }

Buffer := '????????.???'; 	{ then use global search }
for I := 1 to length(Buffer) do 	{ Assign Buffer to Mask }

Mask[I] := Buffer[I];
GetFirst(Mask, NamR, SetDTAseg, SetDTAofs, Option, Error);
if (Error = 0) then begin 	{ Get the first directory entry }

if (Option < > 8) then begin 	if not volume label }
WriteLn('Directory of : Buffer);{ Write directory message }
WriteLn;

end;
WriteLn(NamR)

end
else if (Option = 8) then

WriteLn('Volume label not found.')

20-10

Part 3 	 Chapter 20 MS-DOS Routines

else WriteLn('File 1", Buffer, "' not found.');
while (Error = 0) do begin

GetNextEntry(NamR, SetDTAseg, SetDTAofs, Option, Error);
if (Error = 0) then WriteLn(NamR);

end;
SetDTA(DTAseg, DTAofs, Error);

end. { end Main }

20.4 DISK STATUS (DISKSTUS.PAS)

This program reads information about free space on a given
drive. Note that the function DefaultDrive can be used to
determine the current logged drive.

program ShowDiskStatus;

ShowDiskStatus uses MSDos and the functions therein to get
Drive information on either the current Drive or the Drive
specified on the command line.

type 	 { TYPE declarations }
RegRec =

record 	 { register pack Used in MSDos call
AX, BX, CX, DX, BP, SI, DI, DS, ES, Flags : Integer;

end;

var
Tracks, 	 { number of available Tracks
TotalTracks, 	 { number of total Tracks }
Drive, 	 { Drive number
Bytes, 	 { number of Bytes in one sector }
Sectors 	: Integer; { number of total Sectors
Used,TotalBytes : Real;
Regs 	 : RegRec;

procedure DiskStatus(Drive : Integer;var Tracks, TotalTracks,
Bytes, Sectors : integer);

makes MSDos call to read status of Drive; returns data
in Tracks, TotalTracks, Bytes, and Sectors

20-11

Chapter 20 MS-DOS Routines 	 Part 3

begin
Regs.AX := $3600;
Regs.DX := Drive;
MSDos(Regs);
Tracks := Regs.BX;
TotalTracks := Regs.DX;
Bytes := Regs.CX;
Sectors := Regs.AX

end; { of proc DiskStatus }

{ Get Disk free space }
{ Store Drive number }
{ Call MSDos to get disk info }
{ Get number of Tracks Used }

" 	" 	" of total Tracks }
" of Bytes per sector }
" of Sectors per cluster }

function DefaultDrive : Integer,

makes MSDos call to find out what current default drive is

var
Regs : RegRec;

begin
Regs.AX := $1900; 	{ Get current Drive number }
MSDos(Regs); 	 { Call MSDos }
DefaultDrive := (Regs.AX and $FF) + 1 { Return value via function }

end; { of font DefaultDrive }

begin { main body of program ShowDiskStatus }
Drive := 0; 	 { Initialize Drive }
if (Mem[Cseg:$80]) > 0 { Get command line }
then Drive := Mem[Cseg:$82] and $1F;

if not (Drive in [1..6]) If nothing on command line }

	

then Drive := 0; 	{ or bad drive specified,}
{ then logged drive }

DiskStatus(Drive, Tracks, TotalTracks, Bytes, Sectors);
WriteLn;
WriteLn;
Write(' 	');
if (Drive = 0) then

Drive := DefaultDrive;
WriteLn('DSCST on Drive ', chr(Drive + $40), ':');
WriteLn;
{ Write disk information }
WriteLn(Tracks:7, 'available tracks.');
WriteLn(TotalTracks:7, 'total tracks.');
Used :=((TotalTracks - Tracks) / TotalTracks) * 100;
WriteLn(Used:7:2, '% used.');
WriteLn(Sectors:7, ' sectors per cluster.');
WriteLn(Bytes: 7, ' bytes per sector.');
TotalBytes := ((Sectors * Bytes * 1.0) * Tracks);
WriteLn(TotaD3ytes:7:0, ' total bytes available on disk');
WriteLn

end. { of program ShowDiskStatus }

20-12

Part 3 	 Chapter 20 MS-DOS Routirio%

20.5 DOS VERSION NUMBER (VERSION.PAS)

Here's a much simpler routine, designed to allow you to read the
DOS version number:

program DosVersion;

function DosVer : Real;
WIT

Regs 	: record
AX,BX,CX,DX,BP,SI,DI,DS,ES,Flags : Integer,

end;
AL,AH 	: Byte;

begin
Regs.AX := $3000;
MSDos(Regs);
AL := Regs.AX and $FF;
AH := (Regs.AX and $FFOO) shr 8;
DosVer := AL + AH/100;

end; { of func DosVer }

begin { main body of program DosVersion }
WriteLn;
WriteLn;
WriteLn(DosVer:4:2);

end. { of program DosVersion }

20.6 DIRECT VIDEO OUTPUT (IBMINT10.PAS)

This routine uses Interrupt 10 to write directly to the screen. This
allows you to do fast, unfiltered screen updates. It is designed to
work only on the IBM PC. It is not generic.

program IBMpcScreen;
[This program shows the use of directVideo on the IBM-PC (only!!!)).1
{ Interrupt 10 is used for all Video I/O

20-13

Chapter 20 MS-DOS Routines 	 Part 3

coast
Video 	 =$ 10; { Set Video I/O Interrupt }
SetVideo 	= 0; { Set Video mode }
SetCurPosition 	= $200; { Set cursor position }
ReadCursor 	= $300; { Read cursor position }
WriteChar 	= $E00; { Write character to sceen }
VideoBW80x25A = 2; { Mode 80x25 B/W, Alpha }
VideoColor80x25A = 3; { Mode 80x25 Color, Alpha }

type
Result = 	 { Register pack }

record
AX,BX,CX,DX,BP,SI,DI,DS,ES,Flags: Integer,

end;
var

Rec 	 : Result;
Row,Col 	 : Integer,

begin
Rec.AX := SetVideo + VideoBW80x25A; { assumes BW 80x25 display }
Rec.BX := 15;
Intr(Video,Rec);
	

{ Set Video Mode }
Rec.AX := WriteChar + Ord('A');
Intr(Video,Rec);
	

{ Output 'A')
Rec.AX := ReadCursor;
Intr(Video,Rec);
	

{ Read the cursor position }
Row := Rec.DX and $FFOO shr 8;
Col := Rec.DX and $FF;
Write('Row = ',Row,' Column = ',Col); { Show the Row and column }
Rec.AX := SetCurPosition;
Rec.DX := $0A0A;
Intr(Video,Rec); 	{ Set the cursor to Row 10 and column 10 }
RecAX := WriteChar + Ord('#');
Intr(Video,Rec); 	 { Output 1#1)
RecAX := ReadCursor;
Intr(Video,Rec); 	 { Read the cursor position }
Row := Rec.DX and $FFOO shr 8;
Col := Rec.DX and $FF;
Write('Row = ',Row,' Column = ',Col); { Show the Row and column }
Rec.AX := SetCurPosition;
Rec.DX := $1414;
Intr(Video,Rec); 	{ Set the cursor to Row 20 and column 20 }

end. { of program IBMpcScreen }

20-14

Part 3
	

Chapter 20 MS-DOS Routines

? 1 I

—Interrupts-

20.7 DIRECT MEMORY OUTPUT (MEMSCREN.PAS)

Here's a second way to write directly to the screen: direct
memory addressing. The following program shows how. It's set
up for the Color Graphics display, but can be easily changed to
work with the Monochrome by changing the Segment and Offset
addresses used in the subroutine X. Again, this program is for the
IBM PC only; it is not generic.

20-15

Chapter 20 MS-DOS Routines 	 Part 3

program ScreenMap;
{program to Write to the screen map}

const
Oolong eg 	 = $B000;
ColorOfs 	 = $8000;

var
I,J 	 : Integer;
C 	 : Char;
RowNumber,ColNumber,Length,Dir

: Integer;
Direction 	 : Char;

procedure X(J,K : Integer);
begin

Mem[Colongeg:ColorOfs + J] := K
	

{ Write to screen memory }
end; { of pros X }

procedure Y(R,C,N,Ch,D : Integer); {r=row C=column n=length ch=char}
var

I,J : Integer;
begin

J :=((R-1)*160) + ((C-1)*2); 	 { compute starting location }
for I := 1 to N do begin

X(J,Ch); 	 { loop n times }
if D=0

then J := J + 160
else J:= J+2;

end
end.; { of proc Y }

begin
ClrScr;
GotoXY(20,10);
Write('Do you want to play <YIN> ? ');
Read(kbd,C);
if (C = 'y') or (C = 'Y') then begin

repeat
CliScr;
GotoXY(20,10);
Write('Would you like to draw a line <YIN> ? ');
Read(kbd,C);

until (C = 'y') or (C = 'Y') or (C = 'n') or (C = 'N');
if (C ='y') or (C = 'Y') then begin

repeat
ClrScr;
Y(1,1,80,31,1);

20-16

Part 3 	 Chapter 20 MS-DOS Routines

Y(2,1,24,16,0);
Y(2,80,24,17,0);
Y(25,2,78,30,1);
GotoXY(20,10);
Write('The line starts at what row? ');
Read(rownumber);
GotoXY(20,12);
Write(' 	 what column? ');
Read(colnumber);
GotoXY(20,14);
Write(' 	Line length in number? ');
Read(length);
GotoXY(20,16);
Write(' 	What character to use? ');
Read(Kbd,C); Write(C);
repeat

GotoXY(10,18); Write(' whichclirection<d>ownor<a>cross? ');
Read(Direction)

until (Direction='a') or (Direction='d');
if Direction='a'

then Dir:=1
else Dir:=0;

