**[**Back to ENCRYPT SWAG index**]** **[**Back to Main SWAG index**]** **[**Original**]**

```
RSA encryption.
The encryption key
```**is**: C = M **to **the power **of **e **MOD **n
where C **is **the encrypted byte(s)
M **is **the byte(s) **to **be encrypted
n **is **the product **of **p **and **q
p **is **a prime number ( theoretically 100 digits long )
q **is **a prime number ( theoretically 100 digits long )
e **is **a number that gcd(e,(p-1),(q-1)) = 1
The decryption key **is**: M = C **to **the power **of **d **MOD **n
Where C **is **the encrypted byte(s)
M **is **the original byte(s)
n **is **the product **of **p **and **q
p **is **a prime number ( must be the same **as **the encrypting one )
q **is **a prime number ( " " " " )
d **is **the inverse **of **the modulo e **MOD **(p-1)(q-1)
**As **you can see **in **order **to **crack the encrypted byte(s) you would need **to **know
the original prime #'s, Even with the encryption key it would take a long time
**to **genetate the correct prime #'s needed....
an Example...
C = M **to **the power **of **13 **MOD **2537
2537 **is **the product **of **43 **and **59.
the decryption key **is
**M = C **to **the power **of **937 **MOD **2537
937 **is **the inverse **of **13 **MOD **(43 - 1)(59 - 1).

**[**Back to ENCRYPT SWAG index**]** **[**Back to Main SWAG index**]** **[**Original**]**