C116 cr;
Y(rownumber,colnumber,length,ord(C),dir);
GotoXY(40,24);
Write('Your line. Try again? ');
Read(Trm,C);
until (C < > 'Y') and (C < > 'y');

Clr€cr
end

end
else begin

GotoXY(23,13);
WriteLn('******** Bye ********')

end
end. f of program Screen/Lap }

20.8 READING THE COMMAND LINE (CMDLINE.PAS)

This next routine can come in very handy. It reads the command
line after the name of your program. This allows you to pass
parameters for your program to use. For example, you could
write

20-17

Chapter 20 MS-DOS Routines 	 Part 3

A>convert stars.txt stars.dat

and pick up the string 'starts.txt starts.dat' to determine what files
to use.

program CommandLine;

This program demonstrates how to get information off the command
line. One thing you must remember— 32 characters are always
there for you to use— if you want to use the full 127, the first
statement in your program must parse the command line and retrieve
the information as any subsequent reads or writes will shorten the
command line to 32 characters. }

type
CommandString= string[127];

var
Buffer 	: CommandString;
CL 	: CommandString absolute cseg:$80;

begin
Buffer := CL; 	read the command line immediately }
Gotoxy(20,12);
WriteLn('l ',Buffer, 'I');

end. { of program CommandLine }

20.9 SERIAL PORT LIBRARY (COMLIB.PAS)

While the standard file Aux lets you talk through the serial port,
you may want something more powerful or sophisticated. Here
are some routines designed to let you select which port to use, set
the baud rate, set the number of stop bits, set the number of data
bits, and select odd, even, or no parity. This is not a generic
program and is intended only for the IBM PC.

{ Su+}
program ComLibTest;
var

Port,Baud,StopBits,DataBits,Par: Integer;
Message: string[80];

VIM
string19=string[19];

20-18

Chapter 20 MS-DOS Routines 	 Part 3

A set of routines to enable COM1 and COM2 to be accessed from Turbo
Pascal. The following procedures are meant to be calledbyyour programs:

AssignAux(PortNumber in [1,2]) assigns Aux to COM1 or COM2
AssignUsr(PortNumber in [1,2]) assigns Usr to COM1 or COM2
SetSerial(PortNumber in [1,2],

BaudRate in [110,150,300,600,1200,2400,4800,9600],
StopBits in [1,2],
DataBits in [7,8],
Parity in [None,Even,Odd]) sets the baud rate, stop bits, data

bits, and parity of one of the serial ports.

The arrays InError and OutError may be examined to detect errors. The
bits are as follows:

Bit 7 (128) 	Time out (no device connected)
Bit 3 (8) 	Framing error
Bit 2 (4) 	Parity error
Bit 1 (2) 	Overrun error

Function SerialStatus(PortNumber in [1,2]) returns a more complete
status:

Bit 15 (negative) Time out (no device connected)
Bit 14 (16384) 	Transmission shift register empty
Bit 13 (8192) 	Transmission holding register empty
Bit 12 (4096) 	Break detect
Bit 11 (2048) 	Framing error
Bit 10 (1024) 	Parity error
Bit 9 (512) 	Overrun error
Bit 8 (256) 	Data ready
Bit 7 (128) 	Received line signal detect
Bit 6 (64) 	Ring indicator
Bit 5 (32) 	Data set ready
Bit 4 (16) 	Clear to send
Bit 3 (8) 	Delta receive line signal detect
Bit 2 (4) 	Trailing edge ring detector
Bit 1 (2) 	Delta data set ready
Bit 0 (1) 	Delta clear to send

Identifiers starting with "_ _" are not meant to be used by the user
program.

type
__RegisterSet=Record case Integer of

1: (AX,BX,CX,DX,BP,DI,SE,DS,ES,Flags: Integer);
2: (AL,AH,BL,BH,CL,CH,DL,DH: Byte);

end;
__Parity'rype=(None,Even,Odd);

20-19

Chapter 20 MS-DOS Routines 	 Part 3

var
_ _Regs: _ _RegisterSet;
InError,OutError: array [1..2] of Byte;

procedure _ _Int14(PortNumber,Command,Parameter: Integer);
{ do a BIOS COM driver interrupt }

begin
with _ _Regs do

begin
DX:=PortNumber-1;
AH:=Command;
AL:=Parameter;
Flags:=0;
Intr($14,_ _Regs);
end;

end;

procedure SetSerial(PortNumber,BaudRate,StopBits,DataBits: Integer;
Parity: _ _ParityType);

{ Set serial parameters on a COM port }

var
Parameter: Integer;

begin
case BaudRate of

110 : BaudRate:=0;
150 : BaudRate:=1;
300 : BaudRate:=2;
600 : BaudRate:=3;
1200: BaudRate:=4;
2400: BaudRate:=5;
4800: BaudRate:=6;
else BaudRate:=7; { Default to 9600 baud

end;
if StopBits=2 then StopBits:=1
else StopBits:=0; { Default to 1 stop bit }
if DataBits=7 then DataBits:=2
else DataBits:=3; { Default to 8 data bits }
Parameter:=(BaudRate sh15)+(StopBits shl 2) + DataBits;
case Parity of

Odd: Parameter:=Parameter+8;
Even: Parameter: =Parameter+24;
else; { Default to no parity }

end;
_ _Int14(PortNumber,O,Parameter);

end;

20-20

Part 3 	 Chapter 20 MS-DOS Routines

Function SerialStatus (PortNumber: Integer): Integer,
Return the status of a COM port }

begin
_ _Int14 (PortNumber,3,0);
SerialStatus := _ _Regs.AX;

end;

procedure_ _OutPortl(C: Byte);
{ Called by Write to Aux or Usr when assigned to COM1

begin
while (SerisiStatus(1) and $30)=0 do ;
_ _Int14(1,1,C);
OutError[1]: =OutError[1] Or (_ _RegsAH and $8E);

end;

procedure_ _OutPort2(C: Byte);
{ Called by Write to Aux or Usr when assigned to COM2 }

begin
while (SerialStatuS(2) and $30)=0 do ;
_ _Int14(2,1,C);
OutError[2]:=OutError[2] or (_ _Regs.AH and $8E);

end;

Function _ _InPortl: Char;
{ Called by Read from Aux or Usr when assigned to COM1 }

begin
_ _Int14(122,0);
_ _InPortl:=Chr(_ _Regs.AL);
InError[1]:=InError[1] Or (_ _Regs.AH and $8E);

end;

Function _ _InPort2: Char;
{ Called by Read from Aux or Usr when assigned to COM2 }

begin
__Int14(2,2,0);
_ _InPort2:=Chr(_ _Regs.AL);
InError[2]:=InError[2] or (_ _Regs.AH and $8E);

end;

20-21

Chapter 20 MS-DOS Routines 	 Part 3

procedure __AssignPort(PortNumber: Integer, var InPtr,OutPtr: Integer);
{ Assign either Aux or Mir to either COM1 or COM2 }

begin
if PortNumber=2 then

begin
OutPtr:=Ofs(_ _OutPort2);
InPtr.=Ofs(_ _InPort2);
end

else { Default to port 1 }
begin
OutPtr:=Ofs(_ _OutPort1);
InPtr:=Ofs(_ _InPort1);
end;

InError[PortNumber]:=0;
OutError[PortNumber]:=0;

end;

procedure AssignAux(PortNumber: Integer).
{ Assign Aux to either COM1 or COM2 }

begin
_ _AssignPort(PortNumber,AuxInFtr,AuxOutPtr);

end;

procedure AssignUsr(PortNumber: Integer);
{ Assign Usr to either COM1 or COM2 }

begin
_ _AssignPort(PortNumber,UsrInPtr,UsrOutPtr);

end;

Function Binary(V: Integer): String19;

var
I : Integer, 	B: array [0..3] of string[4];

20-22

Part 3 	 Chapter 20 MS-DOS Routines

begin
for I:=0 to 15 do

if (V and (I shl (15-I)))< >0 then. B[I div 4][(I mod 4)+1]:='1'
else B[I div 4][(I mod 4)+1] := '0';

for I := 0 to 3 do B[I] [0] := Chr(4);
Binary:=B[0]+"+B[1]+"+B[2]+"+B[3];

end;

begin
Write('Enter port number: 	 ');
ReadLn(Port);
Assign1Jsr(Port);
Write('Enter baud rate 	 ');
ReadLn(Baud);
Write('Enter stop bits: 	 ');
ReadLn(StopBits);
Write('Enter data bits: 	 ');
ReadLn(DataBits);
Write('Enter parity (0=none, 1=even, 2=odd): 	');
ReadLn(Par);
Write('Enter message to print: 	 ');
ReadLn(Message);
SetSerial(1,Baud,StopBits,DataBits,ParityType(Par));
WriteLn(Usr,Message);
WriteLn('OutError[',Port,']: ',Binary(OutError[Port]));
WriteLneSerialStatus(',Port,'): ',Binary(SeriaiStatus(Port)));

end. of program ComLibTest }

20.10 MICROSOFT MOUSE INTERFACE
(TBOMOUSE.PAS)

The Microsoft Mouse runs off of a hardware/software cornbi na-
tion: a card which plugs into a slot, and a software driver
(MOUSE.COM) which (when executed) installs itself in RAM.
The following program shows how to read the Mouse from Turbo
Pascal. This is not a generic program; it works only on the IBM
PC.
program MouseSketch;

This program shows how to read the Microsoft Mouse.
WARNING

Be sure that you have loaded the mouse driver
(by running MOUSE.COM) before executing this program.

20-23

Chapter 20 MS-DOS Routines 	 Part 3

type
RegPack =

record
AX,BX,CX,DX,BP,SI,DI,DS,ES,Flags : Integer;

end;

var
OldX,01dY,X,Y 	: Integer;
M1,M2,M3,M4 	: Integer;
RegPak 	 : RegPac

procedure Mouse(var M1 ,M2,M3,M4 : Integer);
var

Regs 	 : RegPacl
begin

with Regs do begin
AX := Ml; { Set up ax,bx,cx,dx for interrupt I
BX := M2;
CX := M3;
DX := M4

end;
Intr(51,Regs); { Trip interrupt 51 }
with Regs do begin

M1 := AX;
M2 := BX;
M3 := CX;
M4 := DX

end
end; { of proc Mouse }

20-24

Part 3 	 Chapter 20 MS-DOS Routines

begin { main body of program MouseSketch
M1 := 0;
M2 := 0;
M3 := 0;
M4 := 0;
HiRes; 	{ Choose graphics mode and color I
HiResColor(Yellow);
M1 	:= 0; 	{ Initialize mouse driver }
Mouse(M1,M2,M3,M4);
M1 	:= 1; 	I Turn on Mouse cursor 1
Mouse(M1,M2,M3,M4);
M1 := 3;
OldK := 0;
OldY := 0;
while not KeyPressed do begin { Exit mouse when any key pressed)

Mouse(M1,M2,M3,M4);
if M2 < > 0

then Draw(01dX,01dY,M3,M4,1); { Draw if button pushed }
OldK := M3;
OldY := M4

end
end. { of program Mouseeketch

20.11 FILLCHAR DEMO (FILLCHAR.PAS)

The FillChar routine is a handy means of intializing arrays and
other data structures. This program gives an example of how it
works and shows how it fills memory with a given value. It also
shows how to examine (dump) a portion of memory from within a
program.

program DemoFillChar;

This program demonstrates how the built-in procedure FillChar works

var
Segl: 	 Integer,
Ofsl: 	 Integer;
Count: 	Integer;
OutWord 	Integer;
Num: 	 Integer;
Varl: 	 Integer;
Value: 	 Char;

20-25

Chapter 20 MS-DOS Routines 	 Part 3

begin
Cheer;
GotoXY(20,5);
Write('enter Value for starting address');
ReadLn(Varl);
Segl := Seg(Vax1);
Ofsl := Ofs(Varl);
WriteLn;
WriteLn('This variable is at segment: ',Segl ,' with an offset of 1,0fs1);
WriteLn;
Write('NowputinaValue(single char) thatyouwishmemoryloadedwith: ');
ReadLn(Value);
Write('Put in how many words you want filled: ');
ReadLn(Num);
FillChar(Varl,Num,Value);
Cheer;
WriteLn('Now we print our memory starting with ',Segl,':',Ofsl);
for Count := 1 to Num do begin

OutWord := Mem[Segl :Ofsl];
WriteLn(Segl ,':',Ofsl ,' has value ',OutWord);
Ofsl := Ofsl + 1;

end
end. f of program DemoFillChar I

20-26

Part 3 	 Chapter 21 CP/M Routines

21. CP/M ROUTINES

Here are some program examples designed for advanced func-
tions under CP/M. These routines are meant to serve as examples
for advanced programmers; by their very nature, they can get you
into trouble if you're not sure of what you're doing.

All of these programs can be found on your Turbo Tutor disk
(assuming that you have the CP/M version). The file name of
each program is given in the title for each section. These
programs can all be compiled and executed immediately; no
special hardware or software is assumed.

21.1 READ DIRECTORY (CPMDIR.PAS)

This program allows you to read the directory of the current
logged drive. It makes the appropriate BDos calls, pulling the file
names out of the memory location where CP/M leaves them.

program CPM80Dir;
f This program will

coast
Searcb_First
Search Next
Set_DMA

var
Error, Loop, Start
FCB
DMA

give a directory of the logged drive.

: Integer = $11;
: Integer = $12;
: Integer = $1A;

: Integer,
: array[0.25] of Byte absolute $0080;
: array[0.255] of Byte;

21-1

Chapter 21 CP/M Routines 	 Part 3

begin
Error := BDos(Set_DMA,Addr(DMA));
FCB[0] := 0;
for Loop := 1 to 11 do

FCB[Loop] := ord('?');
Error := BDos(Search_First,A.ddr(FCB));
if Error < > 255 then begin

Start := Error * 32;
for Loop:= Start to start+8 do

Write(Char(Mem[Addr(DMA)-FLoop]));
Write(");
for Loop:= Start+9 to Start+11 do

Write(Char(Mem[Addr(DMA)+Loop]));
WriteLn

end;
repeat

Error := BDos(search_Next);
Start := Error * 32;
if Error < > 255 then begin

for Loop:= Start to start+8 do
Write(Char(Mem[Addr(DMA)+Loop]));

Write(");
for Loop:= Start+9 to Start+11 do

Write(Char(Mem[Addr(DMA)+Loop]));
WriteLn

end
until Error=255

end. of program CPM80Dir }

21.2 SYSTEM STATUS (CPMSTAT.DIR)

This program does a more exhaustive display of system status. It
shows information about each disk drive, as well as the version of
CP/M currently being used. This program is intended for use on
CP/M versions 2.0 or higher.

program CPMstatus;

Reads and displays CP/M status information

coast
CPMversion = 12;
CurDisk = 25;
AllocVector = 27;
DiskParam = 31;
GetUser = 32;

21-2

Part 3 	 Chapter 21 CP/M Routines

type
Word
HexStr

DPBREC =
record

SPT
BSH
BLM
EXM

(* DSM
DSM10
DSMhi
DRM
ALO,AL1
CKS
OFF

end; { DPBREC

var
DPB
RecsPrBlock
RecsPrDrive
TrksPrDrive

BIOSaddr
BDOSarldr

TPA
Version
Result

= Integer;
= string[4];

: Integer, { SECTORS PER TRACK }
: Byte; { DATA.ALLOCATION BLOCK SHIFT' FACTOR }
• Byte;
: Byte;
: Integer; { TOTAL STORAGE CAPACITY } *)
: Byte;
• Byte;
: Integer; { NO of DIRECTORY ENTRIES}
: Byte;
: Integer;
: Integer

: "DPBREC;
: Integer;
: Real;
: Real;

: Integer absolute 1;
: Integer absolute 6;

: Real;
: Integer;
: Integer,

function Hex(Number: Integer;Bytes: Integer): HexStr;
const

T
	

: array[0-15] of Char = '0123456789ABCDEF';
var

D 	 : Integer;
H 	 : HexStr;

begin H[0]:=Chr(Bytes+Bytes);
for D:=Bytes+Bytes downto 1 do begin

H[D]:=T[Number and 15];
Number.=Number shr 4

end;
Hex=H

end; { of pros Hex }

21-3

Chapter 21 CP/M Routines 	 Part 3

begin { main body of program CPMStatus }
C116 cr;
Writeln(

' —Logged-- Records —Tracks— —TPA— —CapaciV—
; writeln (

' Drive User Block Track Drive Sys. 	Drive Directory 	Drive Bytes
x: 	xxx xxxxx xxx:loc XXXXX XXX XXXXX XXXX/XXXX xxxxxK XMCXX

Write(", Chr(Bdos(eurDisk) + Ord('A!)),
Bdos(GetUser,$.F.Fieie):3, ");

DPB:=Ptr(BdosHL(DiskParam));
with DPB^ do begin

RecsPrBlock:=BLM+1;
Write(RecsPrBlock:5);
Write(SPT:6);
RecsPrDrive:=(DSMhi*256.0 + DSM10 + 1.0)*RecsPrBlock;
Write(RecsPrDrive:6:0,");
Write(OFF:3);
TrksPrDrive:=RecsPrDrive/SPT + OFF;
if TrksPrDrive < > Trunc(TrkaPrDrive)

then TrksPrDrive:=TrksPrDrive+1;
Write(Trunc(TrksPrDrive):7,");
Write(DRM+1:4,1',CKS*4:4,Trunc(RecsPrDrive/8):6,'K');

end;
TPA:=2.0*(BDOSaldr shr 1) -$100;
WriteLn(TPA:8:0,",TPA/1024:6:1);
WriteLn;
Writeln('- Operating System -');
Writeln(' Version BDOS BIOS');

mom xx mom max}
Result,:=BdosHL(CPMversion);
Version: =Hi(Result);
if Version = 0

then Write('CP/M ')
else if Version = 1

then Write('MP/M ')
else Write('???? ');

Version:=Lo(Result);
if Version = 0

then Write('1.x')
else Write(Version div $10, '.', Version mod $10);

WriteLn(Hex(BDOSaddr, 2):6, Hex(BIOSaddr-3, 2):6);
end. { of program CPMStatus }

21-4

Part 3 	 Chapter 22 Assembly Language Programming

22. ASSEMBLY LANGUAGE
PROGRAMMING

—Assembler--

There are usually three reasons for calling assembly language
from a high-level language. The first is to execute some system
operation; the second, to perform some sort of data manipulation;
the third, to carry out some set of instructions more quickly. In all

22-1

Chapter 22 Assembly Language Programming 	 Part 3

three cases, the action is performed in assembly language
because of limitations in the high-level language. Ironically, these
problems don't crop up all that often in TURBO Pascal. First,
TURBO provides broad access to system functions and re-
sources. You can make calls directly to the operating system (via
BDos, BIOS, MSDos, Intr), you can directly access any location
in memory, and you can reference all the I/O ports. Second,
Turbo Pascal provides low-level operations (such as shr and shl)
and also extends logical operations (and, or, etc.) to integer
values. Retyping capabilities bypass the need for assembly
language data conversion functions. Finally, TURBO Pascal
produces machine code which is often fast enough to satisfy
your needs.

22.1 IN-LINE CODE (INLINE.PAS)

The above statement is often true, but not always...so, yes, there
may be time when you want to write assembly language routines.
In that case, you have two routes to go. The first (and simplest) is
to use in-line machine code. Turbo Pascal allows you to insert
(anywhere!) machine code, which will then be executed everytime
the inline statement is encountered.

The inline statement takes the form:

where each value (vall , etc) is a constant (either literal or named,
and of type integer), a variable identifier, or a location counter.
More information can be found in the TURBO Pascal Reference
Manual, in the appropriate appendices for your operating system.

Here's a sample program, written to run on an 8086-based system
(under either MS-DOS or CP/M-86). The routine does a simple
divide-by-two of the value passed to it; note how the parameter's
name (a variable identifier) can be put right into the inline
statement.

22-2

Part 3 	 Chapter 22 Assembly Language Programming

program InLineSample;

The following program example divides even integers by two.
For odd integers this program returns -32768 + the value
divided by two (integer division)

var
Value : Integer;

procedure VInLine(var Value:Integer);

a simple use of inline code. Note that some constants
have been defined and used, while other values are left
as literal hexadecimal constants. This is done just for
illustration.

coast
CLC 	= $F8;
IN_CDI 	= $47;

begin
saline

($C4/$BE/VALUE/ 	{ LES 	DI,VALUE[BP])
CLC/ 	 CLC 	}
$26/$D0/$1D/ 	RCR 	ES:BYTE FTR [DI] }
IN_CDI/ 	 INC 	DI
$26/$D0/$1D); 	RCR 	ES:BYTE PTR [DI] 1

end; of pros VInLinel

begin { main body of program InLinagample }
ClrScr;
repeat

Write('Enter a number, <0> to quit: ');
ReadLn(Value);
VInLine(Value);
WriteLn('Return Value is: 	 ',Value

until Value = 0;
ClrScr;

end. { of program InLineSample }

22.2 ASSEMBLY LANGUAGE ROUTINES
(PASSFUNC.PAS,PASS.ASM)

TURBO Pascal allows you to call assembly language procedures
and functions that you have assembled separately. These are

22-3

Chapter 22 Assembly Language Programming 	 Part 3

known as external subprograms. If you are running under CP/M-
80, you have to declare these routines to be at specific locations
in memory:

procedure LowToUp(var Str : BigStr); external $2E00;

When your program starts executing, it must go out and itself
load the routine at the appropriate memory location, with code
looking something like this:

procedure LoadRoutine;
var

CodeFile 	: File;
Buffer 	: array[0..1] of Byte absolute $2E00;
Index,Rec 	: Integer,

begin
Assign(CodeFile,'LOWTOUP.00110;
Reset(CodeFile);
Index := 0; Rec := 0;
{ $R-}
while not EOF(CodeFile) do begin

BlockReacl(CodeFile,Buffer[Index],Rec);
Rec := Rec + 1;
Index := Index + 128

end;
{ $R+}
Close(CodeFile)

end; { of proc LoadRoutine }

If instead you are using MS-DOS, then you must write a true
assembly language routine which is assembled separately and
then linked in at compile time. The advantage is that you can write
directly in assembly language (rather than "hand-assembling"
your routines into machine code for the inline statement). The
disadvantages are that you have to own an assembler (and one
that's compatible with TURBO Pascal), and that you have to
make sure that your assembly routines and your Pascal code can
correctly communicate with each other. Again, the particulars
are specific to each operating system, so you are again referred
to the appropriate appendices in the TURBO Pascal Reference
Manual.

22-4

Part 3 	 Chapter 22 Assembly Language Programming

For those you you with MS-DOS systems, here is a sample
assembly language routine:

; * WARNING * WARNING * WARNING * WARNING * WARNING *
; Please do not try to use external functions
; unless you are familiar with assembly language.

; IMPORTANT: Externals must be written in assembly language.

; The following example addes two integer numbers.

code

pass

segment
assume 	cs: code
proc 	near

push 	bp
mov 	bp,sp

SAVE ENVIRONMENT

mov 	ax,[bp+4] 	GET PARAMETER 1
add 	ax,[bp+6] 	GET PARAMETER 2

GIVES THE RESULT
mov 	sp,bp 	RESTORE ENVIRONMENT
pop 	bp
ret 	4

pass 	endp
code 	ends

end

Now exit to PC-DOS and type:
>ASM PASS
>LINK PASS
>EXE2BIN PASS.EXE PASS.COM

; Ignore minor errors from ASM and LINK.

Having carried out the steps above, you can now compile the
following TURBO Pascal program (making sure that PASS.COM
is on the default (logged) drive):

program PassFunc;

This routine expects the assembly language routine 'Pass'
to reside in the file 'PASS.COM'

1
var

Varl, Var2, Var3: Integer;

22-5

Chapter 22 Assembly Language Programming 	 Part 3

function Pass(VarX, VarY: Integer): Integer; external 'PASS.COM';

begin { main body of program PassFunc }
repeat

ReadLn(Varl);
if Varl< >0 then begin

ReadLn(Var2);
Var3 := Pass(Varl,Var2);
WriteLn(Varl + ',Var2,' = ',Var3);
WriteLn

end
until Varl = 0

end. of program PassFunc I

When this program compiles, TURBO Pascal will look for the file
PASS.COM and link the machine code into the executable code
being produced.

22.3 CONCLUSION

Well, this is the end of my little book. I have enjoyed telling you
what I know about TURBO Pascal. I hope you've enjoyed
learning about it. All of the tools are now in your hands. It is up to
you to use those tools like any skilled craftsman would. Practice
what you have learned until you master it, then move on to
something else.

Since you have read the entire manual, I would like to reward you
with a few bits of wit I thought you might enjoy:

1. If it were not for the last minute, nothing would ever get done.

2. The efficency of a programming team is inversely propor-
tional to the number of members in that team, whenever that
number is greater than three!

3. Even the simplest things are more complicated than you
thought.

4. The first 90 percent of a job takes 90 percent of the available
time; the last 10 percent takes the other 90 percent.

5. Always plan for the project to take twice as long as you
expected, after first doubling your original estimates.

22-6

Part 3 	 Chapter 22 Assembly Language Programming

Thank you for your attention to the matters of programming in
TURBO Pascal and for buying this book. If you are programming
for your own entertainment, your newly-learned programming
skills are probably sufficient for anything you will want to do. If
you intend to write serious Pascal programs, there are a couple of
other books I strongly recommend. These are:

—Wirth, Niklaus: Algorithms + Data Structures = Programs.
Prentice Hall (1976).

—Wirth, Niklaus: Pascal. Prentice Hall.

—Knuth, Donald E.: The Art of Computer Programming. (Vols.
1,2, and 3). Addison Wesley (1973).

—Horowitz, E. et al: Fundamentals of Data Structures. Pitman
(1976).

22-7

NOTES

INDEX

A

About the author, v
advanced program structure, 8-12
array, 13-1

data type, 13-2
definition, 13-1
index range, 13-2
indexing, 13-4
initialization, 13-5
order of elements, 13-6
packed, 13-4
selecting an element, 13-3
space considerations, 13-5
($R+) compiler option, 13-4

ASCII character
table of, 7-13

ASCII characters, 7-6
assembly language programming,

22-1
assembly language routines, 22-3

B

block statements, 8-17, 10-2
nesting, 8-18

bold
in program listings, 3-3

Boolean data, 9-17
boolean expressions, 10-3
boolean truth table, 10-15
buffered input routine, 19-2
byte manipulation, 9-9
byte types, 9-9

C

case statement, 10-11
chaining files, 6-9
character data, 4-2
character types, 9-15
characters, 7-6

non-printing, 7-6
printing, 7-7
special, 7-7

CMDLINE.PAS routine, 20-17
COMLIB.PAS routine, 20-18

comment delimiters, 8-11
commenting out sections of code,

8-9
comments, 7-4, 8-8
compiled code, 5-4
compiler

options, 6-10
compiling a program, 6-8
compound statement, 10-2
conditional execution, 10-4
constant, 3-5, 7-9

typed, 8-14
hex, 9-7

control characters, 7-6
entering, 9-16

control structures, 10-1
control structures program

example, 10-15
converting data, 12-11
CPMDIR.PAS routine, 21-1
CPMSTAT.DIR, 21-2
cumulative round-off error, 9-11

data, 4-3
conversion, 12-11
character, 4-3
label, 4-3
numeric, 4-3
predefined data types, 8-3

deallocation, 17-9
declaration section, 8-13

const, 8-13
label, 8-13
type, 8-14
var, 8-14

declaration statement, 8-2
declared scalar types, 12-1
declaring subranges, 12-13
declaring variables, 9-1
defining a "none of the above"

var, 12-6
defining variables, 7-3
developing a program, 5-1

23-1

device I/O, 18-16
direct memory output routine,

20-15
direct video output routine, 20-13
directory display, 6-14
DIRECTRY.PAS routine, 20-3
discriminated union, 15-12
disk status routine, 20-11
DISKSTUS.PAS routine, 20-11
div, 9-3
DOS version number routine, 20-13
DST

ordinal value, 12-4
reading values, 12-10

DSTs, 12-1
dynamic allocation, 17-1

E

editor, 6-6
EOLN function, 18-9
equations

using parentheses, 9-5
error handling, 6-9

I/O, 18-20
error

run-time, 6-12
type mismatch, 9-12
value range error, 9-6

executing a program, 6-16
expression

boolean, 10-3
integer, 9-4

expressions, 7-11

F

file, 18-1
appending records to, 18-6
chaining, 6-12
definition, 18-1
directory of, 6-15
random access, 18-5
saving, 6-14
text, 18-7
untyped, 18-14

filenames, 18-13
fillchar demo routine, 20-25
FILLCHAR.PAS routine, 20-25
for...do loop, 10-7
formatted output, 18-10

forward declarations, 11-12
free union, 15-12
FUNCKEYS.PAS routine, 19-1
function key detection routine, 19-1
functions, 9-8, 11-1, 11-8

G

getting started, 6-1

H

heap, 17-4
size of, 17-4
use of, 17-5

hex constants, 9-7
History of Pascal, 2-1

I/O error checking routine, 19-3
I/O error handling, 18-20
I/O special filenames, 18-18
I/O {$I-} compiler option, 18-15
IBMINT10.PAS routine, 20-13
identifiers, 7-8, 9-2
if...then...else, 10-11
in-line code routine, 22-2
information, 4-2
INLINE.PAS routine, 22-2
input/output, 7-2
integer expressions, 9-4
integers, 9-3

real, 9-10
unsigned, 9-7
predefined functions, 9-7

IOERROR.PAS routine, 19-3
iteration, 10-6

K

keyboard
real-time input, 18-19

L

languages
structured, 2-5

linked list, 17-6
use of, 17-8

local variable, 11-5
logical operators, 9-3
looping, 10-6

23-2

M

main body of a program, 7-3
main menu, 6-3
memory management, 17-9
memory space, 6-16
MEMSCREN.PAS routine, 20-115
Microsoft Mouse interface routine,

20-23
mixing strings, characters,

and arrays, 14-16
mod, 9-3

N

Niklaus Wirth, 2-5
nil, 7-10
nonsequential program execution,

10-1
normalization, 9-14
not operator, 9-8
numeric conversions, 14-13
numeric data, 4-2

0

object code, 5-4
operator precedence, 9-5, 9-11
operator

unary, 9-8
operators, 9-8
order of elements in an array, 13-6
order of evaluation, 9-5
ordinal values, 12-4
other books to read, 22-7

packed array, 13-5
parameter lists, 11-8
parameters, 11-6
parentheses

use in equations, 9-5
Pascal

converting BASIC to, 7-1
history, 2-1
TURBO vs. Standard, 8-12

PASS.ASM routine, 22-3
PASSFUNC.PAS routine, 22-2
pointer, 17-2, 17-3

pointing, 17-4
use of, 17-3

portable languages, 2-3

precedence of operations, 9-5
predefined data types, 8-3, 9-1
predefined functions

for integers, 9-7
table of, 8-19

predefined procedure, 8-6
table of, 8-18

procedure
definition, 1-4
predefined, 8-6

procedures, 9-8, 11-1
program statement, 8-2
program structure

advanced, 8-11
program

body, 8-4
commenting, 7-4, 8-8
conditional execution, 10-4
declaration section, 8-1
header, 3-5
main body, 7-3
parts of, 3-5
running, 6-10
simple, 3-3
statements, 3-6
structure, 8-1

programming
basic concepts, 4-1
considering data to use, 5-3
habits, 3-2
identifying the problem, 5-2

pseudocode, 5-4

QDL.PAS routine, 20-6

R

random accesss of files
definition, 18-6

RANDOM.PAS routine, 20-2
randomize routine, 20-2
read command line routine, 20-17
read directory routine, 20-4, 21-1
reading DST values, 12-10
real integers, 9-10
real number

exponent, 9-13
precision, 9-13
round-off error, 9-13

real-time keyboard input, 18-19

23-3

record, 15-1
field, 15-2
space considerations, 15-10
variant, 15-8

recursive subprogram, 11-11
remainder, 9-3
repeat...until loop, 10-10
reserved words, 3-3, 7-8

as symbols, 7-9
run-time errors, 6-12, 9-13
running a program, 6-10

S

saving files, 6-14
scope of identifiers, 11-3
semicolon, 3-6

exceptions, 3-6
use of, 7-3, 8-6

serial port library routine, 20-18
set, 16-1

comparison, 16-3
constant, 16-1
defining, 16-1
difference, 16-5
intersection, 16-5
operations, 16-4
size, 16-2
union, 16-5
use of, 16-2

simple word processor, 14-5
source code, 5-4
space

in memory, 6-16
statement, 3-6, 4-5, 10-1

compound, 10-2
string, 14-1

and f$V-1 option, 14-16
as parameter, 14-14
comparisons, 14-5
definition, 14-2
function, 14-7
numeric conversion, 14-13
procedure, 14-7
procedure & function table, 14-18

structured language, 2-5
subprogram, 8-15, 11-1

location, 11-2
recursive, 11-11

subrange
declaration, 12-13

subranges, 12-12
swapping values, 11-7
symbols, 7-9
system status routine, 21-2

TBOMOUSE.PAS routine, 20-23
terminal installation program, 6-1
text files, 18-7
tinst, 6-1
truth table, 10-15
type mismatch error message, 9-12
TYPEAHED.PAS routine, 19-2
typed constants, 8-14

U
unary operator, 9-8
union

discriminated, 15-12
free, 15-12

Unknown Identifier error message,
9-2

unsigned values, 9-7
untyped files, 18-14
using parentheses in equations, 9-5

V
value range error message, 9-6
variable, 3-5, 4-4, 7-10, 9-2, 13-1

Boolean, 9-17
byte, 9-9
char, 9-15
creating, 9-1
declaring, 9-1
defining, 7-3
entering control characters, 9-16
forward declaration, 11-12
integer type, 9-3
local, 11-5
of type string, 14-2
previously declared, 11-4

variant records, 15-8
VERSION.PAS routine, 20-13

while...do loop, 10-9
Who is Frank Borland?, 4
Wirth; Niklaus, 2-5
WITH statement, 15-4

nesting, 15-5
writing a simple program, 3-3
writing to disk, 18-5

23-4

CATALOG
OF

BORLAND
PRODUCTS

As of August 1, 1985

BORLAND
INTERNATIONAL

4585 Scotts Valley Drive
Scotts Valley, CA 95066

Available at better dealers nationwide. Call (800) 556-2283 for the dealer
nearest you. To order by Credit Card call (800) 255-8008, CA (800) 742-1133

LVi75") 	17-31 °
LIL}Pi VERSION 1.5

INFOWORLD'S
SOFTWARE PRODUCT OF THE YEAR

Whether you're running WordStarTM, LotusTM dBaserm,
or any other program, SIDEKICK puts all these desktop

accessories at your fingertips. Instantly.

A lull-screen WordStar-like Editor You may jot
down notes and edit files up to 25 pages long.

A Phone Directory for your names, addresses
and telephone numbers. Finding a name or a
number becomes a snap.

An Autodlaler for all your phone calls. It will
look up and dial telephone numbers for you.
(A modem is required to use this function.)

A Monthly Calendar functional from year 1901
through year 2099.

A Datebook to remind you of important
meetings and appointments.

A lull-featured Calculator ideal for business use.
It also performs decimal to hexadecimal to
binary conversions.

An ASCII Table for easy reference.

All the SIDEKICK windows stacked up over Lotus 1-2-3.
From bottom to top: SIDEKICK'S "Menu Window," ASCII
Table, Notepad, Calculator, Datebook, Monthly Calendar and
Phone Dialer.

Here's SIDEKICK running over Lotus 1-2-3. In the SIDEKICK
Notepad you'll notice data that's been imported directly from
the Lotus screen. In the upper right you can see the Calculator.

The Critics' Choice
"In a simple, beautiful implementation of WordStar'sTM
block copy commands, SIDEKICK can transport all or
any part of the display screen (even an area overlaid by
the notepad display) to the notepad."

—Charles Petzoid, PC MAGAZINE

"SIDEKICK deserves a place in every PC."
—Garry Ray, PC WEEK

"SIDEKICK is by far the best we've seen. It is also the
least expensive." 	—Ron Mansfield, ENTREPRENEUR

"If you use a PC, get SIDEKICK. You'll soon become
dependent on it." 	 —Jerry Pourneile, BYTE

SIDEKICK IS AN UNPARALLELED BARGAIN AT ONLY $54.95 (copy-protected)

OR $84.95 (not copy-protected)

Minimum System Configuration: SIDEKICK Is available now for your IBM PC, XT, AT, PC1r., and 100% compatible microcomputers.
The IBM PC Ir. will only accept the SIDEKICK not copy-protected version. Your computer must have at least 128K RAM, one disk
drive and PC-DOS 2.0 or greater. A Hayes" compatible modem, IBM PCIr.'" internal modem, or AT&T® Modem 4000 is required for
the autodiaier function.

BORLAND
INTERNATIONAL

SideKick and SuperKey are registered trademarks of Borland International, Inc. dBase is a trademark of Ashton-Tate. IBM is a registered trademark and PC jr. is a trademark of International Business
Machines Corp. AT&T is a registered trademark of American Telephone & Telegraph Company. Infoworld is a trademark of Popular Computing, Inc., a subsidiary of CW Communications Inc. Lotus 1-2-3 is

a trademark of Lotus Development Corp. WordStar is a trademark of Micropro International Corp. Hayes is a trademark of Hayes Microcomputer Products, Inc.

Supeilyt °
INCREASE YOUR PRODUCTIVITY
BY 50% OR YOUR MONEY BACK

SuperKey turns 1,000 keystrokes into 1!
Yes, SuperKey can record lengthy keystroke sequences and play them back at the
touch of a single key. Instantly. Like Magic.
Say, for example, you want to add a column of figures in 1-2-3. Without SuperKey you'd
have to type seven keystrokes just to get started. ["shift-@-s-u-m-shift-(']. With SuperKey
you can turn those 7 keystrokes into 1.

SuperKey keeps your 'confidential' files. . .CONFIDENT1AL!
Time after time you've experienced it: anyone can walk, up to your PC, and read your
confidential files (tax returns, business plans, customer lists, personal letters. . :).
With SuperKey you can encrypt any file, even while running another program. As long
as you keep the password secret, only YOU can decode your file. SuperKey imple-
ments the U.S. government Data Encryption Standard (DES).

SuperKey helps protect your capital investment.
SuperKey, at your convenience, will make your screen go blank after a predetermined
time of screen/keyboard inactivity. You've paid hard-earned money for your PC.
SuperKey will protect your monitor's precious phosphor. . . and your investment.

SuperKey protects your work from intruders while you take a break.
Now you can lock your keyboard at any time. Prevent anyone from changing hours of
work. Type in your secret password and everything comes back to life. . . just as you left it.

SUPERKEY is now available for an unbelievable $69.95 (not copy-protected).

Minimum System Configuration: SUPERKEY is compatible with your IBM PC, XT, AT, PCjr. and 100%
compatible microcomputers. Your computer must have at least 128K RAM, one disk drive and PC-DOS 2.0
or greater.

BORLAND
INTERNATIONAL

SideKick and SuperKey are registered trademarks of Borland International, Inc.
IBM and PC-DOS are trademarks of International Business Machines Corp. 	Lotus 1-2-3 is a trademark of Lotus Development Corp.

ll you ever write a word, think
a word, or say a word, you
need Turbo Lightning.

The Turbo Lightning Dictionary.

The Turbo Lightning Thesaurus.

If you use an IBM PC, you need

T
L,chIningTM

B 0

Turbo Lightning?" teams up
with the Random House
spelling Dictionary© to check
your spelling as you type/
Turbo Lightning, using the
83,000-word Random House
Dictionary, checks your spelling
as you type. If you misspell a
word, it alerts you with a 'beep'.
At the touch of a key, Turbo
Lightning opens a window on top
of your application program and
suggests the correct spelling.
Just press ENTER and the
misspelled word is instantly
replaced with the correct word.
It's that easy!

Turbo Lightning works hand-in-
hand with the Random House
Thesaurus® to give you instant
access to synonyms.
Turbo Lightning lets you choose
just the right word from a list of
alternates, so you don't say the
same thing the same way every
time. Once Turbo Lightning opens
the Thesaurus window, you see a
list of alternate words, organized by
parts of speech. You just select the
word you want, press ENTER and
your new word will instantly replace
the original word. Pure magic!

Turbo Lightning's intelligence
lets you teach it new words.
The more you use Turbo
Lightning, the smarter it gets!
You can also teach your new Turbo
Lightning your name, business
associates' names, street names,
addresses, correct capitalizations,
and any specialized words you use
frequently. Teach Turbo Lightning
once, and it knows forever.

Turbo Lightning" is the
engine that powers Borland's
Turbo Lightning Library'TM.

Turbo Lightning brings electronic
power to the Random House
Dictionary® and Random House
Thesaurus®. They're at your
fingertips —even while you're
running other programs. Turbo
Lightning will also 'drive' soon-to-
be-released encyclopedias,
extended thesauruses, specialized
dictionaries, and many other
popular reference works. You get
a head start with this first volume
in the Turbo Lightning Library.

And because Turbo Lightning is a
Borland product, you know you can
rely on our quality, our 60-day
money-back guarantee, and our
eminently fair prices.

BORLAND
INTERNATIONAL

IBM PC, XT, AT, and PCjr. are registered trademarks of International Business Machines Corp. Lotus 1-2-3 is a registered trademark of Lotus
Development Corporation. WordStar is a registered trademark of MicroPro International Corp. dBASE is a registered trademark of Ashton-Tate.
Microsoft is a registered trademark of Microsoft Corporation. SideKick is a registered trademark and Turbo Lightning and Turbo Lightning
Library are trademarks of Borland International. Random House Dictionary and Random House Thesaurus are registered trademarks of
Random House Inc. Reflex is a trademark of BORLAND/Analytica Inc. MultiMate is a trademark of MultiMate International Inc.

Suggested Retail Price $99.95
(not copy-protected)

Minimum System Requirements:
128K IBM PC® or 100% compatible computer,
with 2 floppy disk drives and PC-DOS (MS-DOS)
2.0 or greater.

FIN 11110 791E0 IFLITWT-137IwNr
; Jew
I Jell

we
tul

b7
VA 1173

1711
lin

Jell
Jew
Jell

?OM
bOrt

Caere
1011
IM

471
MI

1111
Mr
11

1111
117

I Jell Wit Cm.
iI mok in3

110
Jell
Jail

First
Furst Its 711

UM
1113

Ins
171

Jew harm Gams 1111 171 101
J771-.
Jew

IteaA
Smelt tw

TM
71

SIM
1171

Ili
1.7

Jew
rrw

Immot
lea

Comm
uola MI MIS 4311

• Ird Motet for mil Sten

it

Vlors 01 drm"IFm10 Mare lord Er*
roe

tile

Jm11

SIVE: Ilsos

ma 	Edit Printrf I It kcal It. list

The CROSSTAB VIEW gives you
amazing "cross-referenced"
pictures of the links and
relationships hidden in your data.

I Irmo 	Edit
ravers

Pr HA II/ Smarts Search Cross.

[It'll
MULCT

Cara lu LOS EL
l 	Mum 11" sms 31.4

E 	Firs la MI 1911 37n
Treat
El my

433
1701

!CI
fee

3.147
1.171

The REPORT VIEW allows
import and export to and

Reflex, 1-2-3, dBASE PFS Fil
other applications and prim

information in the formats you

REFLEX
THE ANALYST'

Reflex"' is the most amazing and easy to use database management
system. And if you already use Lotus 1-2-3, dBASE or PFS File, you

need Reflex—because it's a totally new way to look at your data. It shows
you patterns and interrelationships you didn't know were there, because

they were hidden in data and numbers. It's also the greatest
report generator for 1-2-3.

REFLEX OPENS MULTIPLE WINDOWS WITH NEW VIEWS AND GRAPHIC INSIGHTS INTO YOUR DATA.

The FORM VIEW lets you build and view your database. 	The LIST VIEW lets you put data in tabular List form
	

The GRAPH VIEW gives you instant interactive
just like a spreadsheet. 	 graphic representations.

So Reflex shows you. Instant answers. Instant pictures. Instant analysis. Instant understanding.

THE CRITICS' CHOICE:

"The next generation of software has officially arrived."
Peter Norton, PC WEEK

"Reflex is one of the most powerful database programs on
the market. Its multiple views, interactive windows and graphics, great
report writer, pull-down menus and cross tabulation make this
one of the best programs we have seen in a long time ...

The program is easy to use and not intimidating to the novice ...
Reflex not only handles the usual database functions such as sortir
and searching, but also "what-if" and statistical analysis ... it can
create interactive graphics with the graphics module. The separate
report module is one of the best we've ever seen."

Marc Stern, INFOW01

Minimum System Requirements: Reflex runs on the IBM® PC, XT, AT and compatibles. 384K RAM minimum. IBM Color Graphics Adapters, Hercules
Monochrome Graphics Carr, or equivalent. PC-DOS 2.0 or greater. Hard disk and mouse optional. Lotus 1.2-3, dBASE, or PFS File optional.

BORLAND
INTERNATIONAL

1/0XCIr Coro

glen LE

ULES:

x 	M.7S

Reflex is a trademark of BORLAND/Analytica Inc. Lotus is a registered trademark and Lotus 1-2.3 is a trademark of Lotus Development Corporation. dBASE is a registered
trademark of Ashton-Tate. PFS is a registered trademark and PFS File is a trademark of Software Publishing Corporation. IBM PC, ST, AT, PC-DOS and IBM Color Graphics Adapter are
registered trademarks of International Business Machines Corporation. Hercules Graphics Card is a trademark of Hercules Computer Technololgy.

(:k3r1711) 77 R. 7177°
ritnel-6"

Sidekick, the Macintosh Office Manager, brings
information management, desktop organization and
telecommunications to your Macintosh. Instantly,

while running any other program.

A full-screen editor/mini-word processor
lets you jot down notes and create or edit
files. Your files can also be used by your
favorite word processing program like
MacWriteTM or MicroSoft® WordTM

A complete telecommunication
program sends or receives information
from any on-line network or electronic
bulletin board while using any of your
favorite application programs. A modem is
required to use this feature.

A full-featured financial and scientific
calculator sends a paper-tape output to
your screen or printer and comes complete
with function keys for financial modeling
purposes.
A print spooler prints any text file while
you run other programs.

A versatile calendar lets you view your
appointments for a day, a week or an entire
month. You can easily print out your
schedule for quick reference.

A convenient "Things-to-Do" file
reminds you of important tasks.

A convenient alarm system alerts you to
daily engagements.

A phone log keeps a complete record of all
your telephone activities. It even computes
the cost of every call. Area code hook-up
provides instant access to the state, region
and time zone for all area codes.

An expense account file records your
business and travel expenses.

A credit card file keeps track of your
credit card balances and credit limits.

A report generator prints-out your mailing
list labels, phone directory and weekly
calendar in convenient sizes.

A convenient analog clock with a
sweeping second-hand can be displayed
anywhere on your screen.
On-line help is available for all of the
powerful SIDEKICK features.

Best of all, everything runs
concurrently.

SIDEKICK, the software Macintosh
owners have been waiting for.

Sidekick, Macintosh's Office Manager is available now for
$84.95 (not copy-protected).

Minimum System Configuration: SIDEKICK Is available now for your Macintosh microcomputer in a format that Is not copy-protected.
Your computer must have at least 128K RAM and one disk drive. Two disk drives are recommended if you wish to use other application
programs. A Hayes-compatible modem is required for the telecommunications function. To use SIDEKICK'S autodialing capability you
need the Borland phone-link interface. See inside for details.

INTERNATIONAL

SIDEKICK is a registered trademark of Borland International, Inc. Macintosh is a trademark of McIntosh Laboratory, Inc. MacWrite is a trademark of Apple
Computer, Inc. IBM is a trademark of International Business Machines Corp. Microsoft is a registered trademark and lAbrd is a trademark of MicroSoft Corp.

Hayes is a trademark of Hayes Microcomputer Products, Inc.

FREE MICROCALC SPREADSHEET
WITH COMMENTED SOURCE CODE !

VERSION 3.0

THE CRITICS' CHOICE:
	

THE FEATURES:
"Language deal of the century . . . Turbo

	
One-Step Compile: No hunting & fishing

Pascal: it introduces a new programming 	expeditions! Turbo finds the errors, takes you
environment and runs like magic."

	
to them, lets you correct, then instantly

—Jeff Duntemann, PC Magazine 	recompiles. You're off and running in record
time.

"Most Pascal compilers barely fit on a disk,
but Turbo Pascal packs an editor, compiler,
linker, and run-time library into just 39K
bytes of random-access memory."

—Dave Garland, Popular Computing

"What I think the computer industry is
headed for: well - documented, standard,
plenty of good features, and a reasonable
price." 	 —Jerry Pournelle, BYTE

LOOK AT TURBO NOW!
❑ More than 400,000 users worldwide.

❑ TURBO PASCAL is proclaimed as the
de facto industry standard.

❑ TURBO PASCAL PC MAGAZINE'S award
for technical excellence.

OPTIONS FOR 16-BIT SYSTEMS:

8087 math co-processor support for intensive
calculations.

Binary Coded Decimals (BCD): Eliminates
round-off error! A must for any serious business
application. (No additional hardware required.)

Built-in Interactive Editor: WordStar-like easy
editing lets you debug quickly.

Automatic Overlays: Fits big programs into
small amounts, of memory.

Microcalc: A sample spreadsheet on your disk
with ready-to-compile source code.

IBM PC VERSION: Supports Turtle Graphics,
Color, Sound, Full Tree Directories, Window
Routines, Input/Output Redirection and much
more.

❑ TURBO PASCAL named 'Most Significant
Product of the Year by PC WEEK.

❑ TURBO PASCAL 3.0 --- the FASTEST
Pascal development environment on the
planet, PERIOD.

Turbo Pascal 3.0 is available now
for $69.95.

Options: Turbo Pascal with 8087 or BCD at a low
$109.90. Turbo Pascal with both options (8087
and BCD) priced at $124.95.

MINIMUM SYSTEM CONFIGURATION: To use Turbo Pascal 3.0 requires 64K RAM, one disk drive, Z-80, 8088/86, 80186 or 80286
microprocessor running either CP/M-80 2.2 or greater, CP/M-86 1.1 or greater, MS-DOS 2,0 or greater or PC-DOS 2.0 greater,
MS-DOS 2.0 or greater or PC-DOS 2.0 or greater. A XENIX version of Turbo Pascal will soon be announced, and before the end of
the year, Turbo Pascal will be running on most 68000-based microcomputers.

BORLAND
INTERNATIONAL

Turbo Pascal is a registered trademark of Borland International, Inc.
CPIM is registered trademark of Digital Research Inc.
IBM an PC-DOS are registered trademarks of International Business
Machines Corp.
MS-DOS is a trademark of Microsoft Corp.
Z80 is a trademark of Zilog Corp.

LEARN PASCAL FROM THE FOLKS WHO INVENTED
TURBO PASCAL° AND TURBO DATABASE TOOLBOX®.

Borland International proudly introduces Turbo Tutor ® The perfect
complement to your Turbo Pascal compiler. Turbo Tutor is really for everyone—

even if you've never programmed before.

And if you're already proficient, Turbo Tutor can sharpen up the fine points. The 300
page manual and program disk divides your study of Pascal into three learning modules:

FOR THE NOVICE: Gives you a concise history of Pascal, tells you how to write a simple program, and
defines the basic programming terms you need to know.

ADVANCED CONCEPTS: If you're an expert, you'll love the sections detailing subjects such as "how to
use assembly language routines with your Turbo Pascal programs."

PROGRAMMER'S GUIDE: The heart of Turbo Pascal. This section covers the fine points of every aspect
of Turbo Pascal programming: program structure, data types, control structures, procedures and
functions, scalar types, arrays, strings, pointers, sets, files and records.

A MUST You'll find the source code for all the examples in the book on the accompanying disk ready to
compile.

Turbo Tutor may be the only reference on Pascal and programming you'll ever need!

TURBO TUTOR—A REAL EDUCATION FOR ONLY $34.95.
(not copy-protected)

*Minimum System Configuration: TURBO TUTOR is available today for your computer running TURBO PASCAL for PC-DOS, MS-DOS,
CP/M-80, and CP/M-86. Your computer must have at least 128K RAM, one disk drive and PC-DOS 1.0 or greater, MS-DOS 1.0 or
greater, CP/M-80 2.2 or greater, or CP/M-86 1.1 or greater.

BORLAND
INTERNATIONAL

Turbo Pascal and Turbo Tutor are registered trademarks and Turbo Database Toolbox is a trademark of Borland International, Inc., CP/M is a
trademark of Digital Research, Inc., MS-DOS is a trademark of Microsoft Corp., PC-DOS is a trademark of International Business Machines Corp.

TURBO GRAPHIX TOOLBOX Tm

HIGH RESOLUTION GRAPHICS AND GRAPHIC WINDOW MANAGEMENT
FOR THE IBM PC

Dazzling graphics and painless windows.
The Turbo Graphix ToolboxTm will give even a beginning programmer the expert's edge. It's a
complete library of Pascal procedures that include:

• Full graphics window management.

• Tools that allow you to draw and hatch pie charts, bar charts, circles, rectangles
and a full range of geometric shapes.

• Procedures that save and restore graphic images to and from disk.

• Functions that allow you to precisely plot curves.

• Tools that allow you to create animation or solve those difficult curve fitting
problems.

No sweat and no royalties.
You can incorporate part, or all of these tools in your programs, and yet, we won't charge you
any royalties. Best of all, these functions and procedures come complete with source code on
disk ready to compile!

John Markoff & Paul Freiberger, syndicated columnists:

"While most people only talk about low-cost personal computer software, Borland has been
doing something about it. And Borland provides good technical support as part of the price."

Turbo Graphix Toolbox—only $54.95 (not copy protected).

Minimum System Configuration: Turbo Graphix Toolbox is available today for your computer running Turbo Pascal 2.0 or greater for
PC-DOS, or truly compatible MS-DOS. Your computer must have at least 128K RAM, one disk drive and PC-DOS 2.0 or greater, and
MS-DOS 2.0 or greater with IBM Graphics Adapter or Enhanced Graphics Adapter, IBM-compatible Graphics Adapter, or Hercules
Graphics Card.

BORLAND
INTERNATIONAL

Turbo Pascal is a registered trademark and Turbo Graphix Toolbox is a trademark of Borland International, Inc.
IBM and PC-DOS are trademarks of International Business Machines Corp. 	MS-DOS is a trademark of Microsoft Corp.

EDITOR° TOOLBOX
It's All You Need To Build Your Own Text Editor

Or Word Processor.
Build your own lightning-fast editor and Incor-
porate It Into your Turbo Pascal programs.Turbo
Editor Toolbox'" gives you easy-to-install modules.
Now you can integrate a fast and powerful editor into
your own programs. You get the source code, the
manual and the know how.

Create your own word processor. We provide all
the editing routines. You plug in the features you want.
You could build a WordStar®-like editor with pull-
down menus like Microsoft's® Word, and make it work
as fast as WordPerfect'''.

To demonstrate the tremendous power of Turbo Editor Toolbox, we give you the source code for two
sample editors:
Simple Editor 	A complete editor ready to include in your programs. With windows, block commands, and

memory-mapped screen routines.
MicroStar'" 	A full-blown text editor with a complete pull-down menu user interface, plus a lot more.

Modify MicroStar's pull-down menu system and include it in your Turbo Pascal programs.

MicroStar's pull-down menus.

And Turbo Editor Toolbox has features that word processors selling for several hundred dollars can't begin to match.
Just to name a few:

The Turbo Editor Toolbox gives you all the
standard features you would expect to find
in any word processor:

• Word wrap
• UNDO last change
• Auto indent
• Find and Find/Replace with options
• Set left and right margin
• Block mark, move and copy.
• Tab, insert and overstrike modes,

centering, etc.

g RAM-based editor. You can edit very large
files and yet editing is lightning fast. Er Memory-mapped screen routines. In-
stant paging, scrolling and text display.

g Keyboard installation. Change control
keys from WordStar-like commands to any that
you prefer.

Er Multiple windows. See and edit up to eight
documents—or up to eight parts of the same
document—all at the same time. Er Multi-Tasking. Automatically save your
text. Plug in a digital clock . . . an appointment
alarm—see how it's done with MicroStar's
"background" printing.

Best of all, source code is included for everything in the Editor Toolbox. Use any of the Turbo Editor Toolbox's
features in your programs. And pay no royalties.

Minimum system configuration: The Turbo Editor Toolbox requires an IBM PC, XT, AT, 3270, PCir or true compatible with a minimum
192K RAM, running PC-DOS (MS-DOS) 2.0 or greater. You must be using Turbo Pascal 3.0 for IBM and compatibles.

BORLAND
INTERNATIONAL

Suggested Retail Price $69.95
(not copy-protected)

Turbo Pascal is a registered trademark and Turbo Editor Toolbox and MicroStar are trademarks of Borland
International, Inc. WordStar is a registered trademark of MicroPro International Corp. Microsoft and MS-DOS are
registered trademarks of Microsoft Corp. WordPerfect is a trademark of Satellite Software International. IBM,
IBM PC, XT, AT, PCjr. and PC-DOS are registered trademarks of International Business Machine-Corp.

TURBO

DEM BASE TOC 1. B 02C
TM

Is The Perfect Complement To Turbo Pascal.
It contains a complete library of Pascal procedures that allows you to sort

Ind search your data and build powerful applications. It's another set of tools
from Borland that will give even the beginning programmer

the expert's edge.

THE TOOLS YOU NEED!
URBOACCESS Files Using B+Trees - The best way to organize and search your data.
akes it possible to access records in a file using key words instead of numbers. Now
✓ailable with complete source code on disk ready to be included in your programs.

1RBOSORT -The fastest way to sort data—and TURBOSORT is the method preferred by
iowledgeable professional§. Includes source code.

INST (General Installation Program) - Gets your programs up and running on other ter-
iinals. This feature alone will save hours of work and research. Adds tremendous value
) all your programs.

GET STARTED RIGHT AWAY: FREE DATABASE! •
Icluded on every Toolbox disk is the source code to a working database which demon-
trates the power and simplicity of our Turbo Access search system. Modify it to suit
our individual needs or just compile it and run. Remember, no royalties!

THE CRITICS' CHOICE!
The tools include a B+tree search and a sorting system. I've seen stuff like this, but not
s well thought out, sell for hundreds of dollars."

—Jerry Pournelle, BYTE MAGAZINE

The Turbo Database Toolbox is solid enough and useful enough to come recommended."
—Jeff Duntemann, PC TECH JOURNAL

TURBO DATABASE TOOLBOX—ONLY $54.95. (not copy-protected).

Minimum system configurations: 64K RAM and one disk drive. 16-bit systems: TURBO PASCAL 2.0 or greater for MS-DOS or PC-DOS
2.0 or greater. TURBO PASCAL 2.1 or greater for CP/M-86 1.1 or greater. Eight-bit systems: TURBO PASCAL 2.0 or greater for
CP/M-80 2.2 or greater.

BORLAND
INTERNATIONAL

Turbo Pascal is a registered trademark and Turbo Database Toolbox is a trademark of Borland International, Inc. CP/M and CP/M-86 are registered trademarks of Digital Research, Inc.
IBM and PC-DOS are registered trademarks of International Business Machines Corp. MS-DOS is a trademark of Microsoft Corp.

Secrets And Strategies Of The Masters Are
Revealed For The First Time

Explore the world of state-of-the-art computer games with Turbo GameWorksTM. Using
easy-to-understand examples, Turbo GameWorks teaches you techniques to quickly create
your own computer games using Turbo Pascal®. Or, for instant excitement, play the three

great computer games we've included on disk—compiled and ready-to-run.

TURBO CHESS

Test your chess-playing skills against your computer challenger. With Turbo GameWorks, you're on your
way to becoming a master chess player. Explore the complete Turbo Pascal source code and discover
the secrets of Turbo Chess.

"What impressed me the most was the fact that with this program you can become a computer
chess analyst. You can add new variations to the program at any time and make the program play
stronger and stronger chess. There's no limit to the fun and enjoyment of playing Turbo GameWorks'
Chess, and most important of all, with this chess program there's no limit to how it can help you
improve your game." 	—George Koltanowski, Dean of American Chess, former President of

the United Chess Federation and syndicated chess columnist.

TURBO BRIDGE

Now play the world's most popular card game—Bridge. Play one-on-one with your computer or against
up to three other opponents. With Turbo Pascal source code, you can even program your own bidding
or scoring conventions.

"There has never been a bridge program written which plays at the expert level, and the ambitious
user will enjoy tackling that challenge, with the format already structured in the program. And for the
inexperienced player, the bridge program provides an easy-to-follow format that allows the user to start
right out playing. The user can "play bridge" against real competition without having to gather three
other people." 	

—Kit Woolsey, writer and author of several articles and books
and twice champion of the Blue Ribbon Pairs.

TURBO GO-MOKU

Prepare for battle when you challenge your computer to a game of Go-Moku--the exciting strategy
game also know as "Pente"TM. In this battle of wits, you and the computer take turns placing X's and
0's on a grid of 19X19 squares until five pieces are lined up in a row. Vary the game if you like using
the source code available on your disk.

Minimum system configuration: IBM PC, XT, AT, Portable, 3270, PCjr, and true compatibles with 192K system memory, running
PC-DOS (MS-DOS) 2.0 or later. To edit and compile the Turbo Pascal source code, you must be using Turbo Pascal 3.0 for IBM PC
and compatibles.

Suggested Retail Price: $69.95 (not copy-protected)

BORLAND Turbo Pascal is a registered trademark and Turbo GameWorks is a trademark of
Borland International, Inc. Pente is a registered trademark of Parker Brothers.
IBM PC, XT, AT, PCjr and PC-DOS are registered trademarks of International Business

INTERNATIONAL 	Machines Corporation. MS-DOS is a trademark of Microsoft Corporation.

NOTES

NOTES

NOTES

NOTES

NOTES

NOTES

NOTES

NOTES

TURBO TUTOR
Learn Pascal From The Folks Who Created

The Turbo Pascal Family.
Borland International proudly presents Turbo Tutor, the perfect complement to

your Turbo Pascal compiler. Turbo Tutor is really for everyone — even if
you've never programmed before.

And if you're already proficient, Turbo Tutor can sharpen up the fine points. The
manual and program disk focus on the whole spectrum of Turbo Pascal programming
techniques.

• For the Novice: It gives you a concise history of Pascal, tells you how to write a
simple program, and defines the basic programming terms you need to know.

• Programmer's Guide: The heart of Turbo Pascal. The manual covers the fine
points of every aspect of Turbo Pascal programming: program structure, data
types, control structures, procedures and functions, scalar types, arrays, strings,
pointers, sets, files, and records.

• Advanced Concepts: If you're an expert, you'll love the sections detailing such
topics as linked lists, trees, and graphs. You'll also find sample program examples
for PC-DOS, MS-DOS and CP/M.

A Must. You'll find the source code for all the examples in the book on the
accompanying disk ready to compile.

Turbo Tutor may be the only reference work about Pascal and programming you'll
ever need!

alliehoom system seallgeratier TURBO TUTOR is avaNahle today for your cemporter nosing TURBO PASCAL Mr PC-DOS, M-
OOS, CP/M-116. Year computer most have at least 12II(RAM, ems disk drive sod PC-DOS 1.0 or greater, MS-DOS 1.0 or greater,
CP/M-$0 2.2 or greater, or CP/111-011 1.1 or greater.

BORLAND
INTERNATIONAL

4585 SCOTTS VALLEY DRIVE
SCOTTS VALLEY, CALIFORNIA 95066

Turbo Pascal and Turbo Tula ate registered trademarks ol Borland klemational Inc CP/M rs a registered
tademirli ot Drotal Research Inc MS-DOS is a tradenwk ot Microsoft Corp PC-DOS is regtslered 	ISBN 0-87524-004-6
tadenlarli oh Intonational Business Machines Corp

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128
	Page 129
	Page 130
	Page 131
	Page 132
	Page 133
	Page 134
	Page 135
	Page 136
	Page 137
	Page 138
	Page 139
	Page 140
	Page 141
	Page 142
	Page 143
	Page 144
	Page 145
	Page 146
	Page 147
	Page 148
	Page 149
	Page 150
	Page 151
	Page 152
	Page 153
	Page 154
	Page 155
	Page 156
	Page 157
	Page 158
	Page 159
	Page 160
	Page 161
	Page 162
	Page 163
	Page 164
	Page 165
	Page 166
	Page 167
	Page 168
	Page 169
	Page 170
	Page 171
	Page 172
	Page 173
	Page 174
	Page 175
	Page 176
	Page 177
	Page 178
	Page 179
	Page 180
	Page 181
	Page 182
	Page 183
	Page 184
	Page 185
	Page 186
	Page 187
	Page 188
	Page 189
	Page 190
	Page 191
	Page 192
	Page 193
	Page 194
	Page 195
	Page 196
	Page 197
	Page 198
	Page 199
	Page 200
	Page 201
	Page 202
	Page 203
	Page 204
	Page 205
	Page 206
	Page 207
	Page 208
	Page 209
	Page 210
	Page 211
	Page 212
	Page 213
	Page 214
	Page 215
	Page 216
	Page 217
	Page 218
	Page 219
	Page 220
	Page 221
	Page 222
	Page 223
	Page 224
	Page 225
	Page 226
	Page 227
	Page 228
	Page 229
	Page 230
	Page 231
	Page 232
	Page 233
	Page 234
	Page 235
	Page 236
	Page 237
	Page 238
	Page 239
	Page 240
	Page 241
	Page 242
	Page 243
	Page 244
	Page 245
	Page 246
	Page 247
	Page 248
	Page 249
	Page 250
	Page 251
	Page 252
	Page 253
	Page 254
	Page 255
	Page 256
	Page 257
	Page 258
	Page 259
	Page 260
	Page 261
	Page 262
	Page 263
	Page 264
	Page 265
	Page 266
	Page 267
	Page 268
	Page 269
	Page 270
	Page 271
	Page 272
	Page 273
	Page 274
	Page 275
	Page 276
	Page 277
	Page 278
	Page 279
	Page 280
	Page 281
	Page 282
	Page 283
	Page 284
	Page 285
	Page 286
	Page 287
	Page 288
	Page 289
	Page 290
	Page 291
	Page 292
	Page 293
	Page 294
	Page 295
	Page 296
	Page 297
	Page 298
	Page 299
	Page 300
	Page 301
	Page 302
	Page 303
	Page 304
	Page 305
	Page 306
	Page 307

